CN110942448A - 一种基于卷积神经网络的定量相位图像识别方法 - Google Patents
一种基于卷积神经网络的定量相位图像识别方法 Download PDFInfo
- Publication number
- CN110942448A CN110942448A CN201911041315.XA CN201911041315A CN110942448A CN 110942448 A CN110942448 A CN 110942448A CN 201911041315 A CN201911041315 A CN 201911041315A CN 110942448 A CN110942448 A CN 110942448A
- Authority
- CN
- China
- Prior art keywords
- neural network
- convolutional neural
- layer
- training
- phase image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013527 convolutional neural network Methods 0.000 title claims description 34
- 238000000034 method Methods 0.000 title claims description 23
- 238000012549 training Methods 0.000 claims description 39
- 210000004027 cell Anatomy 0.000 claims description 15
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000011176 pooling Methods 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 5
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000013135 deep learning Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911041315.XA CN110942448B (zh) | 2019-10-30 | 2019-10-30 | 一种基于卷积神经网络的定量相位图像识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911041315.XA CN110942448B (zh) | 2019-10-30 | 2019-10-30 | 一种基于卷积神经网络的定量相位图像识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110942448A true CN110942448A (zh) | 2020-03-31 |
CN110942448B CN110942448B (zh) | 2023-07-28 |
Family
ID=69906810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911041315.XA Active CN110942448B (zh) | 2019-10-30 | 2019-10-30 | 一种基于卷积神经网络的定量相位图像识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110942448B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111601096A (zh) * | 2020-04-03 | 2020-08-28 | 清华大学 | 具有单光子雪崩二极管的合成图像方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106709511A (zh) * | 2016-12-08 | 2017-05-24 | 华中师范大学 | 基于深度学习的城市轨道交通全景监控视频故障检测方法 |
US20180225550A1 (en) * | 2015-06-05 | 2018-08-09 | Universiteit Van Amsterdam | Deep receptive field networks |
CN109522924A (zh) * | 2018-09-28 | 2019-03-26 | 浙江农林大学 | 一种基于单张照片的阔叶林树种识别方法 |
CN110378435A (zh) * | 2019-07-25 | 2019-10-25 | 安徽工业大学 | 一种基于卷积神经网络的苹果叶片病害识别的方法 |
-
2019
- 2019-10-30 CN CN201911041315.XA patent/CN110942448B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180225550A1 (en) * | 2015-06-05 | 2018-08-09 | Universiteit Van Amsterdam | Deep receptive field networks |
CN106709511A (zh) * | 2016-12-08 | 2017-05-24 | 华中师范大学 | 基于深度学习的城市轨道交通全景监控视频故障检测方法 |
CN109522924A (zh) * | 2018-09-28 | 2019-03-26 | 浙江农林大学 | 一种基于单张照片的阔叶林树种识别方法 |
CN110378435A (zh) * | 2019-07-25 | 2019-10-25 | 安徽工业大学 | 一种基于卷积神经网络的苹果叶片病害识别的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111601096A (zh) * | 2020-04-03 | 2020-08-28 | 清华大学 | 具有单光子雪崩二极管的合成图像方法 |
CN111601096B (zh) * | 2020-04-03 | 2022-02-22 | 清华大学 | 具有单光子雪崩二极管的合成图像方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110942448B (zh) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110033032B (zh) | 一种基于显微高光谱成像技术的组织切片分类方法 | |
CN113408423B (zh) | 适用于tx2嵌入式平台的水产品目标实时检测方法 | |
Bozkurt | Skin lesion classification on dermatoscopic images using effective data augmentation and pre-trained deep learning approach | |
Zhang et al. | Urine sediment recognition method based on multi-view deep residual learning in microscopic image | |
CN116704273A (zh) | 一种自适应红外可见光双模融合检测方法 | |
Kukreja et al. | Early Detection and Prevention of Mustard Downy Mildew Disease using a Hybrid CNN-LSTM Model | |
CN110930378A (zh) | 基于低数据需求的肺气肿影像处理方法及系统 | |
Nguyen et al. | Fruit-CoV: An efficient vision-based framework for speedy detection and diagnosis of SARS-CoV-2 infections through recorded cough sounds | |
CN116843974A (zh) | 基于残差神经网络的乳腺癌病理图像分类方法 | |
CN112071423B (zh) | 一种基于机器学习的免疫层析浓度检测方法及系统 | |
Kundu et al. | Optimal Machine Learning Based Automated Malaria Parasite Detection and Classification Model Using Blood Smear Images. | |
CN117710506A (zh) | 一种高光谱图像重构方法以及种子活力检测方法 | |
Tan et al. | Lightweight pyramid network with spatial attention mechanism for accurate retinal vessel segmentation | |
Banerjee et al. | Mango Disease Detection System Using CNN and SVM: A Comparative Study with Traditional Diagnostic Methods | |
Maurya et al. | Computer-aided diagnosis of auto-immune disease using capsule neural network | |
CN110942448A (zh) | 一种基于卷积神经网络的定量相位图像识别方法 | |
CN114155251A (zh) | 一种上下文感知卷积神经网络的全脑三维解剖结构分割方法 | |
CN118762395A (zh) | 一种基于改进YOLOv9模型的鱼类异常行为检测方法 | |
CN114878427B (zh) | 基于Trident-net的火焰中碳烟多参数场同时测量的方法和系统 | |
CN116665047A (zh) | 基于高光谱的烟草青枯病识别方法、装置、设备及介质 | |
Lipsa et al. | MalNet–an Optimized CNN based method for Malaria Diagnosis | |
CN116612333B (zh) | 一种基于快速全卷积网络的医学高光谱影像分类方法 | |
Gomathy et al. | Intelligent feed forward neural network classifier detects pumpkin leaf disease | |
Yan et al. | Attention-enhanced UNet and gradient boosting decision tree for objective evaluation of fabric pilling grade based on image analysis | |
Lalithkumar et al. | CapsENet: Deep Learning based Acute Lymphoblastic Leukemia Detection Approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230703 Address after: Room 4057, No. 545-551 Jipu Road, Baoshan District, Shanghai, 200439 Applicant after: Shanghai Yinyu Digital Technology Group Co.,Ltd. Address before: Room 1002, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518109 Applicant before: Shenzhen Wanzhida Technology Co.,Ltd. Effective date of registration: 20230703 Address after: Room 1002, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518109 Applicant after: Shenzhen Wanzhida Technology Co.,Ltd. Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Applicant before: JIANGSU University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |