CN110946556B - Parkinson's resting-state tremor assessment method based on wearable somatosensory network - Google Patents
Parkinson's resting-state tremor assessment method based on wearable somatosensory network Download PDFInfo
- Publication number
- CN110946556B CN110946556B CN201911375827.XA CN201911375827A CN110946556B CN 110946556 B CN110946556 B CN 110946556B CN 201911375827 A CN201911375827 A CN 201911375827A CN 110946556 B CN110946556 B CN 110946556B
- Authority
- CN
- China
- Prior art keywords
- tremor
- parkinson
- state
- feature
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010044565 Tremor Diseases 0.000 title claims abstract description 148
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000003238 somatosensory effect Effects 0.000 title claims abstract description 17
- 230000008859 change Effects 0.000 claims abstract description 64
- 230000000284 resting effect Effects 0.000 claims abstract description 32
- 210000002310 elbow joint Anatomy 0.000 claims abstract description 11
- 238000011156 evaluation Methods 0.000 claims abstract description 11
- 210000000707 wrist Anatomy 0.000 claims abstract description 11
- 239000000284 extract Substances 0.000 claims abstract description 10
- 210000003857 wrist joint Anatomy 0.000 claims abstract description 9
- 238000012549 training Methods 0.000 claims description 30
- 238000012360 testing method Methods 0.000 claims description 19
- 238000005070 sampling Methods 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 10
- 206010071390 Resting tremor Diseases 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000003183 myoelectrical effect Effects 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 4
- 230000014509 gene expression Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 210000004247 hand Anatomy 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 208000018737 Parkinson disease Diseases 0.000 abstract description 8
- 238000007405 data analysis Methods 0.000 abstract description 2
- 239000003550 marker Substances 0.000 abstract 1
- 238000002567 electromyography Methods 0.000 description 45
- 230000008569 process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 210000001364 upper extremity Anatomy 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 4
- 238000013480 data collection Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010006100 Bradykinesia Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 208000006083 Hypokinesia Diseases 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 210000002758 humerus Anatomy 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001144 postural effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 210000000623 ulna Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4082—Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1101—Detecting tremor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/389—Electromyography [EMG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Physiology (AREA)
- Neurology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Neurosurgery (AREA)
- Geometry (AREA)
- Developmental Disabilities (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明公开了一种基于可穿戴式体感网的帕金森静息态震颤评估方法,属于无线传感器网络及其数据分析领域,特别涉及一种基于可穿戴式体感网的帕金森患者手臂震颤状态获取及识别。本发明通过测量上臂、下臂和手腕的姿态角,计算肘关节和腕关节的角度变化量,提取角度变化量的特征,提取肌电信号的实时特征,根据特征数据和UPDRS量表训练隐马尔可夫模型,输出当前最优状态序列。本方法可以为帕金森患者手臂震颤程度评估提供技术支持,为帕金森患者、老年人、体弱者等需要及时获知早期帕金森病症发生的人群提供理论依据。
The invention discloses a Parkinson's resting state tremor evaluation method based on a wearable somatosensory network, belonging to the field of wireless sensor networks and data analysis thereof, and particularly relates to a wearable somatosensory network-based method for obtaining the tremor state of Parkinson's patients' arms and identification. The invention measures the posture angles of the upper arm, the lower arm and the wrist, calculates the angle change of the elbow joint and the wrist joint, extracts the characteristics of the angle change, extracts the real-time characteristics of the electromyographic signal, and trains the hidden Marker according to the characteristic data and the UPDRS scale. Kov model, which outputs the current optimal state sequence. The method can provide technical support for the assessment of the degree of arm tremor in Parkinson's patients, and provide theoretical basis for Parkinson's patients, the elderly, the infirm and other people who need to know the occurrence of early Parkinson's disease in time.
Description
技术领域technical field
本发明涉及无线传感器网络及其数据分析领域,特别涉及一种基于可穿戴式体感网的帕金森静息态震颤评估方法。The invention relates to the field of wireless sensor networks and data analysis thereof, in particular to a Parkinson's resting state tremor evaluation method based on a wearable somatosensory network.
背景技术Background technique
帕金森氏病是中枢神经系统退行性疾病,其特征是在不同程度上影响运动机体能力。它在老年人中更为常见,大多数情况发生在50岁后。帕金森氏病主要影响四个方面的运动功能,包括运动迟缓,静息性震颤,肢体僵硬和姿势不稳。静息性震颤在上肢较为突出,这种震颤会从单侧逐渐蔓延至双侧,病情会逐渐加重。因此,在日常生活中能够较早的识别出静息性震颤是非常必要的。Parkinson's disease is a degenerative disease of the central nervous system characterized by varying degrees of impact on the ability of the body to move. It is more common in older adults, with most cases occurring after age 50. Parkinson's disease primarily affects four areas of motor function, including bradykinesia, resting tremor, limb stiffness, and postural instability. Resting tremor is more prominent in the upper limbs, and the tremor will gradually spread from unilateral to bilateral, and the condition will gradually worsen. Therefore, it is very necessary to identify resting tremor earlier in daily life.
将可穿戴式传感器应用于早期震颤评估中是当前学术界和工业界的一个研究热点。可穿戴传感器可以用于人体的高精度跟踪、长期生理信号监测等,这种非植入式监测已用于临床患者运动异常的评估中。然而,现有的技术方案大都采用加速度计和陀螺仪直接采集震颤信号,这种方案的缺陷在于容易混入日常活动中的运动成分,而且传感器累积误差和环境噪声也使测量的信号不可靠。此外,在早期病症阶段,肢体的震颤是非常轻微的,从加速度计和陀螺仪采集的信号中很难提取其特征,容易被误认为是噪声信号而丢弃。因此,将震颤发生时的肌肉电信号加入评估体系中是早期病症中较好的方案。直接部署于手臂的表面肌电传感器可以输出实时的肌电信号,可以通过分析肌电信号特征,识别早期震颤状态。The application of wearable sensors in early tremor assessment is currently a research hotspot in academia and industry. Wearable sensors can be used for high-precision tracking of the human body, long-term physiological signal monitoring, etc. This non-implantable monitoring has been used in the evaluation of clinical patient movement abnormalities. However, most of the existing technical solutions use accelerometers and gyroscopes to directly collect tremor signals. The disadvantage of this solution is that it is easy to mix motion components in daily activities, and the accumulated errors of sensors and environmental noise also make the measured signals unreliable. In addition, in the early stage of the disease, the tremor of the limbs is very slight, and it is difficult to extract its features from the signals collected by the accelerometer and gyroscope, and it is easy to be mistaken as a noise signal and discarded. Therefore, adding the muscle electrical signal when tremor occurs into the evaluation system is a better solution for early symptoms. The surface EMG sensor deployed directly on the arm can output real-time EMG signals, and can identify the early tremor state by analyzing the characteristics of the EMG signals.
发明专利CN201410381634.6公开了一种用于帕金森病人主要症状定量检测的可穿戴系统,该发明通过可穿戴式智能手套获取指尖和手腕部位的加速度和角加速度,并通过特征描述震颤程度和肌肉僵直状态,由于直接采用惯性数据,容易受患者本身姿态和日常运动的干扰,从而影响系统识别效果。Invention patent CN201410381634.6 discloses a wearable system for quantitative detection of the main symptoms of Parkinson's patients. The invention obtains the acceleration and angular acceleration of fingertips and wrists through wearable smart gloves, and describes the degree of tremor and In the state of muscle stiffness, due to the direct use of inertial data, it is easily disturbed by the patient's own posture and daily movements, thus affecting the recognition effect of the system.
发明专利CN201410833652.3公开了一种基于近似熵和互近似熵的帕金森患者震颤症状量化评测方法,指定动作下拇指震颤数据采集、食指震颤数据采集及统一帕金森病评分量表UPDRS打分、震颤数据近似熵与震颤数据之间的互近似熵计算,但该方法未加入肌电信号特征,对早期轻微震颤识别效果较弱。Invention patent CN201410833652.3 discloses a method for quantifying tremor symptoms in Parkinson's patients based on approximate entropy and mutual approximate entropy, including thumb tremor data collection, index finger tremor data collection and unified Parkinson's disease scoring scale UPDRS scoring, tremor under specified action The approximate entropy between data approximate entropy and tremor data is calculated, but this method does not add EMG signal features, and the recognition effect of early mild tremor is weak.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明提出一种基于可穿戴式体感网的帕金森患者手臂静息态震颤评估方法,实现在日常行为下的手臂震颤程度准确识别,解决以下技术问题:患者日常行为影响手臂震颤状态的识别结果,降低系统识别正检率;早期震颤程度较为轻微,容易被误认为环境噪声,而无法被准确识别出。Purpose of the invention: The present invention proposes a resting state tremor assessment method for Parkinson's patients based on a wearable somatosensory network, which realizes accurate identification of the degree of arm tremor under daily behavior, and solves the following technical problems: the daily behavior of patients affects the state of arm tremor. The recognition result of the system reduces the positive detection rate of the system; the degree of early tremor is relatively slight, which is easily mistaken for environmental noise and cannot be accurately recognized.
技术方案:为实现本发明的目的,本发明所采用的技术方案是:通过传感器采集的姿态数据,计算腕关节和肘关节的角度变化量,并提取该变化量的时域频域特征,用于表征不同程度的震颤等级;通过提取部署于上臂肱二头肌处的表面肌电信号,计算该信号特征,用于表征不同程度的震颤等级;结合UPDRS评定量表,通过结合角度特征和肌电特征,设计一种多隐含状态转换的HMM模型,用于日常行为下震颤状态评估。本发明的基于可穿戴式体感网的帕金森患者手臂静息态震颤评估方法,具体包括:Technical solution: In order to achieve the purpose of the present invention, the technical solution adopted in the present invention is: calculate the angular variation of the wrist joint and the elbow joint through the attitude data collected by the sensor, and extract the time domain and frequency domain features of the variation, using It is used to characterize different degrees of tremor grades; by extracting the surface EMG signal deployed at the upper arm biceps, the signal characteristics are calculated to characterize different degrees of tremor grades; combined with the UPDRS rating scale, by combining angle characteristics and muscle Electrical characteristics, design a multi-hidden state transition HMM model for tremor state assessment under daily behavior. The method for evaluating the resting state tremor of Parkinson's patient's arm based on the wearable somatosensory network of the present invention specifically includes:
步骤1,在人体手部和手臂部署传感器,对传感器进行初始化,消除传感器零飘,并进行初始标定,设置传感器采样频率;通过部署的传感器采集人体姿态信号以及人体表面肌电信号;
步骤2,在帕金森病患者的日常运动中,低频成分(频率小于3Hz)来源于患者的有意识运动,而高频成分则包括运动间期的震颤和噪声;因此,根据静息态震颤频率响应特征,将姿态信号和肌电信号分别通过带通滤波器进行滤波,得到滤波后的姿态信号和肌电信号,滤波后的信号保留了因震颤引发的姿态成分和肌电信号成分;根据姿态信号计算姿态角变化量;In
步骤3,将步骤2输出的姿态角变化量离散数据、肌电信号离散数据分别保存于数据集中;由于采集的前期和后期容易受测试准备和测试停止状态转换的影响,因此按时间轴分别剔除数据集和的前后p%的数据,保留按时间轴p%至1-p%的数据,更新数据集和优选的,p%取值为10%;
步骤4,将数据集和分别进行等步长窗口化处理,将处理后的数据集和组合,选取其中q%作为训练集,用于HMM模型参数学习,其余的1-q%作为测试集,用于HMM模型识别;Step 4, the dataset and Perform equal-step windowing processing respectively, and the processed data set and Combination, select q% as the training set for HMM model parameter learning, and the remaining 1-q% as the test set for HMM model recognition;
优选的,为了连续性描述震颤的变化,将数据集和的步长设置为100ms,窗口时长为2s,数据交叠率为95%;q%取值为70%;Preferably, in order to continuously describe the changes in tremor, the data set is and The step size is set to 100ms, the window duration is 2s, the data overlap rate is 95%; the q% value is 70%;
步骤5,分别对训练集和测试集中窗口化数据提取帕金森震颤在静息态的姿态角变化时域和频域特征以及肌电信号特征;
步骤6,根据UPDRS帕金森评定量表,定义HMM模型隐含状态集;根据训练集中提取的特征,分别为各数据段设置状态标签;Step 6: Define the hidden state set of the HMM model according to the UPDRS Parkinson's Assessment Scale; set state labels for each data segment according to the features extracted from the training set;
步骤7,初始化HMM模型参数,将训练集中提取的特征参数作为训练观测序列,进行模型训练,计算HMM模型最佳参数,得到训练好的HMM模型;所述特征包括角度变化特征和肌电信号特征;Step 7: Initialize the parameters of the HMM model, take the feature parameters extracted from the training set as the training observation sequence, perform model training, calculate the optimal parameters of the HMM model, and obtain a trained HMM model; the features include angle change features and electromyographic signal features ;
步骤8,将测试集中提取的特征参数作为测试观测序列,输入已训练好的HMM模型中,求解当观测序列出现的概率最大时的隐含状态序列,输出当前最优隐含状态,得到震颤状态评估结果。Step 8, take the feature parameters extracted from the test set as the test observation sequence, input it into the trained HMM model, solve the hidden state sequence when the probability of occurrence of the observation sequence is the largest, output the current optimal hidden state, and obtain the tremor state evaluation result.
进一步,所述步骤1,在上臂、下壁、手部分别部署IMU传感器,同时在上臂部署EMG传感器;通过IMU传感器采集人体姿态数据,通过EMG传感器采集人体表面肌肉电信号;所述IMU传感器含有三轴加速度计、三轴陀螺仪和三轴磁力计,IMU传感器采集的姿态信号以四元数形式输出。优选的,设置IMU传感器采样频率为100Hz,EMG传感器采样频率为50Hz。优选的,选用型号为GY953的九轴IMU传感器,EMG传感器型号为OYmotion。Further, in the
进一步,所述步骤2,姿态信号通过的带通滤波器的上下截止频率为3Hz和6Hz,所述肌电信号通过的带通滤波器的上下截止频率为3Hz和12Hz。Further, in
进一步,所述步骤2,设置当前坐标系为地球坐标系x,y,z,计算姿态角变化量,方法如下:Further, in the
定义姿态角θ1,θ2,θ3,姿态角变化量△θ1,△θ2,△θ3,其中θ1,θ2,θ3分别为肘关节弯曲-伸展角、下臂内转-外转角、腕关节弯曲-伸展角,△θ1,△θ2,△θ3分别为肘关节弯曲-伸展角变化量、下臂内转-外转角变化量、腕关节弯曲-伸展角变化量;Define attitude angles θ 1 , θ 2 , θ 3 , attitude angle changes Δθ 1 , Δθ 2 , Δθ 3 , where θ 1 , θ 2 , θ 3 are elbow flexion-extension angle, lower arm internal rotation, respectively -External rotation angle, wrist flexion-extension angle, △θ 1 , △θ 2 , △θ 3 are the change in elbow joint flexion-extension angle, the lower arm inward-external rotation angle change, and the wrist joint flexion-extension angle change quantity;
根据得到的滤波后的姿态信号,即上臂、下臂、手部IMU传感器姿态四元数分别计算上臂、下臂、手部IMU传感器姿态角在坐标系x,y,z轴的投影αx,αy,αz、βx,βy,βz、γx,γy,γz;According to the obtained filtered attitude signal, that is, the attitude quaternion of the upper arm, lower arm and hand IMU sensor, respectively calculate the projection α x of the attitude angle of the upper arm, lower arm and hand IMU sensor on the coordinate system x, y and z axes, α y , α z , β x , β y , β z , γ x , γ y , γ z ;
根据手臂几何结构得到:From the arm geometry we get:
△θ1x=△αx+△βx△θ3x=△βx+△γx △θ 1x =△α x +△β x △θ 3x =△β x +△γ x
△θ1y=△αy+△βy,△θ3y=△βy+△γy △θ 1y =△α y +△β y , △θ 3y =△β y +△γ y
△θ1z=△αz+△βz△θ3z=△βz+△γz △θ 1z =△α z +△β z △θ 3z =△β z +△γ z
其中△θ1x,△θ1y,△θ1z、△θ3x,△θ3y,△θ3z分别为肘关节弯曲-伸展角变化量△θ1、腕关节弯曲-伸展角变化量△θ3在坐标系x,y,z轴的投影;△αx,△αy,△αz为上臂姿态角在x,y,z轴的投影的角度变化量;△βx,△βy,△βz为下臂姿态角在x,y,z轴的投影的角度变化量;△γx,△γy,△γz为手部姿态角在x,y,z轴的投影的角度变化量;Among them, △θ 1x , △θ 1y , △θ 1z , △θ 3x , △θ 3y , and △θ 3z are the elbow flexion-extension angle variation Δθ 1 and the wrist flexion-extension angle variation Δθ 3 respectively. The projection of the x, y, z axes of the coordinate system; △α x , △α y , △α z is the angle change of the projection of the upper arm attitude angle on the x, y, z axes; △β x , △β y , △β z is the angular change of the projection of the lower arm attitude angle on the x, y, z axis; △γ x , △γ y , △γ z is the angular change of the projection of the hand attitude angle on the x, y, z axis;
分别求姿态角变化量△θ1,△θ3,表达式如下:Calculate the attitude angle variation Δθ 1 , Δθ 3 respectively, the expressions are as follows:
由于下臂的内转或外转是沿肘关节与腕关节轴线旋转,因此,姿态角变化量△θ2直接由下臂IMU传感器输出的四元数导出。根据四元数与姿态角转换关系,可以将输出的四元数转换为角度变化量。Since the internal rotation or external rotation of the lower arm is rotated along the axis of the elbow joint and the wrist joint, the attitude angle change Δθ2 is directly derived from the quaternion output by the lower arm IMU sensor. According to the conversion relationship between the quaternion and the attitude angle, the output quaternion can be converted into the angle change.
进一步,所述步骤5,提取帕金森震颤在静息态的姿态角变化时域和频域特征描述震颤程度,具体如下:Further, in the
特征1:帕金森震颤在静息态下的角变化较为显著,因此,采用帕金森震颤在静息态的角变化时域下的平均角变化率描述震颤程度,分别计算姿态角θ1,θ2,θ3的平均角变化率单位为度/秒;计算公式如下:Feature 1: The angular change of Parkinson's tremor in the resting state is more significant. Therefore, the average angular change rate of Parkinson's tremor in the time domain of the angular change of the resting state is used. Describe the degree of tremor and calculate the average angular change rate of attitude angles θ 1 , θ 2 , θ 3 respectively The unit is degrees per second; the calculation formula is as follows:
其中n表示数据长度,n=t*fs,t为窗口时长,fs为IMU传感器采样频率;where n represents the data length, n=t*f s , t is the window duration, and f s is the sampling frequency of the IMU sensor;
特征2:帕金森病中的静息性震颤常表现为身体上肢在一定的频率范围的不自主运动,因此,采用帕金森震颤在静息态的角度变化频域下的能量作为特征描述震颤程度;Feature 2: Resting tremor in Parkinson's disease is often manifested as involuntary movements of the upper limbs of the body in a certain frequency range. Therefore, the energy of Parkinson's tremor in the frequency domain of angular changes in the resting state is used as a feature to describe the degree of tremor. ;
将训练集中的姿态信号数据作离散傅里叶变换,转换为频域数据,计算能量值:The attitude signal data in the training set is subjected to discrete Fourier transform, converted into frequency domain data, and the energy value is calculated:
其中E为能量值,f表示频点,P(f)为信号能量谱密度,单位为dB/秒;a,b分别为静息态震颤的频率范围边界值;[a,b]取值为静息态震颤典型的频率范围3-6Hz;where E is the energy value, f is the frequency point, P(f) is the signal energy spectral density, the unit is dB/sec; a, b are the frequency range boundary values of the resting tremor, respectively; [a, b] is the value of The typical frequency range of resting tremor is 3-6 Hz;
特征3:信息熵描述信息的不规则程度或混乱程度,从姿态信号频谱的特征可知,频域中信息熵具备较好的区分度,因此,采用帕金森震颤在静息态的角度变化的信息熵作为特征描述震颤程度;定义信息熵T如下:Feature 3: Information entropy describes the degree of irregularity or confusion of information. From the characteristics of the attitude signal spectrum, it can be seen that the information entropy in the frequency domain has a good degree of discrimination. Therefore, the information of the angle change of Parkinson's tremor in the resting state is used. Entropy is used as a feature to describe the degree of tremor; the information entropy T is defined as follows:
其中为频点f对应的出现概率,对数log取2为底。in is the occurrence probability corresponding to the frequency point f, and the logarithm log takes 2 as the base.
进一步,所述步骤5,提取肌电信号特征描述帕金森震颤,具体如下:Further, in the
特征4:帕金森震颤的肌电信号表现在发生震颤时的部分区域尖峰陡峭,因此,选择肌电信号峰度系数作为特征描述帕金森震颤;定义峰度系数k如下:Feature 4: The EMG signal of Parkinson's tremor shows steep peaks in some areas when tremor occurs. Therefore, the EMG signal kurtosis coefficient is selected as the feature to describe Parkinson's tremor; the kurtosis coefficient k is defined as follows:
其中μ为数据均值,Λ为数学期望,σ为标准差,x为肌电信号离散数据;where μ is the data mean, Λ is the mathematical expectation, σ is the standard deviation, and x is the EMG discrete data;
特征5:帕金森震颤的肌电信号也表现在发生震颤时的部分区域密集震荡,即信号高低起伏密度较大,因此,选择肌电信号过零率作为特征描述帕金森震颤;将肌电信号标准归一化,测量归一化后的肌电数据为零的个数即为过零率。所述归一化方法为:将肌电数据映射至[-1,1]区间,得到新的数据为:x′=(x-xmean)/(xmax-xmin),其中xmean为数据均值,xmax为最大值,xmin为最小值。Feature 5: The EMG signal of Parkinson's tremor also shows dense oscillations in some areas when tremor occurs, that is, the signal has a high density of fluctuations. Therefore, the zero-crossing rate of EMG signal is selected as the feature to describe Parkinson's tremor; Standard normalization, measure the number of zeros in the normalized EMG data is the zero-crossing rate. The normalization method is: map the EMG data to the [-1,1] interval, and obtain new data as: x′=(xx mean )/(x max -x min ), where x mean is the data mean , x max is the maximum value, and x min is the minimum value.
进一步,所述步骤6,根据UPDRS帕金森评定量表,定义HMM模型隐含状态集,设震颤幅度为h,隐含状态集包括:Further, in the
状态0:无震颤;state 0: no tremor;
状态1:轻微震颤,即发生震颤且0<h≤1cm;State 1: slight tremor, that is, tremor occurs and 0<h≤1cm;
状态2:中度震颤,即发生震颤且1<h≤3cm;State 2: Moderate tremor, that is, tremor occurs and 1<h≤3cm;
状态3:严重震颤,即发生震颤且3<h≤10cm;State 3: severe tremor, that is, tremor occurs and 3<h≤10cm;
状态4:重度震颤,即发生震颤且h>10cm;State 4: Severe tremor, that is, tremor occurs and h>10cm;
根据训练集中提取的特征,分别为各数据段设置状态标签0、1、2、3、4。According to the features extracted from the training set, state labels 0, 1, 2, 3, and 4 are set for each data segment respectively.
进一步,所述步骤7,所述HMM模型参数包括HMM隐含状态数M、初始概率π、状态观察概率B;初始化HMM隐含状态数M=5,初始概率π=[1,0,0,0,0],状态观察概率B用一组混合高斯密度表示;令参数λ=(A,B,π),A代表隐含状态转移概率;Further, in the
将训练集中提取的特征参数作为训练观测序列,利用Baum-Welch算法进行模型训练,迭代计算HMM模型最佳参数λ。Taking the feature parameters extracted from the training set as the training observation sequence, the Baum-Welch algorithm is used for model training, and the optimal parameter λ of the HMM model is iteratively calculated.
进一步,所述步骤8,将测试集中提取的特征参数Λ′作为测试观测序列,输入已训练好的HMM模型中,使用Viterbi算法求解当P(Λ′|λ)最大时的隐含状态序列,输出当前最优隐含状态(即0、1、2、3、4);其中,特征参数Λ′为角度特征和肌电特征集合;P(Λ′|λ)表示Viterbi算法求解给定HMM模型参数λ时,观测序列Λ′出现的概率。Further, in the step 8, the feature parameter Λ′ extracted from the test set is used as the test observation sequence, input into the trained HMM model, and the Viterbi algorithm is used to solve the hidden state sequence when P(Λ′|λ) is the largest, Output the current optimal hidden state (
有益效果:与现有技术相比,本发明的技术方案具有以下有益的技术效果:Beneficial effects: compared with the prior art, the technical solution of the present invention has the following beneficial technical effects:
本发明方法可以为帕金森患者手臂震颤程度评估提供技术支持,为帕金森患者、老年人、体弱者等需要及时获知早期帕金森病症发生的人群提供理论依据。由于该方法采用人体腕关节和肘关节的相对角度变化量特征,因此能够改善常规的加速度计或陀螺仪方案中运动数据受人体姿态和行为影响的缺陷,可以在日常行为下更好的表征震颤状态,具备较好的鲁棒性和可靠性。此外由于采用部署于肱二头肌处的EMG传感器实时肌电信号特征,可以提取出早期帕金森病症下的震颤程度,避免了IMU传感器难以获取早期震颤的缺陷。通过实验表明:根据评定量表设置震颤等级为5的前提下,HMM模型的识别率可以达到98%以上,具备较好的推广能力和工程应用价值。The method of the invention can provide technical support for evaluating the degree of arm tremor of Parkinson's patients, and provide theoretical basis for Parkinson's patients, the elderly, the infirm and other people who need to know the occurrence of early Parkinson's disease in time. Since this method adopts the relative angle change characteristics of the human wrist and elbow joints, it can improve the defect of the conventional accelerometer or gyroscope scheme that the motion data is affected by the posture and behavior of the human body, and can better characterize the tremor under daily behavior. state, with better robustness and reliability. In addition, due to the real-time EMG signal characteristics of the EMG sensor deployed at the biceps, the degree of tremor in early Parkinson's disease can be extracted, avoiding the defect that the IMU sensor is difficult to obtain early tremor. Experiments show that under the premise that the tremor level is set to 5 according to the evaluation scale, the recognition rate of the HMM model can reach more than 98%, which has good promotion ability and engineering application value.
附图说明Description of drawings
图1是人体上肢运动链动力学模型;Figure 1 is the dynamic model of the human upper limb kinematic chain;
图2是基于角度变化特征和肌电特征的震颤评估方法流程图;Fig. 2 is the flow chart of the tremor assessment method based on angle change characteristics and electromyography characteristics;
图3是基于HMM模型的震颤等级隐含状态转换示意图;Figure 3 is a schematic diagram of the tremor level implicit state transition based on the HMM model;
图4是本发明方法实验结果图;Fig. 4 is the experimental result diagram of the method of the present invention;
附图标记说明:1-上臂IMU传感器部署位置,2-EMG传感器测量电极部署位置,3-下臂IMU传感器部署位置,4-手部IMU传感器部署位置,5-肘关节弯曲-伸展角,6-下臂内转-外转角,7-手部弯曲-伸展角。DESCRIPTION OF REFERENCE NUMERALS: 1- Upper arm IMU sensor deployment position, 2-EMG sensor measurement electrode deployment position, 3- Lower arm IMU sensor deployment position, 4- Hand IMU sensor deployment position, 5- Elbow flexion-extension angle, 6 - Lower arm internal rotation - external rotation angle, 7 - hand flexion - extension angle.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明。为了更好的描述帕金森患者日常活动中的震颤程度,在具体实施过程中,本发明定义了以下8种情境:The technical solutions of the present invention will be further described below with reference to the accompanying drawings and embodiments. In order to better describe the degree of tremor in daily activities of Parkinson's patients, in the specific implementation process, the present invention defines the following 8 scenarios:
S1:平躺于床上;S1: lie flat on the bed;
S2:静坐于椅子上,手臂自然放松;S2: Sit quietly on a chair and relax your arms naturally;
S3:静坐于椅子上,手臂平放于桌面;S3: Sit quietly on a chair with your arms flat on the table;
S4:静止站立,手臂自然放松;S4: Stand still, with arms naturally relaxed;
S5:慢速步行10秒后,静坐于椅子上,手臂自然放松;S5: After walking slowly for 10 seconds, sit still on the chair and relax the arms naturally;
S6:抓取茶杯喝水后,手臂平放于桌面;S6: After grabbing the tea cup to drink water, place the arm flat on the table;
S7:抓取茶杯喝水后,肘关节支撑于桌面;S7: After grabbing the teacup to drink water, the elbow joint is supported on the table;
S8:站立状态,上臂弯曲伸展运动5次后,手臂自然放松;S8: Standing state, after bending and stretching the upper arm for 5 times, the arm is naturally relaxed;
分别对上述8种情境进行本发明方法步骤操作,建立不同情境下的震颤评估模型,用于测试本方法的可靠性和有效性。以其中S3情境为例,实施过程如下:The steps of the method of the present invention are respectively performed on the above 8 scenarios, and tremor evaluation models under different scenarios are established to test the reliability and effectiveness of the method. Taking the S3 scenario as an example, the implementation process is as follows:
步骤1,将三个型号为GY953的九轴IMU传感器分别部署在人体上臂、下壁、手部,将型号为OYmotion的EMG传感器部署于手臂肱二头肌处,部署位置如图1所示;对传感器进行初始化,消除传感器零飘,并进行初始标定,设置IMU传感器采样频率为100Hz,EMG传感器采样频率为50Hz。Step 1: Deploy three nine-axis IMU sensors with model GY953 on the upper arm, lower wall and hand of the human body respectively, and deploy the EMG sensor with model OYmotion on the biceps of the arm, as shown in Figure 1; Initialize the sensor, eliminate sensor drift, and perform initial calibration, set the sampling frequency of the IMU sensor to 100Hz, and the sampling frequency of the EMG sensor to 50Hz.
通过部署的三个IMU传感器采集人体姿态信号,通过EMG传感器采集人体表面肌电信号;IMU传感器采集的姿态信号以四元数形式输出。The human body attitude signal is collected by the deployed three IMU sensors, and the electromyographic signal of the human body surface is collected by the EMG sensor; the attitude signal collected by the IMU sensor is output in the form of quaternion.
步骤2,将姿态信号通过上下截止频率为3Hz和6Hz的带通滤波器进行滤波,将肌电信号通过上下截止频率为3Hz和12Hz的带通滤波器进行滤波,得到滤波后的姿态信号和肌电信号;设置当前坐标系为地球坐标系x,y,z,根据姿态信号计算姿态角变化量,具体方法如下:Step 2: Filter the attitude signal through band-pass filters with upper and lower cut-off frequencies of 3 Hz and 6 Hz, and filter the EMG signal through band-pass filters with upper and lower cut-off frequencies of 3 Hz and 12 Hz to obtain the filtered attitude signal and muscle. Electric signal; set the current coordinate system as the earth coordinate system x, y, z, and calculate the attitude angle change according to the attitude signal. The specific method is as follows:
定义姿态角θ1,θ2,θ3,姿态角变化量△θ1,△θ2,△θ3,其中θ1,θ2,θ3分别为肘关节弯曲-伸展角、下臂内转-外转角、腕关节弯曲-伸展角,△θ1,△θ2,△θ3分别为肘关节弯曲-伸展角变化量、下臂内转-外转角变化量、腕关节弯曲-伸展角变化量;Define attitude angles θ 1 , θ 2 , θ 3 , attitude angle changes Δθ 1 , Δθ 2 , Δθ 3 , where θ 1 , θ 2 , θ 3 are elbow flexion-extension angle, lower arm internal rotation, respectively -External rotation angle, wrist flexion-extension angle, △θ 1 , △θ 2 , △θ 3 are the change in elbow joint flexion-extension angle, the lower arm inward-external rotation angle change, and the wrist joint flexion-extension angle change quantity;
根据得到的滤波后的姿态信号,即上臂、下臂、手部IMU传感器姿态四元数分别计算上臂、下臂、手部IMU传感器姿态角在坐标系x,y,z轴的投影αx,αy,αz、βx,βy,βz、γx,γy,γz;According to the obtained filtered attitude signal, that is, the attitude quaternion of the upper arm, lower arm and hand IMU sensor, respectively calculate the projection α x of the attitude angle of the upper arm, lower arm and hand IMU sensor on the coordinate system x, y and z axes, α y , α z , β x , β y , β z , γ x , γ y , γ z ;
根据手臂几何结构得到:From the arm geometry we get:
△θ1x=△αx+△βx△θ3x=△βx+△γx △θ 1x =△α x +△β x △θ 3x =△β x +△γ x
△θ1y=△αy+△βy,△θ3y=△βy+△γy △θ 1y =△α y +△β y , △θ 3y =△β y +△γ y
△θ1z=△αz+△βz△θ3z=△βz+△γz △θ 1z =△α z +△β z △θ 3z =△β z +△γ z
其中△θ1x,△θ1y,△θ1z、△θ3x,△θ3y,△θ3z分别为肘关节弯曲-伸展角变化量△θ1、腕关节弯曲-伸展角变化量△θ3在坐标系x,y,z轴的投影;△αx,△αy,△αz为上臂姿态角在x,y,z轴的投影的角度变化量;△βx,△βy,△βz为下臂姿态角在x,y,z轴的投影的角度变化量;△γx,△γy,△γz为手部姿态角在x,y,z轴的投影的角度变化量;Among them, △θ 1x , △θ 1y , △θ 1z , △θ 3x , △θ 3y , and △θ 3z are the elbow flexion-extension angle variation Δθ 1 and the wrist flexion-extension angle variation Δθ 3 respectively. The projection of the x, y, z axes of the coordinate system; △α x , △α y , △α z is the angle change of the projection of the upper arm attitude angle on the x, y, z axes; △β x , △β y , △β z is the angular change of the projection of the lower arm attitude angle on the x, y, z axis; △γ x , △γ y , △γ z is the angular change of the projection of the hand attitude angle on the x, y, z axis;
分别求姿态角变化量△θ1,△θ3,表达式如下:Calculate the attitude angle variation Δθ 1 , Δθ 3 respectively, the expressions are as follows:
由于下臂的内转或外转是沿肘关节与腕关节轴线旋转,因此,姿态角变化量△θ2直接由下臂IMU传感器输出的四元数导出。根据四元数与姿态角转换关系,可以将输出的四元数转换为角度变化量。Since the internal rotation or external rotation of the lower arm is rotated along the axis of the elbow joint and the wrist joint, the attitude angle change Δθ2 is directly derived from the quaternion output by the lower arm IMU sensor. According to the conversion relationship between the quaternion and the attitude angle, the output quaternion can be converted into the angle change.
步骤3,将步骤2输出的姿态角变化量离散数据、肌电信号离散数据分别保存于数据集中;按时间轴分别剔除数据集和的前后10%的数据,更新数据集和。
步骤4,将数据集和分别进行等步长窗口化处理,为了连续性描述震颤的变化,将数据集和的步长设置为100ms,窗口时长为2s,数据交叠率为95%;将处理后的数据集和组合,选取其中70%作为训练集,用于HMM模型参数学习,其余的30%作为测试集,用于HMM模型识别。Step 4, the dataset and The equal-step window processing is performed separately. In order to continuously describe the change of tremor, the data set is and The step size is set to 100ms, the window duration is 2s, and the data overlap rate is 95%; the processed data set and Combined, 70% of them are selected as the training set for HMM model parameter learning, and the remaining 30% are used as the test set for HMM model recognition.
步骤5,分别对训练集和测试集中窗口化数据提取帕金森震颤在静息态的姿态角变化时域和频域特征以及肌电信号特征;方法如下:Step 5: Extract the time-domain and frequency-domain characteristics of the attitude angle change of Parkinson's tremor in the resting state and the EMG signal characteristics from the windowed data in the training set and the test set respectively; the method is as follows:
提取帕金森震颤在静息态的姿态角变化时域和频域特征,具体如下:Extract the time-domain and frequency-domain features of Parkinson's tremor in the resting state of attitude angle changes, as follows:
特征1:采用帕金森震颤在静息态的角变化时域下的平均角变化率描述震颤程度,分别计算姿态角θ1,θ2,θ3的平均角变化率单位为度/秒;计算公式如下:Feature 1: Use the average angular change rate of Parkinson's tremor in the angular change time domain of the resting state Describe the degree of tremor and calculate the average angular change rate of attitude angles θ 1 , θ 2 , θ 3 respectively The unit is degrees per second; the calculation formula is as follows:
其中n表示数据长度,n=t*fs,t为窗口时长,fs为IMU传感器采样频率;where n represents the data length, n=t*f s , t is the window duration, and f s is the sampling frequency of the IMU sensor;
特征2:采用帕金森震颤在静息态的角度变化频域下的能量作为特征描述震颤程度;Feature 2: Use the energy of Parkinson's tremor in the resting state angle change frequency domain as a feature to describe the degree of tremor;
将训练集中的姿态信号数据作离散傅里叶变换,转换为频域数据,计算能量值:The attitude signal data in the training set is subjected to discrete Fourier transform, converted into frequency domain data, and the energy value is calculated:
其中E为能量值,f表示频点,P(f)为信号能量谱密度,单位为dB/秒;a,b分别为静息态震颤的频率范围边界值;[a,b]取值为静息态震颤典型的频率范围3-6Hz;where E is the energy value, f is the frequency point, P(f) is the signal energy spectral density, the unit is dB/sec; a, b are the frequency range boundary values of the resting tremor, respectively; [a, b] is the value of The typical frequency range of resting tremor is 3-6 Hz;
特征3:采用帕金森震颤在静息态的角度变化的信息熵作为特征描述震颤程度;定义信息熵T如下:Feature 3: The information entropy of the angle change of Parkinson's tremor in the resting state is used as a feature to describe the degree of tremor; the information entropy T is defined as follows:
其中为频点f对应的出现概率,对数log取2为底。in is the occurrence probability corresponding to the frequency point f, and the logarithm log takes 2 as the base.
提取肌电信号特征描述帕金森震颤,具体如下:Extracting EMG signal features to describe Parkinson's tremor, as follows:
特征4:选择肌电信号峰度系数作为特征描述帕金森震颤;定义峰度系数k如下:Feature 4: Select the EMG kurtosis coefficient as a feature to describe Parkinson's tremor; define the kurtosis coefficient k as follows:
其中μ为数据均值,Λ为数学期望,σ为标准差,x为肌电信号离散数据;where μ is the data mean, Λ is the mathematical expectation, σ is the standard deviation, and x is the EMG discrete data;
特征5:选择肌电信号过零率作为特征描述帕金森震颤;将肌电信号标准归一化,测量归一化后的肌电数据为零的个数即为过零率。所述归一化方法为:将肌电数据映射至[-1,1]区间,得到新的数据为:x′=(x-xmean)/(xmax-xmin),其中xmean为数据均值,xmax为最大值,xmin为最小值。Feature 5: Select the EMG signal zero-crossing rate as a feature to describe Parkinson's tremor; normalize the EMG signal standard, and measure the number of zeros in the normalized EMG data is the zero-crossing rate. The normalization method is: map the EMG data to the [-1,1] interval, and obtain new data as: x′=(xx mean )/(x max -x min ), where x mean is the data mean , x max is the maximum value, and x min is the minimum value.
步骤6,根据UPDRS帕金森评定量表,定义HMM模型隐含状态集;设震颤幅度为h,隐含状态集包括:Step 6: Define the hidden state set of the HMM model according to the UPDRS Parkinson's rating scale; set the tremor amplitude to be h, and the hidden state set includes:
状态0:无震颤;state 0: no tremor;
状态1:轻微震颤,即发生震颤且0<h≤1cm;State 1: slight tremor, that is, tremor occurs and 0<h≤1cm;
状态2:中度震颤,即发生震颤且1<h≤3cm;State 2: Moderate tremor, that is, tremor occurs and 1<h≤3cm;
状态3:严重震颤,即发生震颤且3<h≤10cm;State 3: severe tremor, that is, tremor occurs and 3<h≤10cm;
状态4:重度震颤,即发生震颤且h>10cm;State 4: Severe tremor, that is, tremor occurs and h>10cm;
其中h表示震颤幅度;where h is the tremor amplitude;
根据训练集中提取的特征,分别为各数据段设置状态标签0、1、2、3、4。According to the features extracted from the training set, state labels 0, 1, 2, 3, and 4 are set for each data segment respectively.
步骤7,初始化HMM模型参数,HMM隐含状态数M=5,初始概率π=[1,0,0,0,0],状态观察概率B用一组混合高斯密度表示;令参数λ=(A,B,π),A代表隐含状态转移概率;将训练集中提取的特征参数作为训练观测序列,利用Baum-Welch算法进行模型训练,迭代计算HMM模型最佳参数λ,得到训练好的HMM模型;所述特征包括角度变化特征和肌电信号特征。Step 7: Initialize the HMM model parameters, the number of HMM hidden states M=5, the initial probability π=[1,0,0,0,0], the state observation probability B is represented by a set of mixed Gaussian densities; let the parameter λ=( A, B, π), A represents the hidden state transition probability; the feature parameters extracted from the training set are used as the training observation sequence, the Baum-Welch algorithm is used for model training, and the optimal parameter λ of the HMM model is iteratively calculated to obtain the trained HMM. Model; the features include angle change features and myoelectric signal features.
步骤8,将测试集中提取的特征参数Λ′作为测试观测序列,输入已训练好的HMM模型中,使用Viterbi算法求解当P(Λ′|λ)最大时的隐含状态序列,输出当前最优隐含状态(即0、1、2、3、4);其中,特征参数Λ′为角度特征和肌电特征集合;P(Λ′|λ)表示Viterbi算法求解给定HMM模型参数λ时,观测序列Λ′出现的概率。Step 8: Take the feature parameter Λ′ extracted from the test set as the test observation sequence, input it into the trained HMM model, use the Viterbi algorithm to solve the hidden state sequence when P(Λ′|λ) is the largest, and output the current optimal Hidden state (
根据研究表明,大多数静息性震颤体现在人体上肢部位。因此,本发明主要选择上肢进行分析。人的手臂可以建模为一个运动链,如图1所示,由三个手臂段(上臂、下臂和手部)和三个关节(肩关节、肘关节和腕关节)组成,三个IMU传感器分别部署在上臂近肘(肱骨远端上方,图中位置1)、下臂近腕(桡骨和尺骨远端上方,图中位置3)和手背表面(图中位置4)。手臂软组织对这些位置的影响较小,信号不易受到软组织微动的干扰。同时,EMG传感器测量电极部署在上臂肱二头肌的表面(图中位置2),这是由于肘关节弯曲-伸展和内转-外转与肱二头肌有直接关系,因此需要测量该位置处表面肌电信号,用于后期EMG特征提取。由于静息态震颤通常表现为手臂腕关节和肘关节旋转的组合运动,因此本发明选用描述旋转特征的三个角度作为后期特征提取的输入量,分别为θ1(肘关节弯曲-伸展角,图中角度5)、θ2(下臂内转-外转角,图中角度6)和θ3(手部弯曲-伸展角,图中角度7)。According to research, most resting tremors are manifested in the upper limbs of the human body. Therefore, the present invention mainly selects the upper limbs for analysis. The human arm can be modeled as a kinematic chain, as shown in Figure 1, consisting of three arm segments (upper arm, lower arm, and hand) and three joints (shoulder, elbow, and wrist), and three IMUs. The sensors were deployed on the upper arm near the elbow (above the distal humerus,
图2显示的为本发明中震颤评估方法的总体流程图,图中所示主要分为三个部分,分别为数据采集与预处理、特征提取、HMM模型训练与识别。模型的计算流程分为离线阶段和在线阶段,离线阶段用于震颤数据分段和震颤特征数据集构建;在线阶段用于震颤特征识别与状态评估。与常规的阈值评估方法相比,HMM方法有如下优点:马尔可夫链结构可以保留震颤特征时序的结构信息;HMM模型参数可以代表震颤的统计学特性;HMM作为一种概率模型,不再需要设置阈值。因此,本发明采用HMM模型可以直接从时序上体现震颤状态的转换过程,能够更好描述日常生活中帕金森患者震颤的时序特性。FIG. 2 shows the overall flow chart of the tremor evaluation method in the present invention, which is mainly divided into three parts, which are data collection and preprocessing, feature extraction, and HMM model training and recognition. The calculation process of the model is divided into an offline stage and an online stage. The offline stage is used for tremor data segmentation and tremor feature dataset construction; the online stage is used for tremor feature identification and state evaluation. Compared with the conventional threshold evaluation method, the HMM method has the following advantages: the Markov chain structure can retain the structural information of the tremor feature sequence; the HMM model parameters can represent the statistical characteristics of the tremor; as a probabilistic model, the HMM is no longer required. Set the threshold. Therefore, the present invention can directly reflect the transition process of the tremor state from the time sequence by using the HMM model, and can better describe the time sequence characteristics of the tremor of Parkinson's patients in daily life.
相对于其他类型的时间序列信号分析模型,隐马尔科夫模型(HMM)可以更好地描述时间相关信号的特性,可以很好地表征为参数的随机过程。它保留特征信号的结构信息,而不需要启发式规则中使用的阈值。为了更好地描述震颤状态转换,提升模型的泛化能力,本发明选择角度特征信息和肌电特征信息作为模型输入,特征矩阵计算量较小,较适用于可穿戴式体感网计算能力低,能效要求高的场合。Compared with other types of time series signal analysis models, Hidden Markov Model (HMM) can better describe the characteristics of time-related signals and can be well characterized as a random process of parameters. It preserves the structural information of the feature signal without the need for thresholds used in heuristic rules. In order to better describe the tremor state transition and improve the generalization ability of the model, the present invention selects the angular feature information and the EMG feature information as the model input, the feature matrix calculation amount is small, and it is more suitable for the wearable somatosensory network. Occasions with high energy efficiency requirements.
根据震颤状态转换的实际过程,本发明只选择连续渐进状态转移过程,如图3所示,即0-0,0-1,1-1,1-2,2-2,2-1,2-3,3-3,3-2,3-4,4-4,4-3,舍弃了震颤状态跳变过程0-2,2-0,0-4,1-3,4-2等;此外,定义数据集初始状态和结束状态均为0状态,即首先从无震颤状态开始,直至无震颤状态结束。According to the actual process of the tremor state transition, the present invention only selects the continuous and progressive state transition process, as shown in Figure 3, namely 0-0, 0-1, 1-1, 1-2, 2-2, 2-1, 2 -3, 3-3, 3-2, 3-4, 4-4, 4-3, discard the tremor state jump process 0-2, 2-0, 0-4, 1-3, 4-2, etc. ; In addition, it is defined that the initial state and the end state of the dataset are both 0 states, that is, starting from the tremor-free state at first, until the end of the tremor-free state.
图4中从上至下分别显示腕关节角度变化量、平均角度变化率、角度频域能量值、角度频域信息熵和HMM模型识别的隐含状态序列。根据实际测量结果,可以得出HMM模型输出最优序列为:0-1-2-1-0。可以看出,本发明选择的角度特征具备较好的描述性和区分度,对帕金森震颤评估具有较好的识别效果。通过本发明方法可以实现状态识别率为98%以上。Figure 4 shows the wrist angle change amount, the average angle change rate, the angle frequency domain energy value, the angle frequency domain information entropy and the hidden state sequence identified by the HMM model from top to bottom. According to the actual measurement results, it can be concluded that the optimal output sequence of the HMM model is: 0-1-2-1-0. It can be seen that the angle feature selected by the present invention has good descriptiveness and discrimination, and has a good recognition effect for Parkinson's tremor evaluation. Through the method of the present invention, the state recognition rate can be achieved over 98%.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911375827.XA CN110946556B (en) | 2019-12-27 | 2019-12-27 | Parkinson's resting-state tremor assessment method based on wearable somatosensory network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911375827.XA CN110946556B (en) | 2019-12-27 | 2019-12-27 | Parkinson's resting-state tremor assessment method based on wearable somatosensory network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110946556A CN110946556A (en) | 2020-04-03 |
CN110946556B true CN110946556B (en) | 2022-07-15 |
Family
ID=69984542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911375827.XA Active CN110946556B (en) | 2019-12-27 | 2019-12-27 | Parkinson's resting-state tremor assessment method based on wearable somatosensory network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110946556B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111528842B (en) * | 2020-05-26 | 2023-01-03 | 复嶂环洲生物科技(上海)有限公司 | Quantitative assessment method for Parkinson disease symptoms based on physiological and behavioral indexes |
CN111513724A (en) * | 2020-05-28 | 2020-08-11 | 长春理工大学 | Wearable device suitable for rehabilitation monitoring and evaluation of hand function of Parkinson patient |
CN111643092A (en) * | 2020-06-02 | 2020-09-11 | 四川大学华西医院 | Epilepsia alarm device and epilepsia detection method |
CN112766041B (en) * | 2020-12-25 | 2022-04-22 | 北京理工大学 | Method for identifying hand washing action of senile dementia patient based on inertial sensing signal |
CN112826504B (en) * | 2021-01-07 | 2024-03-26 | 中新国际联合研究院 | Game parkinsonism grade assessment method and device |
CN113100756A (en) * | 2021-04-15 | 2021-07-13 | 重庆邮电大学 | A Stacking-based Parkinson's Tremor Detection Method |
CN113609975A (en) * | 2021-08-04 | 2021-11-05 | 苏州小蓝医疗科技有限公司 | Modeling method for tremor detection, hand tremor detection device and method |
CN115336979B (en) * | 2021-09-03 | 2024-09-06 | 中国人民解放军总医院 | Multi-task tremor automatic detection method and detection device based on wearable device |
CN114818804A (en) * | 2021-09-03 | 2022-07-29 | 中国人民解放军总医院 | Resting tremor detection model, resting tremor detection algorithm, and resting tremor detection apparatus |
CN114224296B (en) * | 2022-01-13 | 2023-07-21 | 福州大学 | Quantitative evaluation system for Parkinson's motor symptoms based on wearable sensor device |
CN114788687B (en) * | 2022-06-23 | 2022-09-27 | 中国科学院自动化研究所 | Quantitative assessment method and device for Parkinson myotonia symptoms |
CN117298449B (en) * | 2023-10-31 | 2024-04-09 | 首都医科大学宣武医院 | Closed-loop DBS regulation and control method and system based on wearable equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104398263A (en) * | 2014-12-25 | 2015-03-11 | 中国科学院合肥物质科学研究院 | Method for quantitatively evaluating symptoms of tremor of patient with Parkinson's disease according to approximate entropy and cross approximate entropy |
CN105930663A (en) * | 2016-04-26 | 2016-09-07 | 北京科技大学 | Parkinson's disease early diagnosis method |
CN109452942A (en) * | 2017-09-06 | 2019-03-12 | 扬州工业职业技术学院 | A kind of Parkinson's hand trembles monitoring system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6734834B1 (en) * | 2000-02-11 | 2004-05-11 | Yoram Baram | Closed-loop augmented reality apparatus |
CN104127187B (en) * | 2014-08-05 | 2017-04-05 | 戴厚德 | For the wearable system of patient's Parkinson cardinal symptom quantitative determination |
US20190365286A1 (en) * | 2018-06-01 | 2019-12-05 | Apple Inc. | Passive tracking of dyskinesia/tremor symptoms |
CN109344195B (en) * | 2018-10-25 | 2021-09-21 | 电子科技大学 | HMM model-based pipeline security event recognition and knowledge mining method |
-
2019
- 2019-12-27 CN CN201911375827.XA patent/CN110946556B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104398263A (en) * | 2014-12-25 | 2015-03-11 | 中国科学院合肥物质科学研究院 | Method for quantitatively evaluating symptoms of tremor of patient with Parkinson's disease according to approximate entropy and cross approximate entropy |
CN105930663A (en) * | 2016-04-26 | 2016-09-07 | 北京科技大学 | Parkinson's disease early diagnosis method |
CN109452942A (en) * | 2017-09-06 | 2019-03-12 | 扬州工业职业技术学院 | A kind of Parkinson's hand trembles monitoring system |
Also Published As
Publication number | Publication date |
---|---|
CN110946556A (en) | 2020-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110946556B (en) | Parkinson's resting-state tremor assessment method based on wearable somatosensory network | |
CN108388912B (en) | Sleep staging method based on multi-sensor feature optimization algorithm | |
CN101599127B (en) | Method for extracting and identifying characteristics of electro-ocular signal | |
CN108888271B (en) | Physiological parameter measuring system and intelligent seat with same | |
CN105662345B (en) | heartbeat signal processing method, device and system | |
Bidargaddi et al. | Detecting walking activity in cardiac rehabilitation by using accelerometer | |
CN109480787A (en) | A kind of contactless sleep monitor equipment and sleep stage method based on ULTRA-WIDEBAND RADAR | |
CN108670200A (en) | A kind of sleep sound of snoring classification and Detection method and system based on deep learning | |
CN108992053B (en) | A real-time, untethered method for detecting heart rate and heartbeat interval | |
CN111407262A (en) | Sleep staging method based on B L STM and device for sleep staging based on B L STM | |
CN108681685A (en) | A kind of body work intension recognizing method based on human body surface myoelectric signal | |
Dafna et al. | Sleep-quality assessment from full night audio recordings of sleep apnea patients | |
CN108960155A (en) | Adult Gait extraction and exception analysis method based on Kinect | |
Flood et al. | Gait event detection from accelerometry using the teager–kaiser energy operator | |
CN109171655A (en) | A kind of detection method of sleep-respiratory and sleeping position based on acceleration of gravity | |
CN112294264A (en) | Sleep staging method based on BCG and blood oxygen saturation rate | |
CN108958474A (en) | A kind of action recognition multi-sensor data fusion method based on Error weight | |
CN114831630A (en) | Hemiplegia patient rehabilitation data acquisition and evaluation method based on wearable intelligent device | |
CN106901732B (en) | Measuring method and measuring device for muscle strength and muscle tension in mutation state | |
Tepe et al. | Classification of emg finger data acquired with myo armband | |
CN108523868A (en) | Self-calibration system and method for blood pressure measurement | |
Wen et al. | Wearable integrated online fusion learning filter for heart PPG sensing tracking | |
CN111544005A (en) | Parkinson's disease dyskinesia quantification and identification method based on support vector machine | |
CN106983511B (en) | Method and device for identifying muscle strength and muscle tension state mutation points | |
Shouldice et al. | Real time breathing rate estimation from a non contact biosensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |