CN110935474B - 多金属硫化物纳米线的制备和作为电催化析氢电极的应用 - Google Patents

多金属硫化物纳米线的制备和作为电催化析氢电极的应用 Download PDF

Info

Publication number
CN110935474B
CN110935474B CN201911267778.8A CN201911267778A CN110935474B CN 110935474 B CN110935474 B CN 110935474B CN 201911267778 A CN201911267778 A CN 201911267778A CN 110935474 B CN110935474 B CN 110935474B
Authority
CN
China
Prior art keywords
water
nanowires
soluble
agpdmo
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911267778.8A
Other languages
English (en)
Other versions
CN110935474A (zh
Inventor
顾宏伟
龚雨竹
曹雪琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201911267778.8A priority Critical patent/CN110935474B/zh
Publication of CN110935474A publication Critical patent/CN110935474A/zh
Application granted granted Critical
Publication of CN110935474B publication Critical patent/CN110935474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • B01J35/33
    • B01J35/393
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Abstract

本发明涉及一种多金属硫化物纳米线的制备和作为电催化析氢电极的应用。上述多金属硫化物纳米线的制备方法包括以下步骤:将银纳米线与水溶性钯盐、水溶性钼盐在还原剂和表面活性剂的作用下,在酸性水溶液中进行水热合成反应,反应完全后得到AgPdMo纳米线,然后将AgPdMo纳米线与硫脲水溶液进行水热合成反应,反应完全后得到所述多金属硫化物纳米线。本发明的方法所合成的多金属硫化物纳米线具有树状的纳米结构和异质分层结构,结合银钯合金的高导电性和硫化钼的多活性位点,可以大幅度增强电催化的性能,可将其作为电催化析氢电极。

Description

多金属硫化物纳米线的制备和作为电催化析氢电极的应用
技术领域
本发明涉及催化析氢电极材料的制备技术领域,尤其涉及一种多金属硫化物纳米线的制备和作为电催化析氢电极的应用。
背景技术
随着生产力的不断发展,人类对能源的要求越来越高。现有的化石能源体系具有不可再生性,并且对环境存在着严重的污染问题,氢气作为一种清洁、高校能源逐渐受到社会的关注。电解水产生氢气是一种获得氢能源的有效方法。从1789年,人们意识到可以利用电解水产生氢气,到11年Nicholsion和Carlise后发明了这一技术,到现在电解水制氢已经成为工业上成熟的制氢方法。一般地,电解水制备氢气常用贵金属作为催化剂,如利用具有较高催化活性和较低极化电位的铂基材料作为催化剂。然而贵金属催化剂的高价格和低储量限制了它的应用。且贵金属虽然活性高但价格高且不稳定,因此不适合在商业上大规模推广应用。因此发展高效非贵金属催化剂是未来电催化制氢的趋势。其中,硫化钼在电化学析氢方面显示出了优良的性能,硫化钼具有丰富的活性位点,是最有潜力的代替贵金属材料的廉价催化剂之一。
如今硫化钼在电化学析氢方面已经有了很大的研究。然而硫化钼材料较低的本征导电率限制了它的催化效率。为了进一步提高硫化钼的催化性能,通常采用以下方法:1)增加硫化钼的活性位点;2)与碳材料复合,提高其电子转移速率。(郭树旺,高占勇,宋金玲,布林朝克,张邦文,《无机化学学报》2019年7期)。CN201510075584.3公开了一种金属银致电导增强的二硫化钼修饰硅纳米线阵列光电化学析氢电极的制备方法,CN201810018879.0 公开了一种二硫化钼电催化产氢电极及其制备方法,CN201810117506.9公开了制备一种垂直过渡金属硫化物纳米片阵列的方法及电催化析氢催化剂。上述光电化学析氢电极的活性和稳定性均有待提高。
但是硫化钼的高活性位点与高电导率通常是相悖的。大量的活性位点更容易出现在较小的纳米颗粒中,而不幸的是,由于颗粒间的电子传递较差,这种纳米结构材料的总电导率通常较低,从而降低了总催化活性。
发明内容
为解决上述技术问题,本发明的目的是提供一种多金属硫化物纳米线的制备和作为电催化析氢电极的应用,本发明的方法所合成的多金属硫化物纳米线具有树状的纳米结构和异质分层结构,结合银钯合金的高导电性和硫化钼的多活性位点,可以大幅度增强电催化的性能,可将其作为电催化析氢电极。
本发明的技术方案如下:
本发明的一种多金属硫化物纳米线的制备方法,包括以下步骤:
(1)将银纳米线与水溶性钯盐、水溶性钼盐在还原剂和表面活性剂的作用下,在酸性水溶液中进行水热合成反应,反应温度为100-120℃(优选为120℃),反应完全后得到AgPdMo 纳米线,AgPdMo纳米线包括银纳米线及包覆于银纳米线表面的Pd纳米颗粒和Mo纳米颗粒;
(2)将AgPdMo纳米线与硫脲水溶液进行水热合成反应,以对Mo纳米颗粒进行硫化,反应温度为160-200℃(优选为180℃),反应完全后得到多金属硫化物纳米线。
进一步地,在步骤(1)中,银纳米线的制备方法包括以下步骤:
将水溶性铁盐和水溶性银盐在聚乙烯吡咯烷酮的作用下,在醇和水的混合溶液中反应,反应温度为100-140℃,反应完全后得到银纳米线;水溶性铁盐和水溶性银盐的摩尔比为 1-100:500-1000(优选为1:700)。
进一步地,聚乙烯吡咯烷酮的分子量为55-360kg/mol。优选地,聚乙烯吡咯烷酮由分子量55kg/mol和360kg/mol的聚乙烯吡咯烷酮组成,分子量55kg/mol和360kg/mol的聚乙烯吡咯烷酮的摩尔比为1:10-10:1。聚乙烯比咯烷酮可作表面活性剂。
进一步地,水溶性铁盐优选为氯化铁(FeCl3),水溶性银盐优选为硝酸银(AgNO3)。
进一步地,醇优选为乙二醇。
进一步地,在步骤(1)中,银纳米线与水溶性钯盐、水溶性钼盐的比例为1-2mg:0.01-0.5 mol:0.01-3.0mol。优选地,银纳米线与水溶性钯盐、水溶性钼盐的比例为2mg:0.03mmol: 0.10mmol。
进一步地,在步骤(1)中,水溶性钯盐为氯钯酸钠(Na2PdCl4)、氯化钯(PdCl2)等。
进一步地,在步骤(1)中,水溶性钼盐为钼酸钠(Na2MoO4)、钼酸铵((NH4)2Mo2O7)等。
进一步地,在步骤(1)中,还原剂为抗坏血酸、柠檬酸钠、盐酸羟胺等;表面活性剂为泊洛沙姆和/或十六烷基三甲基溴化铵。优选地,表面活性剂为Pluronic F127。
进一步地,在步骤(1)中,反应时间为8-16h。
进一步地,在步骤(2)中,硫脲水溶液的浓度为5-10mg/mL。优选地,硫脲水溶液的浓度为8-10mg/mL。
进一步地,在步骤(2)中,反应时间为12-20h。
本发明还提供了一种采用上述制备方法所制备的多金属硫化物纳米线。
本发明还公开了上述多金属硫化物纳米线作为电催化析氢电极的应用。
本发明制备的多金属硫化物纳米线具有一维线状及分级异质结构,在实现金属掺杂的同时极大地增加了催化活性面积。且本发明生成的MoS2纳米片结晶度较低,与结晶MoS2相比,具有更多的活性位点,极大地增强了电催化活性。AgPd合金具有较强的导电性,且对氢气具有高溶解性和渗透性,有利于氢气的析出,增加电催化稳定性。
进一步地,电催化析氢电极为阴极,该阴极中含有本发明的多金属硫化物纳米线。
借由上述方案,本发明至少具有以下优点:
本发明在Ag纳米线表面负载Pd纳米颗粒和Mo纳米颗粒,并通过原位生长的方法在纳米线表面包覆硫化钼纳米片。本发明结合了AgPd纳米合金的高电导率和MoS2纳米片的高活性位点,在活性位点丰富和导电性良好之间取得平衡,从而获得了高效的催化性能。
本发明基于Ag纳米线构建了树状的纳米结构,同时结合钯基合金具有的对氢气的高溶解度和高渗透性,增强电催化析氢的稳定性。本发明的方法在树状的纳米结构表面形成异质分层结构,增加了硫化钼的比表面积,增多了可参与催化的活性位点,可以大幅度增强电催化的性能。由于本发明的多金属硫化物纳米线中引入较高含量的非贵金属,降低了成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是Ag NWs、AgPdMo NWs、AgPdMo NWs-S的结构示意图;
图2是不同Pd2+、Mo6+摩尔比所制备的产物AgPdMo NWs-x(x=1,2,3,4,5)的TEM图;
图3是Ag NWs的SEM图、AgPdMo NWs的SEM图、TEM图;AgPdMo NWs-S的SEM 图、TEM图;
图4是AgPdMo NWs的HAADF-STEM图及EDX元素映射图像结果;
图5是AgPdMo NWs-S的HAADF-STEM图及EDX元素映射图像结果;
图6是AgPdMo NWs硫化前后的的XRD对比图;AgPdMo NWs的XPS图谱及AgPdMo NWs-S的Mo、S元素对应的XPS衍射图谱;
图7是AgPdMo NWs-S的Ag、Pd元素对应的XPS衍射图谱;
图8是不同材料的极化曲线;电流密度为10mA cm-2条件下的电势、Tafel斜率测试结果及AgPdMo NWs-S在CV循环1000圈前后的极化曲线、恒电流循环20h过程中电势变化结果;
图9是不同材料的电化学阻抗图及在非法拉第范围内电流密度差值与扫描速度的关系曲线;
图10为对比例1所得到的产物的TEM图;
图11为对比例2所得到的产物的TEM图。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
(1)首先,将Mw=55000g/mol的聚乙烯吡咯烷酮(0.16g)和Mw=360000g/mol的聚乙烯吡咯烷酮(0.16g)溶解在44mL乙二醇中。然后,向上述溶液中加入FeCl3(2.5mL,1.2mM)水溶液和AgNO3(6ml,60mg mL-1)水溶液。在130℃水热反应2.5h,离心水洗得到Ag纳米线(Ag NWs)。
(2)取Na2PdCl4水溶液(1.8mL,20mM),Na2MoO4·2H2O水溶液(3mL,20mM),HCl 水溶液(60μL,6M)和Pluronic F127(60mg)混合搅拌均匀,其中,所得溶液中Pd2+: Mo6+的摩尔比为3:5。然后向其中加入上述合成的Ag NWs(2mg)和抗坏血酸水溶液(3mL, 0.1M),在120℃下水热反应12h,得到AgPdMo纳米线(AgPdMo NWs),将其命名为AgPdMo NWs-3。
(3)将5mL硫脲溶液(10mg/mL)与上一步合成的AgPdMo NWs混合均匀,在180℃下水热反应18h进行硫化,得到硫化后的AgPdMo纳米线(AgPdMo NWs-S)。
图1a、b、c分别是Ag NWs、AgPdMo NWs、AgPdMo NWs-S的结构示意图。
实施例2
按照实施例1的方法制备硫化后的AgPdMo纳米,不同之处在于,在步骤(2)中,溶液中Pd2+:Mo6+的摩尔比为1:5,将步骤(2)的产物命名为AgPdMo NWs-1。
实施例3
按照实施例1的方法制备硫化后的AgPdMo纳米,不同之处在于,在步骤(2)中,溶液中Pd2+:Mo6+的摩尔比为2:5,将步骤(2)的产物命名为AgPdMo NWs-2。
实施例4
按照实施例1的方法制备硫化后的AgPdMo纳米,不同之处在于,在步骤(2)中,溶液中Pd2+:Mo6+的摩尔比为4:5,将步骤(2)的产物命名为AgPdMo NWs-4。
实施例5
按照实施例1的方法制备硫化后的AgPdMo纳米,不同之处在于,在步骤(2)中,溶液中Pd2+:Mo6+的摩尔比为5:5,将步骤(2)的产物命名为AgPdMo NWs-5。
对比例1
为了作为对照,制备AgMo纳米线(AgMo NWs),其制备方法与实施例基本相同,不同之处在于,在步骤(2)中,省略Na2PdCl4水溶液的加入。本实施例AgMo纳米线,图10 为所得到的产物的TEM图,可看出Ag纳米线表面没有纳米粒子负载。
对比例2
为了作为对照,制备AgPd纳米线(AgPd NWs),其制备方法与实施例基本相同,不同之处在于,在步骤(2)中,省略Na2MoO4·2H2O水溶液的加入。本实施例产物的结构如图 11所示,从图中可看出,该实施例制备的AgPd纳米线表面致密,其比表面积较小。
图2是实施例1-5中,Pd2+:Mo6+投放摩尔比例为(a)1:5;(b)2:5;(c)3:5;(d) 4:5;(e)5:5时,产物AgPdMoNWs-x(x=1,2,3,4,5)的TEM图,结果显示随着 Pd成分的增加,AgPdMo NWs不断变粗变密。
表1 是实施例1-5中,产物AgPdMoNWs-x(x=1,2,3,4,5)的ICP测试结果,结果显示AgPdMo NWs中,Ag元素的含量为2.46-6.02%,Pd元素的含量为43.71-92.07%,Mo 元素的含量为5.47-50.27%。
表1 不同产物的ICP测试结果
Figure BDA0002313353780000051
图3是实施例1中,Ag NWs的SEM图(图3a);AgPdMo NWs的SEM图(图3b)、 TEM图(图3c);AgPdMo NWs-S的SEM图(图3d)、TEM图(图3e、图3f)。结果表明, Ag NWs的表面光滑,而AgPdMo NWs表面具有纳米颗粒,AgPdMo NWs-S的表面具有片状结构。
图4是实施例1中,AgPdMo NWs的HAADF-STEM图(图4a-b);EDX元素映射图像结果,其中图4c-f分别为Ag、Mo、Pd及三种元素的重叠图。结果表明,Ag、Pd、Mo三种元素均匀地分布在AgPdMo NWs产物中。
图5是实施例1中,AgPdMo NWs-S的HAADF-STEM图(图5a);EDX元素映射图像结果,其中图5b-f分别为Ag、Pd、Mo、S及四种元素的重叠图。结果表明,Ag、Pd仍然分布在纳米线中,而Mo和S在纳米线的表面衍生出片层结构。
图6是实施例1中,AgPdMo NWs硫化前后的的XRD对比图(图6a);AgPdMo NWs 的Ag(图6b),Pd(图6c),Mo(图6d)元素对应的XPS图谱;及AgPdMo NWs-S的Mo (图6e),S(图6f)元素对应的XPS衍射图谱。结果表明,硫化后的AgPdMo NWs外面包覆上了MoS2
图7是实施例1中,AgPdMo NWs-S的Ag(图7a),Pd(图7b)元素对应的XPS衍射图谱。结果表明,硫化后的AgPdMoNWs中Ag、Pd未发生改变。
图8是Pd/C材料、纯MoS2材料、对比例2中制备的AgPdNWs、实施例1制备的AgPdMoNWs、AgPdMo NWs-S的极化曲线(图8a),电流密度为10mAcm-2时,对应的电势 (图8b),Tafel斜率(图8c);AgPdMo NWs-S在CV循环1000圈前后的极化曲线(图8d),恒电流循环20h过程中电势变化(图8e)。结果表明,AgPdMo NWs-S具有优异的电化学活性和稳定性。在三电极系统中测其电化学性能,发现在AgPdMo NWs-S在10mAcm-2的电流密度下,有较低的电势(54mV)和较低的Tafel斜率(72mV dec-1)。CV循环1000圈后,电流密度衰减微弱,恒电流循环20h后,电势仍能保持稳定。
图9是纯MoS2材料、AgPdNWs、AgPdMoNWs、AgPdMo NWs-S的电化学阻抗图(图 9a),在非法拉第范围内电流密度差值与扫描速度的关系曲线(图9b)。结果表明,AgPdMo NWs-S具有最低的电化学阻抗和最大的电化学活性表面积。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (8)

1.一种多金属硫化物纳米线的制备方法,其特征在于,包括以下步骤:
(1)将银纳米线与水溶性钯盐、水溶性钼盐在还原剂和表面活性剂的作用下,在酸性水溶液中进行水热合成反应,反应温度为100-120℃,反应完全后得到AgPdMo纳米线,所述AgPdMo纳米线包括银纳米线及包覆于所述银纳米线表面的Pd纳米颗粒和Mo纳米颗粒;
(2)将所述AgPdMo纳米线与硫脲水溶液进行水热合成反应,以对Mo纳米颗粒进行硫化,反应温度为160-200℃,反应完全后得到所述多金属硫化物纳米线;
所述银纳米线的制备方法包括以下步骤:
将水溶性铁盐和水溶性银盐在聚乙烯吡咯烷酮的作用下,在醇和水的混合溶液中反应,反应温度为100-140℃,反应完全后得到所述银纳米线;所述水溶性铁盐和水溶性银盐的摩尔比为1-100:500-1000;
所述银纳米线与水溶性钯盐、水溶性钼盐的比例为1-2mg:0.01-0.5 mol:0.01-3.0mol。
2.根据权利要求1所述的制备方法,其特征在于,所述聚乙烯吡咯烷酮的分子量为55-360kg/mol。
3.根据权利要求1所述的制备方法,其特征在于,在步骤(1)中,所述水溶性钯盐为氯钯酸钠和/或氯化钯。
4.根据权利要求1所述的制备方法,其特征在于,在步骤(1)中,所述水溶性钼盐为钼酸钠和/或钼酸铵。
5.根据权利要求1所述的制备方法,其特征在于,在步骤(1)中,所述还原剂为抗坏血酸、柠檬酸钠和盐酸羟胺中的一种或几种;所述表面活性剂为泊洛沙姆和/或十六烷基三甲基溴化铵。
6.根据权利要求1所述的制备方法,其特征在于,在步骤(2)中,所述硫脲水溶液的浓度为5-10mg/mL。
7.权利要求1-6中任意一项所述的制备方法所制备的多金属硫化物纳米线。
8.权利要求7所述的多金属硫化物纳米线作为电催化析氢电极的应用。
CN201911267778.8A 2019-12-11 2019-12-11 多金属硫化物纳米线的制备和作为电催化析氢电极的应用 Active CN110935474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911267778.8A CN110935474B (zh) 2019-12-11 2019-12-11 多金属硫化物纳米线的制备和作为电催化析氢电极的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911267778.8A CN110935474B (zh) 2019-12-11 2019-12-11 多金属硫化物纳米线的制备和作为电催化析氢电极的应用

Publications (2)

Publication Number Publication Date
CN110935474A CN110935474A (zh) 2020-03-31
CN110935474B true CN110935474B (zh) 2022-10-18

Family

ID=69910827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911267778.8A Active CN110935474B (zh) 2019-12-11 2019-12-11 多金属硫化物纳米线的制备和作为电催化析氢电极的应用

Country Status (1)

Country Link
CN (1) CN110935474B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439281A (zh) * 2014-12-14 2015-03-25 苏州大学 一种制备银纳米线的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439281A (zh) * 2014-12-14 2015-03-25 苏州大学 一种制备银纳米线的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"AgPd Alloy Nanoparticles Decorated MoS2 2D Nanosheets:Efficient Hydrogen Evolution Catalyst in Wide pH Condition";Mamta Devi Sharma et al.;《ChemistrySelect》;20190108;第4卷;第378-386页和Supporting Information *
"Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution";Lei Qiao et al.;《International Journal of Hydrogen Energy》;20181103;第43卷;第22235-22242页 *
"Nanoporous Palladium−Silver Surface Alloys as Efficient and pH-Universal Catalysts for the Hydrogen Evolution Reaction";Rui-Qi Yao et al.;《ACS Energy Letters》;20190522;第4卷;第1379-1386页和Supporting Information *

Also Published As

Publication number Publication date
CN110935474A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Song et al. Recent progress and strategies on design of catalysts for electrochemical ammonia synthesis from nitrate reduction
Li et al. NiCo 2 S 4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH
Ge et al. A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides
Meng et al. 1D-2D hybridization: Nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts
Ding et al. Metal-organic framework derived Co3O4/TiO2 heterostructure nanoarrays for promote photoelectrochemical water splitting
Zeb et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction
Zhang et al. In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction
Zhang et al. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation
Zhou et al. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density
Sivakumar et al. Hierarchical NiCo/NiO/NiCo2O4 composite formation by solvothermal reaction as a potential electrode material for hydrogen evolutions and asymmetric supercapacitors
Zhang et al. Ni@ RuM (M= Ni or Co) core@ shell nanocrystals with high mass activity for overall water-splitting catalysis
Zhou et al. Unveiling high intrinsic activity of Co3Mo alloy and metallic Ni embedded in CoNiMo-O nanosheets arrays for hydrogen evolution reaction
Chen et al. Nitrogen-doped-carbon coated FeCo modified CoFe2O4 nanoflowers heterostructure with robust stability for oxygen evolution and urea oxidation
Chen et al. Fabrication of carbon nanotubes encapsulated cobalt phosphide on graphene: cobalt promoted hydrogen evolution reaction performance
Zhang et al. g-C3N4-modulated bifunctional SnO2@ g-C3N4@ SnS2 hollow nanospheres for efficient electrochemical overall water splitting
Yang et al. Template-free synthesis of 1D hollow Fe doped CoP nanoneedles as highly activity electrocatalysts for overall water splitting
Yang et al. Ultra‐low single‐atom Pt on g‐C3N4 for electrochemical hydrogen peroxide production
Khan et al. Ni3S2@ Ni5P4 nanosheets as highly productive catalyst for electrocatalytic oxygen evolution
Tang et al. Bimetallic sulfide Co8FeS8/N–C dodecahedral nanocages via cation exchange as counter electrode for dye-sensitized solar cells
Jia et al. High-active nanoplates of nitrogen-doped carbon@ Mo2C as efficient catalysts in water splitting
Jiang et al. In-situ derived Mo-doped NiCoP and MXene to form Mott-Schottky heterojunction with tunable surface electron density to promote overall water splitting
Li et al. Optimizing hydrogen production by alkaline water decomposition with transition metal-based electrocatalysts
Cai et al. CuxO nanorod arrays shelled with CoNi layered double hydroxide nanosheets for enhanced oxygen evolution reaction under alkaline conditions
Shen et al. Metal-organic framework-derived S-NiFe PBA coupled with NiFe layered double hydroxides as Mott-Schottky electrocatalysts for efficient alkaline oxygen evolution reaction
Zhang et al. Self-sacrificial growth of hierarchical P (Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant