CN110931788A - Graphite negative electrode material of lithium ion battery and preparation method thereof - Google Patents

Graphite negative electrode material of lithium ion battery and preparation method thereof Download PDF

Info

Publication number
CN110931788A
CN110931788A CN201911056558.0A CN201911056558A CN110931788A CN 110931788 A CN110931788 A CN 110931788A CN 201911056558 A CN201911056558 A CN 201911056558A CN 110931788 A CN110931788 A CN 110931788A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
graphite
temperature
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911056558.0A
Other languages
Chinese (zh)
Inventor
王叶
林少雄
蔡桂凡
毕超奇
王健
石永倩
梁栋栋
赵宇飞
刘盛华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201911056558.0A priority Critical patent/CN110931788A/en
Publication of CN110931788A publication Critical patent/CN110931788A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses a graphite cathode material of a lithium ion battery and a preparation method thereof, wherein D50, D90 and D100 in the graphite cathode material of the lithium ion battery are respectively 7.5-8.5 mu m, 14-16 mu m and 21-26 mu m, and the BET specific surface area of the graphite cathode material of the lithium ion battery is 2.0-2.3 m2The tap density is 1.0-1.2 g/cm2. The graphite cathode material of the lithium ion battery prepared by the invention has excellent low-temperature and rate capability, smaller primary particles can be bonded by secondary granulation, the transmission distance of lithium ions in graphite crystals is reduced, copper powder and nano conductive carbon can be coated on the surfaces of graphite particles after a graphitization process, the charge transfer impedance on the graphite surface is effectively reduced, and the adopted resin becomes amorphous carbon after the coating and graphitization processes, so that the expansion of the lithium ions is effectively acceleratedThe rate of dispersion.

Description

Graphite negative electrode material of lithium ion battery and preparation method thereof
Technical Field
The invention belongs to the technical field of negative electrode materials, and particularly relates to a graphite negative electrode material of a lithium ion battery and a preparation method thereof.
Background
In recent years, energy crisis and environmental protection are becoming two major concerns of people, new energy and energy storage systems which are pollution-free and renewable are actively searched and developed in various countries, and lithium ion batteries have the advantages of environmental friendliness, long cycle life, high energy density and the like and are widely and deeply researched by people. At present, lithium ion batteries are widely applied in the fields of mobile phones, notebooks, electric automobiles and the like; with the increasing international competitive situation, chemical power sources under extreme conditions gradually attract the attention of various countries, and particularly, lithium ion batteries under low-temperature and high-current conditions become hot spots concerned by various countries in the technical fields of military equipment, national defense safety and the like.
Graphite is always one of the most common cathode materials after the commercialization of the lithium ion battery, and is also one of the important factors influencing the low-temperature and rate performance of the lithium ion battery, and with the continuous development of economy and technology, people have great needs for chemical power sources which can be safely used under extreme conditions, such as batteries used by electric automobiles in winter in the north of China; in order to improve the low-temperature and rate-multiplying performance of graphite lithium ion battery cathode materials, researchers have tried many preparation and modification methods and obtained corresponding achievements, for example, patent CN105375030A adopts a manner of intercalation micro-expansion modification of natural flake graphite by concentrated acid and carbon source coating granulation to improve the low-temperature and rate-multiplying performance of natural graphite, but using a manner of strong acid, there are many difficulties in actual industrial production, and the low-temperature performance of the graphite lithium ion battery cathode materials needs to be further improved.
Disclosure of Invention
The invention aims to provide a graphite cathode material of a lithium ion battery to overcome the technical problems.
The technical purpose of the invention is realized by the following technical scheme:
a graphite negative electrode material for lithium ion batteries, wherein the particle diameter D50 of 50% cumulative part from the small particle side is 7.5 to 8.5 μm, the particle diameter D90 of 90% cumulative part from the small particle side is 14 to 16 μm, and the particle diameter D100 of 100% cumulative part from the small particle side is 21 to 26 μm, and the BET specific surface area of the graphite negative electrode material for lithium ion batteries is 2.0 to 2.3m2The tap density is 1.0-1.2 g/cm2
Further, the relationships among D50, D90 and D100 are preferably as follows: D90/D50 is more than or equal to 1.7 and less than or equal to 1.9, and D100/D50 is more than or equal to 2.5 and less than or equal to 3.3.
The invention also aims to provide a preparation method of the lithium ion battery graphite cathode material, which bonds small-particle graphite crystals together through secondary granulation, coats the graphite surface with metal copper, nano conductive carbon and amorphous carbon, and improves the low-temperature and rate performance of the graphite cathode through combination of three methods.
Which comprises the following steps of,
(1) shaping: grinding and shaping needle coke serving as a raw material, wherein D50, D90 and D100 in the shaped raw material are respectively 3-5 microns, 7-10 microns and 16-20 microns;
(2) and (3) secondary granulation: mixing the shaped raw materials with a binder, putting the mixture into a reaction kettle for high-temperature reaction, and cooling to room temperature after the reaction is finished to obtain a mixture;
(3) coating: mixing the mixture obtained in the step (1) with resin for coating treatment, wherein the coating temperature is 1100-1300 ℃;
(4) graphitization: and (3) carrying out graphitization treatment on the material coated in the step (2), wherein the graphitization temperature is 3000-3200 ℃, and the heat preservation time is 10-12 h, so that the lithium ion battery graphite cathode material with excellent low temperature and rate performance can be obtained.
Further, in the step (1), the needle coke is calcined needle coke, and the sulfur content is less than 1%, the volatile matter is less than 1%, and the ash content is less than 1%.
Further, in the step (2), the binder and the shaped raw materials are mixed according to the proportion of 1: 10-19.
Further, the binder in the step (2) is a mixture of copper powder, nano conductive carbon and asphalt, wherein the mass fraction ratio of the copper powder to the binder is 1-5%, and the mass fraction ratio of the nano conductive carbon to the binder is 0.5-1%.
Further, in the step (2), the temperature of the high-temperature reaction is 500-600 ℃, and the heat preservation time is 2-4 hours.
Further, in the step (3), the resin is phenolic resin and/or epoxy resin, and the coating proportion is 3-5%.
Further, in the step (4), the graphitization treatment is to place the coated material in an Acheson graphitization furnace for treatment.
Has the advantages that: the lithium ion battery graphite cathode material prepared by the invention has excellent low temperature and rate capability, smaller primary particles can be bonded by secondary granulation, the transmission distance of lithium ions in graphite crystals is reduced, copper powder and nano conductive carbon can be coated on the surfaces of graphite particles after a graphitization process, the charge transfer impedance on the surfaces of graphite particles is effectively reduced, the adopted resin becomes amorphous carbon after the coating and graphitization processes, the interlayer spacing of the amorphous carbon is larger than that of the graphite, and the amorphous carbon has a pore structure, so that the diffusion rate of the lithium ions is effectively accelerated.
Drawings
FIG. 1 is a scanning electron microscope picture of a graphite negative electrode material of a lithium ion battery with excellent low-temperature and rate performance in example 1;
FIG. 2 is a button cell charge-discharge diagram of the graphite negative electrode material of the lithium ion battery with excellent low-temperature and rate capability of example 1;
Detailed Description
In the description of the present invention, unless otherwise specified, the terms "upper", "lower", "left", "right", "front", "rear", and the like, indicate orientations or positional relationships only for the purpose of describing the present invention and simplifying the description, but do not indicate or imply that the designated device or structure must have a specific orientation, and thus, should not be construed as limiting the present invention. Furthermore, the terms "first," "second," and the like are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
The present invention provides a graphite negative electrode material for lithium ion batteries, wherein the particle diameter D50 of 50% accumulation part from the small particle side is 7.5-8.5 μm, the particle diameter D90 of 90% accumulation part from the small particle side is 14-16 μm, and the particle diameter D100 of 100% accumulation part from the small particle side is 21-26 μm, and the BET specific surface area of the graphite negative electrode material for lithium ion batteries is 2.0-2.3 m2The tap density is 1.0-1.2 g/cm2(ii) a Wherein, the D50, the D90 and the D100 preferably have the following relations: D90/D50 is more than or equal to 1.7 and less than or equal to 1.9, and D100/D50 is more than or equal to 2.5 and less than or equal to 3.3.
The graphite cathode material of the lithium ion battery with the structure is prepared by the following steps:
(1) shaping: grinding and shaping needle coke serving as a raw material, wherein D50, D90 and D100 in the shaped raw material are respectively 3.5-5 microns, 8-10 microns and 12-20 microns;
(2) and (3) secondary granulation: mixing the shaped raw materials with a binder, putting the mixture into a reaction kettle for high-temperature reaction, and cooling to room temperature after the reaction is finished to obtain a mixture;
(3) coating: mixing the mixture obtained in the step (1) with resin for coating treatment, wherein the coating temperature is 1100-1300 ℃;
(4) graphitization: and (3) carrying out graphitization treatment on the material coated in the step (2), wherein the graphitization temperature is 3000-3200 ℃, and the heat preservation time is 10-12 h, so that the lithium ion battery graphite cathode material with excellent low temperature and rate performance can be obtained.
Further, in the step (1), the needle coke is calcined needle coke, and the sulfur content is less than 1%, the volatile matter is less than 1%, and the ash content is less than 1%.
Further, in the step (2), the binder and the shaped raw materials are mixed according to the proportion of 1: 10-19.
Further, the binder in the step (2) is a mixture of copper powder, nano conductive carbon and asphalt, wherein the mass fraction ratio of the copper powder to the binder is 1-5%, and the mass fraction ratio of the nano conductive carbon to the binder is 0.5-1%.
Further, in step (2). The temperature of the high-temperature reaction is 500-600 ℃, and the heat preservation time is 2-4 h.
Further, in the step (3), the resin is phenolic resin and/or epoxy resin, and the coating proportion is 3-5%.
Further, in the step (4), the graphitization treatment is to treat the coated material in an Acheson graphitization furnace.
Example 1
The needle coke raw material was pulverized and shaped by a pulverizer and a shaper, and the shaped particle size D50 was 3.5 μm, D90 was 8.1 μm, and D100 was 17.2 μm, and 10kg of the needle coke shaping raw material, 22g of copper powder, 10g of nano conductive carbon, and 900g of high temperature pitch were weighed. Fully and uniformly mixing the three materials, putting the mixture into a bedroom reaction kettle, heating the reaction kettle to 550 ℃, preserving heat for 3 hours, and taking out the three materials after the three materials are cooled to room temperature. And (3) taking 300g of phenolic resin, fully mixing the phenolic resin with the materials from the reaction kettle, preserving heat at 1200 ℃ for 3h for high-temperature coating, and finally preserving heat at 3000 ℃ for 12h for graphitization treatment to obtain the lithium ion battery graphite cathode material with excellent low-temperature and rate performance.
Example 2
The needle coke raw material was pulverized and shaped by a pulverizer and a shaper, and the shaped particle size D50 was 4.1 μm, D90 was 8.6 μm, and D100 was 16.8 μm, and 10kg of the needle coke shaping raw material, 50g of copper powder, 10g of nano conductive carbon, and 930g of high temperature pitch were weighed. Fully and uniformly mixing the three materials, putting the mixture into a bedroom reaction kettle, heating the reaction kettle to 550 ℃, preserving heat for 3 hours, and taking out the three materials after the three materials are cooled to room temperature. And (3) taking 280g of phenolic resin, fully mixing the phenolic resin with the material from the reaction kettle, preserving heat at 1200 ℃ for 3h for high-temperature coating, and finally preserving heat at 3000 ℃ for 12h for graphitization treatment to obtain the lithium ion battery graphite cathode material with excellent low-temperature and rate performance.
Example 3
Needle coke raw material is pulverized and shaped by a pulverizer and a shaper, the particle size D50 after shaping is 4.5 μm, D90 is 9.2 μm, and D100 is 18.5 μm, 10kg of needle coke shaping raw material, 18g of copper powder, 2.5g of nano conductive carbon and 480g of high temperature asphalt are weighed. Fully and uniformly mixing the three materials, putting the mixture into a bedroom reaction kettle, heating the reaction kettle to 550 ℃, preserving heat for 3 hours, and taking out the three materials after the three materials are cooled to room temperature. And (3) taking 450g of phenolic resin, fully mixing the phenolic resin with the materials from the reaction kettle, preserving heat at 1200 ℃ for 3h for high-temperature coating, and finally preserving heat at 3000 ℃ for 12h for graphitization treatment to obtain the lithium ion battery graphite cathode material with excellent low-temperature and rate performance.
Example 4
The needle coke raw material was pulverized and shaped by a pulverizer and a shaper, and the shaped particle size D50 was 4.9 μm, D90 was 9.6 μm, and D100 was 17.8 μm, and 10kg of the needle coke shaping raw material, 10g of copper powder, 5g of nano conductive carbon, and 980g of high temperature pitch were weighed. Fully and uniformly mixing the three materials, putting the mixture into a bedroom reaction kettle, heating the reaction kettle to 550 ℃, preserving heat for 3 hours, and taking out the three materials after the three materials are cooled to room temperature. And (3) taking 430g of phenolic resin, fully mixing the phenolic resin with the materials from the reaction kettle, preserving heat at 1200 ℃ for 3h for high-temperature coating, and finally preserving heat at 3000 ℃ for 12h for graphitization treatment to obtain the lithium ion battery graphite cathode material with excellent low-temperature and rate performance.
Example 5
Needle coke raw material was pulverized and shaped by a pulverizer and a shaper, the particle size D50 after shaping was 4.3 μm, D90 was 8.1 μm, and D100 was 17.2 μm, and 10kg of needle coke shaping raw material, 28g of copper powder, 4.5g of nano conductive carbon, and 560g of high temperature pitch were weighed. Fully and uniformly mixing the three materials, putting the mixture into a bedroom reaction kettle, heating the reaction kettle to 550 ℃, preserving heat for 3 hours, and taking out the three materials after the three materials are cooled to room temperature. And (3) taking 330g of phenolic resin, fully mixing the phenolic resin with the materials from the reaction kettle, preserving heat at 1200 ℃ for 3h for high-temperature coating, and finally preserving heat at 3000 ℃ for 12h for graphitization treatment to obtain the lithium ion battery graphite cathode material with excellent low-temperature and rate performance.
The properties of the materials prepared in examples 1-5 and the effects of the first discharge and first coulomb on the batteries were examined, with the specific parameters as given in table 1 below.
TABLE 1
Figure BDA0002256695660000041
Figure BDA0002256695660000051
As can be seen from table 1, the graphite anode material of the present invention has excellent first discharge capacity and first coulombic efficiency within the defined structural range.
Next, the charging constant current ratio test was performed on example 1 at different rates, and the specific data are shown in table 2 below.
TABLE 2
Figure BDA0002256695660000052
Finally, the percentage of discharge capacity of example 1 at different temperatures was measured and the specific data is shown in table 3 below.
TABLE 3
25℃ 10℃ 0℃ -10℃ -20℃ -30℃
Example 1 100% 97.26% 95.38% 89.35% 86.35% 78.35%
As can be seen from the data in tables 2 and 3, the graphite anode material prepared in this example 1 has excellent charging performance at different rates, and maintains excellent discharge performance at low temperatures.
In order to make the objects, technical solutions and advantages of the present invention more concise and clear, the present invention is described with the above specific embodiments, which are only used for describing the present invention, and should not be construed as limiting the scope of the present invention. It should be understood that any modification, equivalent replacement, and improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention. Therefore, the protection scope of the present patent shall be subject to the appended claims.

Claims (9)

1. A graphite negative electrode material for lithium ion batteries, characterized in that the particle diameter D50 of 50% cumulative part from the small particle side is 7.5 to 8.5 μm, the particle diameter D90 of 90% cumulative part from the small particle side is 14 to 16 μm, and the particle diameter D100 of 100% cumulative part from the small particle side is 21 to 26 μm, and the BET specific surface area of the graphite negative electrode material for lithium ion batteries is 2.0 to 2.3m2The tap density is 1.0-1.2 g/cm2
2. The graphite negative electrode material for the lithium ion battery as claimed in claim 1, wherein the relationships among D50, D90 and D100 are preferably as follows: D90/D50 is more than or equal to 1.7 and less than or equal to 1.9, and D100/D50 is more than or equal to 2.5 and less than or equal to 3.3.
3. The preparation method of the graphite anode material of the lithium ion battery according to the claims 1-2, which is characterized by comprising the following steps,
(1) shaping: grinding and shaping needle coke serving as a raw material, wherein D50, D90 and D100 in the shaped raw material are respectively 3.5-5 microns, 8-10 microns and 16-20 microns;
(2) and (3) secondary granulation: mixing the shaped raw materials with a binder, putting the mixture into a reaction kettle for high-temperature reaction, and cooling to room temperature after the reaction is finished to obtain a mixture;
(3) coating: mixing the mixture obtained in the step (1) with resin for coating treatment, wherein the coating temperature is 1100-1300 ℃;
(4) graphitization: and (3) carrying out graphitization treatment on the material coated in the step (2), wherein the graphitization temperature is 3000-3200 ℃, and the heat preservation time is 10-12 h, so that the lithium ion battery graphite cathode material with excellent low temperature and rate performance can be obtained.
4. The method for preparing the graphite anode material of the lithium ion battery as claimed in claim 3, wherein in the step (1), the needle coke is calcined needle coke, and has a sulfur content of less than 1%, a volatile content of less than 1% and an ash content of less than 1%.
5. The preparation method of the graphite anode material for the lithium ion battery as claimed in claim 3, wherein in the step (2), the binder and the shaped raw materials are mixed according to a ratio of 1: 10-19.
6. The preparation method of the graphite negative electrode material of the lithium ion battery as claimed in claim 3 or 5, wherein the binder in the step (2) is a mixture of copper powder, nano conductive carbon and asphalt, wherein the mass fraction ratio of the copper powder to the binder is 1-5%, and the mass fraction ratio of the nano conductive carbon to the binder is 0.5-1%.
7. The preparation method of the graphite anode material for the lithium ion battery according to claim 3, wherein in the step (2), the temperature of the high-temperature reaction is 500-600 ℃, and the heat preservation time is 2-4 hours.
8. The preparation method of the graphite anode material for the lithium ion battery according to claim 3, wherein in the step (3), the resin is phenolic resin and/or epoxy resin, and the coating proportion is 3-5%.
9. The preparation method of the graphite anode material of the lithium ion battery as claimed in claim 3, wherein in the step (4), the graphitization treatment is to treat the coated material in an Acheson graphitization furnace.
CN201911056558.0A 2019-10-31 2019-10-31 Graphite negative electrode material of lithium ion battery and preparation method thereof Pending CN110931788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911056558.0A CN110931788A (en) 2019-10-31 2019-10-31 Graphite negative electrode material of lithium ion battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911056558.0A CN110931788A (en) 2019-10-31 2019-10-31 Graphite negative electrode material of lithium ion battery and preparation method thereof

Publications (1)

Publication Number Publication Date
CN110931788A true CN110931788A (en) 2020-03-27

Family

ID=69850260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911056558.0A Pending CN110931788A (en) 2019-10-31 2019-10-31 Graphite negative electrode material of lithium ion battery and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110931788A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394402A (en) * 2021-07-01 2021-09-14 安徽科达新材料有限公司 Morphology-controllable spherical graphite negative electrode material and preparation method thereof
WO2023012296A1 (en) * 2021-08-04 2023-02-09 Sgl Carbon Se Anode material
CN115706230A (en) * 2022-12-28 2023-02-17 中创新航科技股份有限公司 Composite graphite negative electrode material, negative plate and lithium ion battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304187A (en) * 1999-12-15 2001-07-18 北京有色金属研究总院 Composite graphite negative electrode material for lithium cell and its preparation method
CN101609878A (en) * 2009-07-03 2009-12-23 中南大学 A kind of cathode material of high-magnification ion capacitance battery and preparation method thereof
WO2011019493A1 (en) * 2009-08-09 2011-02-17 American Lithium Energy Corporation Electroactive particles, and electrodes and batteries comprising the same
CN103811717A (en) * 2014-02-19 2014-05-21 新乡市赛日新能源科技有限公司 Power lithium-ion battery negative electrode material with core-shell structure and preparation method thereof
WO2014178093A1 (en) * 2013-05-03 2014-11-06 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof
CN105390673A (en) * 2015-10-28 2016-03-09 东莞市凯金新能源科技有限公司 Preparation method of high-capacity and low-resilience graphite anode material for lithium-ion battery
CN107946552A (en) * 2017-10-25 2018-04-20 汪涛 A kind of negative active core-shell material for lithium battery and preparation method thereof
CN108565461A (en) * 2018-01-05 2018-09-21 青岛科硕新材料科技有限公司 Cell negative electrode material, preparation method and the battery cathode made from the material
CN109830669A (en) * 2019-03-01 2019-05-31 安徽科达洁能新材料有限公司 A kind of preparation method of high magnification artificial plumbago negative pole material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304187A (en) * 1999-12-15 2001-07-18 北京有色金属研究总院 Composite graphite negative electrode material for lithium cell and its preparation method
CN101609878A (en) * 2009-07-03 2009-12-23 中南大学 A kind of cathode material of high-magnification ion capacitance battery and preparation method thereof
WO2011019493A1 (en) * 2009-08-09 2011-02-17 American Lithium Energy Corporation Electroactive particles, and electrodes and batteries comprising the same
WO2014178093A1 (en) * 2013-05-03 2014-11-06 Showa Denko K.K. Negative electrode material for lithium ion battery and use thereof
CN103811717A (en) * 2014-02-19 2014-05-21 新乡市赛日新能源科技有限公司 Power lithium-ion battery negative electrode material with core-shell structure and preparation method thereof
CN105390673A (en) * 2015-10-28 2016-03-09 东莞市凯金新能源科技有限公司 Preparation method of high-capacity and low-resilience graphite anode material for lithium-ion battery
CN107946552A (en) * 2017-10-25 2018-04-20 汪涛 A kind of negative active core-shell material for lithium battery and preparation method thereof
CN108565461A (en) * 2018-01-05 2018-09-21 青岛科硕新材料科技有限公司 Cell negative electrode material, preparation method and the battery cathode made from the material
CN109830669A (en) * 2019-03-01 2019-05-31 安徽科达洁能新材料有限公司 A kind of preparation method of high magnification artificial plumbago negative pole material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394402A (en) * 2021-07-01 2021-09-14 安徽科达新材料有限公司 Morphology-controllable spherical graphite negative electrode material and preparation method thereof
WO2023012296A1 (en) * 2021-08-04 2023-02-09 Sgl Carbon Se Anode material
CN115706230A (en) * 2022-12-28 2023-02-17 中创新航科技股份有限公司 Composite graphite negative electrode material, negative plate and lithium ion battery
CN115706230B (en) * 2022-12-28 2023-04-21 中创新航科技股份有限公司 Composite graphite negative electrode material, negative electrode plate and lithium ion battery

Similar Documents

Publication Publication Date Title
CN103066243B (en) Coke powder-based cathode material of lithium ion power battery and preparation method thereof
CN110226252B (en) Polyanion type sodium ion battery positive electrode material and preparation method thereof
CN109148847B (en) Boron-doped modified hard carbon-coated negative electrode material with high rate performance and liquid-phase preparation method thereof
CN109742383A (en) Sodium-ion battery hard carbon cathode material based on phenolic resin and its preparation method and application
CN110931788A (en) Graphite negative electrode material of lithium ion battery and preparation method thereof
CN112289986B (en) Preparation method of high-rate quick-charging graphite negative electrode material
CN105514432B (en) A kind of iron phosphate compound anode material of lithium and preparation method thereof
WO2019062495A1 (en) Carbon material and asphalt-based negative electrode material for sodium-ion battery, and preparation method therefor and applications thereof
CN110790322B (en) Core-shell nickel ferrite and preparation method thereof, nickel ferrite @ C material and preparation method and application thereof
CN111244400A (en) Silicon-oxygen-carbon composite material, lithium ion battery, and preparation method and application of silicon-oxygen-carbon composite material
CN110957490A (en) Preparation method of carbon-coated sodium iron phosphate electrode material with hollow structure
CN112670461A (en) Natural graphite carbon coated negative electrode material, preparation method thereof and lithium ion battery
CN113526483A (en) Ferro-phosphorus sodalite type cathode material and preparation method and application thereof
CN111342014A (en) Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof
CN113526500A (en) Preparation method of high-performance artificial graphite negative electrode material
CN112310362B (en) High-capacity fast-charging negative electrode material for lithium ion battery and lithium ion battery
CN111653734A (en) Ferrosilicon/carbon composite lithium ion battery cathode material and preparation method and application thereof
CN113517427B (en) Preparation method and application of carbon-coated antimony/antimony trisulfide composite material
CN108110231B (en) Carbon-coated Fe4N nano composite material, preparation method and application thereof
CN115312736B (en) Preparation method of Si@TiN-asphalt composite anode material
CN103887509B (en) Iron phosphate lithium-based composite conductor positive electrode and preparation method, positive pole and lithium battery
CN113422026B (en) Negative electrode material capable of being charged at low temperature and preparation method thereof
CN102263248B (en) Method for preparing carbon coated nanometer LiFePO4
CN110600738B (en) Method for preparing low-temperature lithium ion battery hard carbon negative electrode material
CN113735180A (en) Method for preparing sodium-ion battery anode material by using cobalt-iron sulfide obtained from LDH-based precursor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200327