CN110934831B - 二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法 - Google Patents

二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法 Download PDF

Info

Publication number
CN110934831B
CN110934831B CN201811116539.8A CN201811116539A CN110934831B CN 110934831 B CN110934831 B CN 110934831B CN 201811116539 A CN201811116539 A CN 201811116539A CN 110934831 B CN110934831 B CN 110934831B
Authority
CN
China
Prior art keywords
resveratrol
core
dimethyloxalylglycine
shell
dimethyloxalglycine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811116539.8A
Other languages
English (en)
Other versions
CN110934831A (zh
Inventor
王玮
韩小旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811116539.8A priority Critical patent/CN110934831B/zh
Publication of CN110934831A publication Critical patent/CN110934831A/zh
Application granted granted Critical
Publication of CN110934831B publication Critical patent/CN110934831B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicinal Preparation (AREA)
  • Pain & Pain Management (AREA)

Abstract

本发明提供二甲基乙二酰甘氨酸‑白藜芦醇核壳型纳米材料及其制备方法,将二甲基乙二酰甘氨酸(DMOG)溶于1mL的二甲基亚砜(DMSO)中,得到二甲基乙二酰甘氨酸(DMOG)的二甲基亚砜(DMSO)溶液,将上述溶液分散于超纯水中,过滤后,得到二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液;将白藜芦醇溶解在PH为8.0‑9.0的磷酸盐缓冲液(PBS)中,将步骤1制备得到的二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液加入上述白藜芦醇溶液中,在室温20‑25℃下振荡反应10‑20h,过滤后,得到二甲基乙二酰甘氨酸‑白藜芦醇核壳型纳米材料。本发明制备方法简单,反应条件温和,制备的二甲基乙二酰甘氨酸‑白藜芦醇核壳型纳米材料粒径在105‑115nm,粒径分布均匀,核壳型结构明显。

Description

二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备 方法
技术领域
本发明涉及生物医药技术领域,更具体地说涉及一种二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法。
背景技术
心肌梗死是由于冠状动脉供血不足,心肌急剧的暂时缺血与缺氧所引起的,最年来发病率显著增加,是全球最首要的致死原因之一。心肌梗死目前的治疗方法仅限于制备载体(例如水凝胶,支架)负载药物,这使得引入的载体会对人的机体产生一些不良影响,且治疗效果有待增强,因此,将药物自身制成纳米颗粒再通过静脉注射进入人体的方法应运而生。
纳米技术在当今时代发展迅速,由于一些药物非水溶性或稳定性较差,因此由纳米技术制备的纳米载体或药物纳米颗粒显得尤为重要。通过控制纳米颗粒的大小,表面电荷和结构可以实现药物的良好运输和可控释放,增强治疗效果。另外,这种纳米载药系统具有良好的生物相容性,能够极大的促进药物在病变部位的作用,使得治疗效率显著提高。
DMOG又名二甲基乙二酰甘氨酸,是α-酮戊二酸辅助因子的拮抗剂和HIFprolylhydroxylase的抑制剂,其还具有促进血管化的作用,因此广泛用于治疗心肌梗死。在小鼠局部缺血的骨骼肌中,DMOG抑制內源性HIF失活,诱导血管新生。在高血脂症大鼠体内,通过DMOG上调的缺氧诱导因子能够增强缺血后处理的心脏保护作用。
白藜芦醇是多酚类化合物,来源于花生、葡萄(红葡萄酒)、虎杖、桑椹等植物。其是肿瘤的化学预防剂,也是对降低血小板聚集,预防和治疗动脉粥样硬化、心脑血管疾病的化学预防剂。白藜芦醇可以通过减少心肌缺血-再灌注损伤、抑制动脉粥样硬化和血栓的形成、抗炎、抗氧化、舒张血管、等发挥心血管保护作用。生理浓度(0.1μmol/L)的白藜芦醇可以使血管舒张,因而能够起到降低血压和降低心血管病的风险的功能。
发明内容
本发明克服了现有技术中的不足,提供了一种二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法,本发明制备方法简单,反应条件温和,制备的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料粒径在105-115nm,粒径分布均匀,核壳型结构明显。
本发明的目的通过下述技术方案予以实现。
二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法,按照下述步骤进行:
步骤1,将二甲基乙二酰甘氨酸(DMOG)分散在二甲基亚砜(DMSO)中,得到二甲基乙二酰甘氨酸(DMOG)的二甲基亚砜(DMSO)分散液,将上述分散液分散于超纯水中,用纳米滤头过滤后,得到二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液;
步骤2,将白藜芦醇分散在PH为8.0-9.0的磷酸盐缓冲液(PBS)中,将步骤1制备得到的二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液加入上述白藜芦醇分散液中,在室温20-25℃下振荡反应10-20h,过滤、干燥后,得到二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料;
其中,二甲基乙二酰甘氨酸(DMOG)和白藜芦醇的质量比为1:(1-3),二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料为核壳结构,白藜芦醇壳体厚度为8-25nm,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的粒径为105-115nm。
二甲基乙二酰甘氨酸(DMOG)和白藜芦醇的质量比为1:(1-2)。
在步骤1中,对二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液过滤所使用的滤头粒径为210-230nm。
在步骤2中,磷酸盐缓冲液(PBS)的PH为8.2-8.5,反应时间为12-15h,对二甲基乙二酰甘氨酸(DMOG)纳米材料溶液过滤所使用的滤头粒径为210-230nm。
白藜芦醇壳体厚度为10-20nm,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的粒径为110-115nm。
本发明的有益效果为:本发明制备方法简单,反应条件温和,制备的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米粒子粒径在112nm左右,粒径分布均匀,核壳型结构明显。二甲基乙二酰甘氨酸(DMOG)和白藜芦醇形成的核壳结构纳米粒子,可以确保外层白藜芦醇在进入患病部位后先一步释放,待白藜芦醇药物释放完成后,内部DMOG药物粒子再进行释放,实现了前期抗炎后期促进血管化的效果。
附图说明
图1是本发明制备的二甲基乙二酰甘氨酸-白藜芦醇是核壳结构纳米材料的粒径分布图;
图2是本发明制备的二甲基乙二酰甘氨酸-白藜芦醇是核壳结构纳米材料的透射电镜图;
图3是本发明制备的二甲基乙二酰甘氨酸-白藜芦醇是核壳结构纳米材料的局部放大的透射电镜图。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的说明。
实施例1
pH=8.5磷酸盐缓冲液(PBS缓冲液)的配制:
称取3.58g Na2HPO4·12H2O溶于50mL去离子H2O中得到0.2M Na2HPO4溶液;称取1.56g NaH2PO4·2H2O并溶于50mL去离子H2O中得到0.2M NaH2PO4溶液;然后用量筒量取40.5mL 0.2M Na2HPO4溶液和9.5mL 0.2M NaH2PO4溶液并将其混合、摇匀即可得到0.2M pH=7.4PBS缓冲液。最后,在搅拌条件下用NaOH溶液对其进行pH调节,用精确pH试纸进行检测,最终得到0.2M pH=8.5的磷酸缓冲液(PBS缓冲液)。
二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液的制备:
取10ml超纯水于小玻璃瓶,加小磁子高速搅拌,称取1mg二甲基乙二酰甘氨酸(DMOG)于1mL的二甲基亚砜(DMSO)中,配制1mg/mL的二甲基乙二酰甘氨酸(DMOG)的二甲基亚砜(DMSO)溶液,每次取10μL加入超纯水中,搅拌1min,重复取20次,共200μL。然后用220nm的滤头对其进行过滤即可制得二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液。
二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备:
将1.5mg白藜芦醇溶解在5mL,PH=8.5的PBS缓冲液中,然后将5mL的DMOG NPs溶液加入其中,配制浓度为0.15mg/mL的白藜芦醇溶液,之后在室温20-25℃下利用摇床振荡反应12h;通过白藜芦醇的疏水作用,药物分子趋于其良溶剂二甲基亚砜(DMSO),最终白藜芦醇包裹在二甲基乙二酰甘氨酸(DMOG)纳米粒子的表面,最终得到的溶液采用220nm的滤头对过滤后,得到二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料。
如图1所示,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料平均粒径为105-115nm,粒径分布数值为0.372,表明粒径分布较窄,说明制备的纳米粒子的粒径大小均一。
如图2,可以明显看出核壳结构,内部为二甲基乙二酰甘氨酸(DMOG)纳米粒子,外部为白藜芦醇壳体,白藜芦醇壳体的厚度约为8-25nm。
如图3,内部有多个二甲基乙二酰甘氨酸(DMOG)纳米粒子被白藜芦醇包裹,二甲基乙二酰甘氨酸(DMOG)纳米粒子在内部略有交叠,这可能是由于此为干态测试,粒子略有收缩。
实施例2
pH=8.0磷酸盐缓冲液(PBS缓冲液)的配制:
称取3.58g Na2HPO4·12H2O溶于50mL去离子H2O中得到0.2M Na2HPO4溶液;称取1.56g NaH2PO4·2H2O并溶于50mL去离子H2O中得到0.2M NaH2PO4溶液;然后用量筒量取40.5mL 0.2M Na2HPO4溶液和9.5mL 0.2M NaH2PO4溶液并将其混合、摇匀即可得到0.2M pH=7.4PBS缓冲液。最后,在搅拌条件下用NaOH溶液对其进行pH调节,用精确pH试纸进行检测,最终得到0.2M pH=8.0的磷酸缓冲液(PBS缓冲液)。
二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液的制备:
取10ml超纯水于小玻璃瓶,加小磁子高速搅拌,称取1mg二甲基乙二酰甘氨酸(DMOG)于1mL的二甲基亚砜(DMSO)中,配制1mg/mL的二甲基乙二酰甘氨酸(DMOG)的二甲基亚砜(DMSO)溶液,每次取10μL加入超纯水中,搅拌1min,重复取20次,共200μL。然后用210nm的滤头对其进行过滤即可制得二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液。
二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备:
将1mg白藜芦醇溶解在5mL,PH=8.0的PBS缓冲液中,然后将5mL的DMOG NPs溶液加入其中,配制浓度为0.1mg/mL的白藜芦醇溶液,之后在室温20-25℃下利用摇床振荡反应20h;通过白藜芦醇的疏水作用,药物分子趋于其良溶剂二甲基亚砜(DMSO),最终白藜芦醇包裹在二甲基乙二酰甘氨酸(DMOG)纳米粒子的表面,最终得到的溶液采用210nm的滤头对过滤后,得到二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料。
实施例3
pH=9.0磷酸盐缓冲液(PBS缓冲液)的配制:
称取3.58g Na2HPO4·12H2O溶于50mL去离子H2O中得到0.2M Na2HPO4溶液;称取1.56g NaH2PO4·2H2O并溶于50mL去离子H2O中得到0.2M NaH2PO4溶液;然后用量筒量取40.5mL 0.2M Na2HPO4溶液和9.5mL 0.2M NaH2PO4溶液并将其混合、摇匀即可得到0.2M pH=7.4PBS缓冲液。最后,在搅拌条件下用NaOH溶液对其进行pH调节,用精确pH试纸进行检测,最终得到0.2M pH=9.0的磷酸缓冲液(PBS缓冲液)。
二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液的制备:
取10ml超纯水于小玻璃瓶,加小磁子高速搅拌,称取1mg二甲基乙二酰甘氨酸(DMOG)于1mL的二甲基亚砜(DMSO)中,配制1mg/mL的二甲基乙二酰甘氨酸(DMOG)的二甲基亚砜(DMSO)溶液,每次取10μL加入超纯水中,搅拌1min,重复取20次,共200μL。然后用230nm的滤头对其进行过滤即可制得二甲基乙二酰甘氨酸(DMOG)纳米粒子溶液。
二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备:
将2mg白藜芦醇溶解在5mL,PH=9.0的PBS缓冲液中,然后将5mL的DMOG NPs溶液加入其中,配制浓度为0.2mg/mL的白藜芦醇溶液,之后在室温20-25℃下利用摇床振荡反应15h;通过白藜芦醇的疏水作用,药物分子趋于其良溶剂二甲基亚砜(DMSO),最终白藜芦醇包裹在二甲基乙二酰甘氨酸(DMOG)纳米粒子的表面,最终得到的溶液采用230nm的滤头对过滤后,得到二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料,其特征在于:二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料为核壳结构,白藜芦醇为壳体,二甲基乙二酰甘氨酸为内核,白藜芦醇壳体厚度为8-25nm,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的粒径为105-115nm,按照下述步骤进行:
步骤1,将二甲基乙二酰甘氨酸分散在二甲基亚砜中,得到二甲基乙二酰甘氨酸的二甲基亚砜分散液,将上述分散液分散于超纯水中,用纳米滤头过滤后,得到二甲基乙二酰甘氨酸纳米粒子溶液;
步骤2,将白藜芦醇分散在PH为8.0-9.0的磷酸盐缓冲液中,将步骤1制备得到的二甲基乙二酰甘氨酸纳米粒子溶液加入上述白藜芦醇分散液中,在室温20-25℃下振荡反应10-20h,过滤、干燥后,得到二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料,其中,二甲基乙二酰甘氨酸和白藜芦醇的质量比为1:(1-3)。
2.根据权利要求1所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料,其特征在于:二甲基乙二酰甘氨酸和白藜芦醇的质量比为1:(1-2)。
3.根据权利要求1所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料,其特征在于:在步骤1中,对二甲基乙二酰甘氨酸纳米材料溶液过滤所使用的滤头粒径为210-230nm。
4.根据权利要求1所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料,其特征在于:在步骤2中,磷酸盐缓冲液的PH为8.2-8.5,反应时间为12-15h,在步骤1中,对二甲基乙二酰甘氨酸纳米粒子溶液过滤所使用的滤头粒径为210-230nm。
5.根据权利要求1所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料,其特征在于:白藜芦醇壳体厚度为10-20nm,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的粒径为110-115nm。
6.制备如权利要求1-5任一所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的方法,其特征在于:按照下述步骤进行:
步骤1,将二甲基乙二酰甘氨酸分散在二甲基亚砜中,得到二甲基乙二酰甘氨酸的二甲基亚砜分散液,将上述分散液分散于超纯水中,用纳米滤头过滤后,得到二甲基乙二酰甘氨酸纳米粒子溶液;
步骤2,将白藜芦醇分散在PH为8.0-9.0的磷酸盐缓冲液中,将步骤1制备得到的二甲基乙二酰甘氨酸纳米粒子溶液加入上述白藜芦醇分散液中,在室温20-25℃下振荡反应10-20h,过滤、干燥后,得到二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料;
其中,二甲基乙二酰甘氨酸和白藜芦醇的质量比为1:(1-3),二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料为核壳结构,白藜芦醇壳体厚度为8-25nm,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的粒径为105-115nm。
7.根据权利要求6所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备方法,其特征在于:二甲基乙二酰甘氨酸和白藜芦醇的质量比为1:(1-2)。
8.根据权利要求6所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备方法,其特征在于:在步骤1中,对二甲基乙二酰甘氨酸纳米材料溶液过滤所使用的滤头粒径为210-230nm。
9.根据权利要求6所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备方法,其特征在于:在步骤2中,磷酸盐缓冲液的PH为8.2-8.5,反应时间为12-15h,在步骤1中,对二甲基乙二酰甘氨酸纳米粒子溶液过滤所使用的滤头粒径为210-230nm。
10.根据权利要求6所述的二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的制备方法,其特征在于:白藜芦醇壳体厚度为10-20nm,二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料的粒径为110-115nm。
CN201811116539.8A 2018-09-25 2018-09-25 二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法 Active CN110934831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811116539.8A CN110934831B (zh) 2018-09-25 2018-09-25 二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811116539.8A CN110934831B (zh) 2018-09-25 2018-09-25 二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110934831A CN110934831A (zh) 2020-03-31
CN110934831B true CN110934831B (zh) 2021-09-14

Family

ID=69904989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811116539.8A Active CN110934831B (zh) 2018-09-25 2018-09-25 二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110934831B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115467092A (zh) * 2022-09-15 2022-12-13 大连医科大学附属第二医院 一种负载二甲基乙二酰甘氨酸纳米纤维的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009149026A2 (en) * 2008-06-01 2009-12-10 Tufts Medical Center, Inc. Genomic approaches to fetal treatment and diagnosis
CN101990429A (zh) * 2007-04-04 2011-03-23 希格默伊德药业有限公司 一种口服药物组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990429A (zh) * 2007-04-04 2011-03-23 希格默伊德药业有限公司 一种口服药物组合物
WO2009149026A2 (en) * 2008-06-01 2009-12-10 Tufts Medical Center, Inc. Genomic approaches to fetal treatment and diagnosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells;Deok-Beom Jung等;《Biol Pharm Bull》;20110307;第34卷(第6期);全文 *

Also Published As

Publication number Publication date
CN110934831A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Kazemi et al. The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier
Wang et al. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy
Zhang et al. pH-Responsive metal–organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer
Huang et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics
Chanda et al. An effective strategy for the synthesis of biocompatible gold nanoparticles using cinnamon phytochemicals for phantom CT imaging and photoacoustic detection of cancerous cells
Jia et al. In vitro and in vivo evaluation of paclitaxel-loaded mesoporous silica nanoparticles with three pore sizes
Cai et al. In situ preparation of gold nanoparticle-loaded lysozyme–dextran nanogels and applications for cell imaging and drug delivery
Zhang et al. Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy
US8753685B2 (en) Stabilized, biocompatible gold nanoparticles
Huang et al. pH-Responsive nanodrug encapsulated by tannic acid complex for controlled drug delivery
Kang et al. Antimonene nanosheets‐based Z‐scheme heterostructure with enhanced reactive oxygen species generation and photothermal conversion efficiency for photonic therapy of cancer
Zhou et al. A novel approach to prepare protein-proanthocyanidins nano-complexes by the reversible assembly of ferritin cage
Najafabadi et al. pH-sensitive ameliorated quercetin delivery using graphene oxide nanocarriers coated with potential anticancer gelatin-polyvinylpyrrolidone nanoemulsion with bitter almond oil
Yang et al. Iron oxide nanoparticles with different polymer coatings for photothermal therapy
CN110934831B (zh) 二甲基乙二酰甘氨酸-白藜芦醇核壳型纳米材料及其制备方法
Sharmiladevi et al. Efficient wormlike micelles for the controlled delivery of anticancer drugs
Das et al. Preparation of a size selective nanocomposite through temperature assisted co-assembly of gelatin and pluronic F127 for passive targeting of doxorubicin
EP2825515B1 (en) Coating metal oxide particles
Yu et al. SOD-Functionalized gold nanoparticles as ROS scavenger and CT contrast agent for protection and imaging tracking of mesenchymal stem cells in Idiopathic pulmonary fibrosis treatment
Patel et al. A high yield, one-pot dialysis-based process for self-assembly of near infrared absorbing gold nanoparticles
Li et al. Preparation and characterization of redox-sensitive glutenin nanoparticles
Yang et al. Zn-Co metal organic frameworks coated with chitosand and Au nanoparticles for chemo-photothermal-targeted combination therapy of liver cancer
Coelho et al. Electrosprayed B‐complex vitamins/zein microparticles for drug sustained release and antioxidant applications
Devendiran et al. Sunlight mediated biosynthesis and characterisation of gold nanoparticles using pisonia grandis leaf extract for biomedical applications
RU2721562C1 (ru) Способ загрузки неорганических наночастиц или органических молекул в пористые частицы микронного или субмикронного размера

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant