CN110929335A - 一种自适应异步粒子群的分布式驱动汽车能效控制方法 - Google Patents

一种自适应异步粒子群的分布式驱动汽车能效控制方法 Download PDF

Info

Publication number
CN110929335A
CN110929335A CN201911095467.8A CN201911095467A CN110929335A CN 110929335 A CN110929335 A CN 110929335A CN 201911095467 A CN201911095467 A CN 201911095467A CN 110929335 A CN110929335 A CN 110929335A
Authority
CN
China
Prior art keywords
hub motor
wheel hub
particle
kth moment
ith particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911095467.8A
Other languages
English (en)
Inventor
王佳
张盛龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN201911095467.8A priority Critical patent/CN110929335A/zh
Publication of CN110929335A publication Critical patent/CN110929335A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Transportation (AREA)
  • Data Mining & Analysis (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,包括如下步骤:确定优化设计变量:左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4;确定优化设计目标:系统为单目标优化,优化目标为四轮轮毂驱动电动汽车实时总效率最高;确定优化限制条件;对设计变量进行优化。本发明以四个车轮实际扭矩输出参数为设计优化变量,采用自适应异步变化的粒子群算法对这四个车轮实际扭矩输出参数进行优化,最终获得总效率最高的转矩匹配方案,不但为四轮轮毂驱动电动汽车的能效优化控制提供必要的技术支持,而且使得四轮轮毂驱动电动汽车的能效发挥到最优。

Description

一种自适应异步粒子群的分布式驱动汽车能效控制方法
技术领域
本发明属于汽车设计制造领域,涉及一种电动汽车的能效控制方法,具体涉及一种基于自适应异步变化的粒子群算法的分布式驱动电动汽车能效优化控制方法。
背景技术
发展电动汽车已经成为应对交通领域的能源安全问题与空气污染问题的共同选择。在各类电动汽车中,四轮轮毂驱动电动汽车被认为是纯电驱动汽车的前沿技术,四轮轮毂驱动可以单独控制每个电机的输出转矩,动力可控自由度高,可以实现更加优化的整车动态协调控制;由于采用了线控技术,省却了变速箱、传动轴、主减速器、差速器等机械传动结构,大大简化了动力系统结构,一方面可以提高传动效率,另一方面有利于整车轻量化;动力系统高度模块化,有利于空间布置,可以降低汽车底盘和重心,这对提高汽车的操纵稳定性具有重大意义。
发展电动汽车已经成为应对交通领域的能源安全问题与空气污染问题的共同选择。在各类电动汽车中,四轮分布式驱动电动汽车被认为是纯电驱动汽车的前沿技术,分布式驱动包括轮毂电机驱动和轮边电机驱动两种形式,四轮分布式驱动可以单独控制每个电机的输出转矩,动力可控自由度高,可以实现更加优化的整车动态协调控制;由于采用了线控技术,省却了变速箱、传动轴、主减速器、差速器等机械传动结构,大大简化了动力系统结构,一方面可以提高传动效率,另一方面有利于整车轻量化;动力系统高度模块化,有利于空间布置,可以降低汽车底盘和重心,这对提高汽车的操纵稳定性具有重大意义。
四轮分布式驱动电动汽车系统在动力性和能效方面具有很大的潜力。该系统具有控制灵活、响应快的优势,但是现有的系统控制方法主要是通过基于实时搜索算法,其在能效控制上还不是很理想,如何控制四个车轮电机工作,使其在发挥性能优势的同时能效达到最优,是该技术产业化的关键问题,因此研究四轮分布式驱动系统的能效优化问题有十分重要的意义。
现有的分布式驱动电动汽车能效优化控制方法认为最优的转矩分配策略应该在四轮平均分配模式和两轮模式之间进行切换:当总转矩需求较低的时候,两前轮或者两后轮输出转矩,另外两个电机不工作;当总转矩需求较高的时候,四轮转矩平均分配。以上研究都是基于电机数学模型或者电机效率特性图已知的前提,并且以上控制策略都只适用于前后轴采用相同的电机的构型,而对于前后轴电机不一致的构型则不适用。但是从现有车型设计角度来说,前轮毂后轮边电机构型具有很大发展潜力:高速电机和低速电机或者高效率电机和高性能电机的组合可以在保证驱动能力的同时拓宽电机驱动的综合高效区;因此研究针对不同电机构型的四轮分布式驱动系统能效最优有十分重要的意义。
发明内容
发明目的:为了解决现有的四轮轮毂驱动电动汽车能效优化的问题,提供一种基于自适应异步变化的粒子群算法的四轮轮毂驱动电动汽车能效优化控制方法,能够获得总效率最高的转矩匹配方案,为四轮轮毂驱动电动汽车的能效优化控制提供必要的技术支持。
技术方案:为实现上述目的,本发明提供一种基于自适应异步变化的粒子群算法的四轮轮毂驱动电动汽车能效优化控制方法,是基于四轮轮毂驱动电动系统实现的,所述四轮轮毂驱动电动系统包括动力电池组、左前轮轮毂电机、右前轮轮毂电机、左后轮轮毂电机、右后轮轮毂电机、左前轮轮毂电机控制器、右前轮轮毂电机控制器、左后轮轮毂电机控制器、右后轮轮毂电机控制器和整车控制器;
所述左前轮轮毂电机与左前车轮机械连接,所述右前轮轮毂电机与右前车轮机械连接,所述左后轮轮毂电机与左后车轮机械连接,所述右后轮轮毂电机与右后车轮机械连接,所述左前轮轮毂电机与左前轮轮毂电机控制器电气连接,所述右前轮轮毂电机与右前轮轮毂电机控制器电气连接,所述左后轮轮毂电机与左后轮轮毂电机控制器电气连接,所述右后轮轮毂电机与右后轮轮毂电机控制器电气连接;所述动力电池组分别与左前轮轮毂电机控制器、右前轮轮毂电机控制器、左后轮轮毂电机控制器和右后轮轮毂电机控制器电气连接,整车控制器分别与左前轮轮毂电机控制器、右前轮轮毂电机控制器、左后轮轮毂电机控制器、右后轮轮毂电机控制器和动力电池组电气连接。
基于上述系统结构,四轮轮毂驱动电动汽车工况可以分为直线行驶工况和转弯工况,当处于直线行驶工况时,采用自适应异步变化的粒子群算法进行能效优化控制,包括如下步骤:
S1:确定优化设计变量:
设计变量一共包括四个参数,分别为:左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4
S2:确定优化设计目标:系统为单目标优化,优化目标为四轮轮毂驱动电动汽车实时总效率最高;
S3:确定优化限制条件;
S4:对设计变量进行优化,其具体的优化流程如下:
S4-1:初始化粒子群优化算法参数,包括:最大迭代次数Tmax、粒子数目m、权重系数ωmax和ωmin、加速系数c1,ini、c2,ini、c1,fin和c2,fin,将当前优化代数设置为t=1(t≤Tmax),在四维空间中,随机产生m个粒子x1,x2,...,xi,...,xm,构成种群X(t),随机产生各粒子初始速度v1,v2,...,vi,...,vm,构成种群V(t),其中第i个粒子的位置为xi=(xi,1,xi,2,xi,3,xi,4),速度为vi=(vi,1,vi,2,vi,3,vi,4),xi,1表示第i个粒子第k时刻左前轮毂电机转矩Tm1(k)i大小,xi,2表示第i个粒子第k时刻右前轮毂电机转矩Tm2(k)i大小,xi,3表示第i个粒子第k时刻左后轮毂电机转矩Tm3(k)i大小,xi,4表示第i个粒子第k时刻右后轮毂电机转矩Tm4(k)i大小;
S4-2:分别计算左前轮轮毂电机、右前轮轮毂电机、左后轮轮毂电机、右后轮轮毂电机在第k时刻的实时输入输出功率;
S4-3:根据步骤S4-2的计算结果计算第i个粒子第k时刻的电机系统实时效率η(k)i的倒数;
S4-4:将得到的第i个粒子第k时刻的电机系统实时效率η(k)i的倒数作为适应度值大小来评价每个粒子的好坏,存储当前各粒子的最佳位置pbest和与之对应的电机系统效率的倒数,并将种群中适应值最优的粒子作为整个种群中的最佳位置gbest;
S4-5:更新粒子的速度和位置,产生新的种群X(t+1);
S4-6:更新优化算法的权重系数;
S4-7:更新加速系数;
S4-8:更新粒子的pbest和gbest;
S4-9:判断当前优化代数t是否等于Tmax,若为是则停止计算,则输出适应度值
Figure BDA0002268197540000031
最小的粒子vi,即将第k时刻实时总效率η(k)i最高的粒子vi作为所求结果,并根据对应的Tm1(k)i、Tm2(k)i、Tm3(k)i和Tm4(k)i分别控制所述左前轮毂电机、右前轮毂电机、左后轮毂电机和右后轮毂电机,计算四个电机的转矩之和Tm(k)i,然后结束流程;如果t<Tmax,则另t=t+1,并返回步骤S4-5继续搜索。
进一步的,所述步骤S3中优化限制条件为左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4的工作范围。
进一步的,所述步骤S4-2中通过公式(1)计算计算第i个粒子第k时刻的左前轮毂电机的实时输入输出功率:
Figure BDA0002268197540000032
其中,Pin,1(k)i为第i个粒子第k时刻的左前轮毂电机实时输入功率;Pout,1(k)i为第i个粒子第k时刻的左前轮毂电机实时输出功率;U1(k)i为第i个粒子第k时刻的左前轮毂电机输入端母线电压;I1(k)i为第i个粒子第k时刻的左前轮毂电机输入端母线电流;n1(k)i为第i个粒子第k时刻左前轮毂电机的转速;ψ1为第i个粒子第k时刻的左前轮毂电机的转矩分配系数,
Figure BDA0002268197540000041
通过公式(2)计算第i个粒子第k时刻的右前轮毂电机的实时输入输出功率为:
Figure BDA0002268197540000042
其中,Pin,2(k)i为第i个粒子第k时刻的右前轮毂电机实时输入功率;Pout,2(k)i为第i个粒子第k时刻的右前轮毂电机实时输出功率;U2(k)i为第i个粒子第k时刻的右前轮毂电机输入端母线电压;I2(k)i为第i个粒子第k时刻的右前轮毂电机输入端母线电流;n2(k)i为第i个粒子第k时刻的右前轮毂电机的转速;ψ2为第i个粒子第k时刻右前轮毂电机的转矩分配系数,
Figure BDA0002268197540000043
通过公式(3)计算计算第i个粒子第k时刻的左后轮毂电机的实时输入输出功率为:
Figure BDA0002268197540000044
其中,Pin,3(k)i为第i个粒子第k时刻的左后轮毂电机实时输入功率;Pout,3(k)i为第i个粒子第k时刻的左后轮毂电机实时输出功率;U3(k)i为第i个粒子第k时刻的左后轮毂电机输入端母线电压;I3(k)i为第i个粒子第k时刻的左后轮毂电机输入端母线电流;n3(k)i为第i个粒子第k时刻的左后轮毂电机的转速;ψ3为第i个粒子第k时刻左后轮毂电机的转矩分配系数,
Figure BDA0002268197540000045
通过公式(4)计算第i个粒子第k时刻的右后轮毂电机的实时输入输出功率为:
Figure BDA0002268197540000046
其中,U4(k)i为第i个粒子第k时刻的右后轮毂电机输入端母线电压;I4(k)i为第i个粒子第k时刻的右后轮毂电机输入端母线电流;n4(k)i为第i个粒子第k时刻的右后轮毂电机的转速;ψ4为第i个粒子第k时刻右后轮毂电机的转矩分配系数,
Figure BDA0002268197540000051
进一步的,所述步骤S4-3中通过公式(5)计算第i个粒子第k时刻的电机系统实时效率η(k)i的倒数:
Figure BDA0002268197540000052
进一步的,所述步骤S4-4中将公式(5)作为适应度函数,将计算得到的第k时刻的电机系统效率的倒数作为适应度值大小来评价每个粒子的好坏。
进一步的,所述步骤S4-5中通过公式(6)和(7)更新粒子的速度和位置,产生新的种群X(t+1):
vi,j(t+1)=ωvi,j(t)+c1r1[pi,j-xi,j(t)]+c2r2[pg,j-xi,j(t)] (6)
xi,j(t+1)=xi,j(t)+vi,j(t+1) (7)
其中,i=1,2,...,m;j=1,2,3,4;vi,j为第i个粒子的当前速度;ω表示惯性权重系数;c1和c2表示正的加速系数;r1和r2为0到1之间的随机数;pi,j表示第i个例子迄今找到的最佳位置pbest;pg,j是整个粒子群搜索到的最佳位置gbest;xi,j为第i个粒子的当前位置。
进一步的,所述步骤S4-6中采用公式(8)更新优化算法的权重系数:
Figure BDA0002268197540000053
其中,ωmax和ωmin分别为惯性权重系数的最大值和最小值;f表示粒子当前的适应度值大小;favg表示当前所有粒子的平均适应度值大小;fmin表示当前所有粒子的最小适应度值。
进一步的,所述步骤S4-7中采用公式(9)和(10)更新加速系数c1,ini、c2,ini、c1,fin和c2,fin
Figure BDA0002268197540000054
Figure BDA0002268197540000061
其中,c1,ini和c2,ini分别为c1和c2的迭代初始值;c1,fin和c2,fin分别为c1和c2的迭代最终值。
进一步的,所述步骤S4-9中通过公式(11)计算四个电机的转矩之和Tm(k)i
Tm(k)i=ψ1×Tm1(k)i2×Tm2(k)i3×Tm3(k)i4×Tm4(k)i。 (11)
进一步的,所述电机转矩分配系数ψ的计算公式为ψ=ψ1234,其中
Figure BDA0002268197540000062
Figure BDA0002268197540000063
虽然基于粒子群算法能够有效的对优化空间进行搜索,但是该算法中权重系数和加速系数的选择影响算法的优化精度和收敛速度,针对不同的优化问题,非常难确定最佳的权重系数和加速系数。本发明通过采用自适应异步粒子群算法能够获得最合适的权重系数和加速系数,保证算法在初期能够加强全局搜索能力,在算法后期又有利于收敛到全局最优解。因此选择自适应异步粒子群算法作为分布式驱动汽车能效优化控制方法。四轮分布式驱动动力系统使得动力系统模式更为灵活,更好根据每个车轮的负载力矩的调节驱动力矩大小,节约电能。
有益效果:本发明与现有技术相比,能够根据汽车的运行过程中各车轮实际扭矩需求,实时调整四个轮毂电机驱动力矩,以四个车轮实际扭矩输出参数为设计优化变量,采用自适应异步变化的粒子群算法对这四个车轮实际扭矩输出参数进行优化,最终获得总效率最高的转矩匹配方案,不但为四轮轮毂驱动电动汽车的能效优化控制提供必要的技术支持,而且使得四轮轮毂驱动电动汽车的能效发挥到最优,解决了现有的四轮轮毂驱动电动汽车系统的控制方法没有将汽车的能效发挥到最优的问题。
附图说明
图1为本发明的优化流程图;
图2为四轮轮毂分布式驱动电动系统示意图;
图3为四轮轮毂驱动电动系统整体控制方案示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
本实施例将基于自适应异步变化的粒子群算法的能效优化控制方法应用在四轮轮毂分布式驱动电动汽车上,其是基于汽车的四轮轮毂分布式驱动电动系统实现的,如图2所示,该四轮轮毂分布式驱动电动系统包括:包括动力电池组9、左前轮轮毂电机1、右前轮轮毂电机2、左后轮轮毂电机3、右后轮轮毂电机4、左前轮轮毂电机控制器5、右前轮轮毂电机控制器6、左后轮轮毂电机控制器7、右后轮轮毂电机控制器8、整车控制器10和车载充电系统11。
如图2所示,左前轮轮毂电机1与左前车轮a机械连接,右前轮轮毂电机2与右前车轮b机械连接,左后轮轮毂电机3与左后车轮c机械连接,右后轮轮毂电机4与右后车轮d机械连接,左前轮轮毂电机1与左前轮轮毂电机控制器5电气连接,右前轮轮毂电机2与右前轮轮毂电机控制器6电气连接,左后轮轮毂电机3与左后轮轮毂电机控制器7电气连接,右后轮轮毂电机4与右后轮轮毂电机控制器8电气连接;动力电池组9分别与左前轮轮毂电机控制器5、右前轮轮毂电机控制器6、左后轮轮毂电机控制器7和右后轮轮毂电机控制器8电气连接,整车控制器10分别与左前轮轮毂电机控制器5、右前轮轮毂电机控制器6、左后轮轮毂电机控制器7、右后轮轮毂电机控制器8和动力电池组9电气连接。
如图3所示,四轮轮毂分布式驱动电动汽车在行驶过程中,实时监测动力电池剩余电量SOC及动力电池状态信息(包括单体电压、电流、温度、绝缘电阻阻值等),车辆行驶速度,驾驶员意图(实为检测油门踏板开度)。根据车辆行驶速度及油门踏板开度计算车辆总需求转矩,根据车辆需求转矩、四个车轮负载变化、电池SOC及电池状态信息分配转矩,本实施例中研究四个车轮转矩优化分配使得整车能耗最低问题,由于四轮轮毂驱动车辆工况可以分为直线行驶工况和转弯工况,本实施例只研究直行工况下效率最优的转矩分配策略。
本实施例在上述四轮轮毂分布式驱动电动系统的模型上,当处于直行工况时,应用本发明提出的基于自适应异步变化的粒子群算法的能效优化控制方法,参照图1,其具体的优化和控制过程如下:
S1:确定优化设计变量:
设计变量一共包括四个参数,分别为:左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4
S2:确定优化设计目标:系统为单目标优化,优化目标为四轮轮毂驱动电动汽车实时总效率最高,由于粒子群算法是一种求解极小值的算法,则在系统设计中,另优化目标为混合动力汽车实时总效率的倒数最小即可;
S3:确定优化限制条件:
左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4的工作范围,其确定方法为:
初始时刻k每个车轮转矩平均分配,即T(k,1)=T(k,2)=T(k,3)=T(k,4)=T(k,Q)/4;
在k+1时刻,左前轮轮毂电机转矩Tm1求解最优区间:T(k+1,1)∈(T(k,1),T(k+1,Q+1)/4);
在k+2时刻,左前轮轮毂电机转矩Tm1求解最优区间为:(T(k+2,1),T(k+2,Q+2)/4);
同样方法,我们可以得到右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4每个时刻的转矩范围;
S4:对设计变量进行优化,其具体的优化流程如下:
S4-1:初始化粒子群优化算法参数,包括:最大迭代次数Tmax、粒子数目m、权重系数ωmax和ωmin、加速系数c1,ini、c2,ini、c1,fin和c2,fin,将当前优化代数设置为t=1(t≤Tmax),在四维空间中,随机产生m个粒子x1,x2,...,xi,...,xm,构成种群X(t),随机产生各粒子初始速度v1,v2,...,vi,...,vm,构成种群V(t),其中第i个粒子的位置为xi=(xi,1,xi,2,xi,3,xi,4),速度为vi=(vi,1,vi,2,vi,3,vi,4),xi,1表示第i个粒子第k时刻左前轮毂电机转矩Tm1(k)i大小,xi,2表示第i个粒子第k时刻右前轮毂电机转矩Tm2(k)i大小,xi,3表示第i个粒子第k时刻左后轮毂电机转矩Tm3(k)i大小,xi,4表示第i个粒子第k时刻右后轮毂电机转矩Tm4(k)i大小;
S4-2:通过公式(1)计算第i个粒子第k时刻的左前轮毂电机的实时输入输出功率:
Figure BDA0002268197540000081
其中,Pin,1(k)i为第i个粒子第k时刻的左前轮毂电机实时输入功率;Pout,1(k)i为第i个粒子第k时刻的左前轮毂电机实时输出功率;U1(k)i为第i个粒子第k时刻的左前轮毂电机输入端母线电压;I1(k)i为第i个粒子第k时刻的左前轮毂电机输入端母线电流;n1(k)i为第i个粒子第k时刻左前轮毂电机的转速;ψ1为第i个粒子第k时刻的左前轮毂电机的转矩分配系数,
Figure BDA0002268197540000082
通过公式(2)计算第i个粒子第k时刻的右前轮毂电机的实时输入输出功率为:
Figure BDA0002268197540000083
其中,Pin,2(k)i为第i个粒子第k时刻的右前轮毂电机实时输入功率;Pout,2(k)i为第i个粒子第k时刻的右前轮毂电机实时输出功率;U2(k)i为第i个粒子第k时刻的右前轮毂电机输入端母线电压;I2(k)i为第i个粒子第k时刻的右前轮毂电机输入端母线电流;n2(k)i为第i个粒子第k时刻的右前轮毂电机的转速;ψ2为第i个粒子第k时刻右前轮毂电机的转矩分配系数,
Figure BDA0002268197540000091
通过公式(3)计算计算第i个粒子第k时刻的左后轮毂电机的实时输入输出功率为:
Figure BDA0002268197540000092
其中,Pin,3(k)i为第i个粒子第k时刻的左后轮毂电机实时输入功率;Pout,3(k)i为第i个粒子第k时刻的左后轮毂电机实时输出功率;U3(k)i为第i个粒子第k时刻的左后轮毂电机输入端母线电压;I3(k)i为第i个粒子第k时刻的左后轮毂电机输入端母线电流;n3(k)i为第i个粒子第k时刻的左后轮毂电机的转速;ψ3为第i个粒子第k时刻左后轮毂电机的转矩分配系数,
Figure BDA0002268197540000093
通过公式(4)计算计算第i个粒子第k时刻的右后轮毂电机的实时输入输出功率为:
Figure BDA0002268197540000094
其中,U4(k)i为第i个粒子第k时刻的右后轮毂电机输入端母线电压;I4(k)i为第i个粒子第k时刻的右后轮毂电机输入端母线电流;n4(k)i为第i个粒子第k时刻的右后轮毂电机的转速;ψ4为第i个粒子第k时刻右后轮毂电机的转矩分配系数,
Figure BDA0002268197540000095
S4-3:通过公式(5)计算第i个粒子第k时刻的电机系统实时效率η(k)i的倒数:
Figure BDA0002268197540000096
S4-4:将公式(5)作为适应度函数,将得到的第i个粒子第k时刻的电机系统实时效率η(k)i的倒数作为适应度值大小来评价每个粒子的好坏,存储当前各粒子的最佳位置pbest和与之对应的电机系统效率的倒数,并将种群中适应值最优的粒子作为整个种群中的最佳位置gbest;
S4-5:通过公式(6)和(7)更新粒子的速度和位置,产生新的种群X(t+1):
vi,j(t+1)=ωvi,j(t)+c1r1[pi,j-xi,j(t)]+c2r2[pg,j-xi,j(t)] (6)
xi,j(t+1)=xi,j(t)+vi,j(t+1) (7)
其中,i=1,2,...,m;j=1,2,3,4;vi,j为第i个粒子的当前速度;ω表示惯性权重系数;c1和c2表示正的加速系数;r1和r2为0到1之间的随机数;pi,j表示第i个例子迄今找到的最佳位置pbest;pg,j是整个粒子群搜索到的最佳位置gbest;xi,j为第i个粒子的当前位置;
S4-6:采用公式(8)更新优化算法的权重系数:
Figure BDA0002268197540000101
其中,ωmax和ωmin分别为惯性权重系数的最大值和最小值;f表示粒子当前的适应度值大小;favg表示当前所有粒子的平均适应度值大小;fmin表示当前所有粒子的最小适应度值;
S4-7:采用公式(9)和(10)更新加速系数c1,ini、c2,ini、c1,fin和c2,fin
Figure BDA0002268197540000102
Figure BDA0002268197540000103
其中,c1,ini和c2,ini分别为c1和c2的迭代初始值;c1,fin和c2,fin分别为c1和c2的迭代最终值;
S4-8:更新粒子的pbest和gbest;
S4-9:判断当前优化代数t是否等于Tmax,若为是则停止计算,则输出适应度值
Figure BDA0002268197540000104
最小的粒子vi,即将第k时刻实时总效率η(k)i最高的粒子vi作为所求结果,并根据对应的Tm1(k)i、Tm2(k)i、Tm3(k)i和Tm4(k)i分别控制所述左前轮毂电机、右前轮毂电机、左后轮毂电机和右后轮毂电机,通过公式(11)计算四个电机的转矩之和Tm(k)i,然后结束流程;如果t<Tmax,则另t=t+1,并返回步骤S4-5继续搜索。
Tm(k)i=ψ1×Tm1(k)i2×Tm2(k)i3×Tm3(k)i4×Tm4(k)i。 (11)
本实施例中分布式动力系统模型由四台轮毂电动机构成,四台电动机的能量来自车载动力电池组。因此,动力电池组剩余电量直接影响四台驱动电机输出转矩大小,定义电机转矩分配系数ψ的计算公式为ψ=ψ1234,其中
Figure BDA0002268197540000111
Figure BDA0002268197540000112
上述基于自适应异步变化的粒子群算法分配的优点之一是不需要知道控制对象的任何参数,获得的优化结果是综合了电机、逆变器等各个部件因素的结果,获得最优结果。

Claims (10)

1.一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,是基于四轮轮毂驱动电动系统实现的,所述四轮轮毂驱动电动系统包括动力电池组、左前轮轮毂电机、右前轮轮毂电机、左后轮轮毂电机、右后轮轮毂电机、左前轮轮毂电机控制器、右前轮轮毂电机控制器、左后轮轮毂电机控制器、右后轮轮毂电机控制器和整车控制器;
所述左前轮轮毂电机与左前车轮机械连接,所述右前轮轮毂电机与右前车轮机械连接,所述左后轮轮毂电机与左后车轮机械连接,所述右后轮轮毂电机与右后车轮机械连接,所述左前轮轮毂电机与左前轮轮毂电机控制器电气连接,所述右前轮轮毂电机与右前轮轮毂电机控制器电气连接,所述左后轮轮毂电机与左后轮轮毂电机控制器电气连接,所述右后轮轮毂电机与右后轮轮毂电机控制器电气连接;所述动力电池组分别与左前轮轮毂电机控制器、右前轮轮毂电机控制器、左后轮轮毂电机控制器和右后轮轮毂电机控制器电气连接,整车控制器分别与左前轮轮毂电机控制器、右前轮轮毂电机控制器、左后轮轮毂电机控制器、右后轮轮毂电机控制器和动力电池组电气连接;
四轮轮毂驱动电动汽车工况可以分为直线行驶工况和转弯工况,其特征在于:当处于直线行驶工况时,采用自适应异步变化的粒子群算法进行能效优化控制,包括如下步骤:
S1:确定优化设计变量:
设计变量一共包括四个参数,分别为:左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4
S2:确定优化设计目标:系统为单目标优化,优化目标为四轮轮毂驱动电动汽车实时总效率最高;
S3:确定优化限制条件;
S4:对设计变量进行优化,其具体的优化流程如下:
S4-1:初始化粒子群优化算法参数,包括:最大迭代次数Tmax、粒子数目m、权重系数ωmax和ωmin、加速系数c1,ini、c2,ini、c1,fin和c2,fin,将当前优化代数设置为t=1(t≤Tmax),在四维空间中,随机产生m个粒子x1,x2,...,xi,...,xm,构成种群X(t),随机产生各粒子初始速度v1,v2,...,vi,...,vm,构成种群V(t),其中第i个粒子的位置为xi=(xi,1,xi,2,xi,3,xi,4),速度为vi=(vi,1,vi,2,vi,3,vi,4),xi,1表示第i个粒子第k时刻左前轮毂电机转矩Tm1(k)i大小,xi,2表示第i个粒子第k时刻右前轮毂电机转矩Tm2(k)i大小,xi,3表示第i个粒子第k时刻左后轮毂电机转矩Tm3(k)i大小,xi,4表示第i个粒子第k时刻右后轮毂电机转矩Tm4(k)i大小;
S4-2:分别计算左前轮轮毂电机、右前轮轮毂电机、左后轮轮毂电机、右后轮轮毂电机在第k时刻的实时输入输出功率;
S4-3:根据步骤S4-2的计算结果计算第i个粒子第k时刻的电机系统实时效率η(k)i的倒数;
S4-4:将得到的第i个粒子第k时刻的电机系统实时效率η(k)i的倒数作为适应度值大小来评价每个粒子的好坏,存储当前各粒子的最佳位置pbest和与之对应的电机系统效率的倒数,并将种群中适应值最优的粒子作为整个种群中的最佳位置gbest;
S4-5:更新粒子的速度和位置,产生新的种群X(t+1);
S4-6:更新优化算法的权重系数;
S4-7:更新加速系数;
S4-8:更新粒子的pbest和gbest;
S4-9:判断当前优化代数t是否等于Tmax,若为是则停止计算,则输出适应度值
Figure FDA0002268197530000021
最小的粒子vi,即将第k时刻实时总效率η(k)i最高的粒子vi作为所求结果,并根据对应的Tm1(k)i、Tm2(k)i、Tm3(k)i和Tm4(k)i分别控制所述左前轮毂电机、右前轮毂电机、左后轮毂电机和右后轮毂电机,计算四个电机的转矩之和Tm(k)i,然后结束流程;如果t<Tmax,则另t=t+1,并返回步骤S4-5继续搜索。
2.根据权利要求1所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S3中优化限制条件为左前轮轮毂电机转矩Tm1,右前轮轮毂电机转矩Tm2,左后轮轮毂电机转矩Tm3,右后轮轮毂电机转矩Tm4的工作范围。
3.根据权利要求1所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-2中通过公式(1)计算第i个粒子第k时刻的左前轮毂电机的实时输入输出功率:
Figure FDA0002268197530000022
其中,Pin,1(k)i为第i个粒子第k时刻的左前轮毂电机实时输入功率;Pout,1(k)i为第i个粒子第k时刻的左前轮毂电机实时输出功率;U1(k)i为第i个粒子第k时刻的左前轮毂电机输入端母线电压;I1(k)i为第i个粒子第k时刻的左前轮毂电机输入端母线电流;n1(k)i为第i个粒子第k时刻左前轮毂电机的转速;ψ1为第i个粒子第k时刻的左前轮毂电机的转矩分配系数,
Figure FDA0002268197530000031
通过公式(2)计算第i个粒子第k时刻的右前轮毂电机的实时输入输出功率为:
Figure FDA0002268197530000032
其中,Pin,2(k)i为第i个粒子第k时刻的右前轮毂电机实时输入功率;Pout,2(k)i为第i个粒子第k时刻的右前轮毂电机实时输出功率;U2(k)i为第i个粒子第k时刻的右前轮毂电机输入端母线电压;I2(k)i为第i个粒子第k时刻的右前轮毂电机输入端母线电流;n2(k)i为第i个粒子第k时刻的右前轮毂电机的转速;ψ2为第i个粒子第k时刻右前轮毂电机的转矩分配系数,
Figure FDA0002268197530000033
通过公式(3)计算计算第i个粒子第k时刻的左后轮毂电机的实时输入输出功率为:
Figure FDA0002268197530000034
其中,Pin,3(k)i为第i个粒子第k时刻的左后轮毂电机实时输入功率;Pout,3(k)i为第i个粒子第k时刻的左后轮毂电机实时输出功率;U3(k)i为第i个粒子第k时刻的左后轮毂电机输入端母线电压;I3(k)i为第i个粒子第k时刻的左后轮毂电机输入端母线电流;n3(k)i为第i个粒子第k时刻的左后轮毂电机的转速;ψ3为第i个粒子第k时刻左后轮毂电机的转矩分配系数,
Figure FDA0002268197530000035
通过公式(4)计算计算第i个粒子第k时刻的右后轮毂电机的实时输入输出功率为:
Figure FDA0002268197530000036
其中,U4(k)i为第i个粒子第k时刻的右后轮毂电机输入端母线电压;I4(k)i为第i个粒子第k时刻的右后轮毂电机输入端母线电流;n4(k)i为第i个粒子第k时刻的右后轮毂电机的转速;ψ4为第i个粒子第k时刻右后轮毂电机的转矩分配系数,
Figure FDA0002268197530000037
4.根据权利要求3所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-3中通过公式(5)计算第i个粒子第k时刻的电机系统实时效率η(k)i的倒数:
Figure FDA0002268197530000041
5.根据权利要求4所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-4中将公式(5)作为适应度函数,将计算得到的第k时刻的电机系统效率的倒数作为适应度值大小来评价每个粒子的好坏。
6.根据权利要求1所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-5中通过公式(6)和(7)更新粒子的速度和位置,产生新的种群X(t+1):
vi,j(t+1)=ωvi,j(t)+c1r1[pi,j-xi,j(t)]+c2r2[pg,j-xi,j(t)] (6)
xi,j(t+1)=xi,j(t)+vi,j(t+1) (7)
其中,i=1,2,...,m;j=1,2,3,4;vi,j为第i个粒子的当前速度;ω表示惯性权重系数;c1和c2表示正的加速系数;r1和r2为0到1之间的随机数;pi,j表示第i个例子迄今找到的最佳位置pbest;pg,j是整个粒子群搜索到的最佳位置gbest;xi,j为第i个粒子的当前位置。
7.根据权利要求1所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-6中采用公式(8)更新优化算法的权重系数:
Figure FDA0002268197530000042
其中,ωmax和ωmin分别为惯性权重系数的最大值和最小值;f表示粒子当前的适应度值大小;favg表示当前所有粒子的平均适应度值大小;fmin表示当前所有粒子的最小适应度值。
8.根据权利要求1所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-7中采用公式(9)和(10)更新加速系数c1,ini、c2,ini、c1,fin和c2,fin
Figure FDA0002268197530000043
Figure FDA0002268197530000051
其中,c1,ini和c2,ini分别为c1和c2的迭代初始值;c1,fin和c2,fin分别为c1和c2的迭代最终值。
9.根据权利要求4所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述步骤S4-9中通过公式(11)计算四个电机的转矩之和Tm(k)i
Tm(k)i=ψ1×Tm1(k)i2×Tm2(k)i3×Tm3(k)i4×Tm4(k)i。 (11)
10.根据权利要求3所述的一种基于自适应异步粒子群算法的分布式驱动电动汽车能效优化控制方法,其特征在于:所述电机转矩分配系数ψ的计算公式为ψ=ψ1234,其中
Figure FDA0002268197530000052
Figure FDA0002268197530000053
Figure FDA0002268197530000054
CN201911095467.8A 2019-11-11 2019-11-11 一种自适应异步粒子群的分布式驱动汽车能效控制方法 Withdrawn CN110929335A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911095467.8A CN110929335A (zh) 2019-11-11 2019-11-11 一种自适应异步粒子群的分布式驱动汽车能效控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911095467.8A CN110929335A (zh) 2019-11-11 2019-11-11 一种自适应异步粒子群的分布式驱动汽车能效控制方法

Publications (1)

Publication Number Publication Date
CN110929335A true CN110929335A (zh) 2020-03-27

Family

ID=69853792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911095467.8A Withdrawn CN110929335A (zh) 2019-11-11 2019-11-11 一种自适应异步粒子群的分布式驱动汽车能效控制方法

Country Status (1)

Country Link
CN (1) CN110929335A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111806248A (zh) * 2020-06-15 2020-10-23 江苏理工学院 分布式驱动车辆的转矩分配控制方法和系统
CN117681684A (zh) * 2024-02-01 2024-03-12 徐州徐工汽车制造有限公司 节能驱动转矩控制方法和装置、新能源车辆和存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111806248A (zh) * 2020-06-15 2020-10-23 江苏理工学院 分布式驱动车辆的转矩分配控制方法和系统
CN117681684A (zh) * 2024-02-01 2024-03-12 徐州徐工汽车制造有限公司 节能驱动转矩控制方法和装置、新能源车辆和存储介质
CN117681684B (zh) * 2024-02-01 2024-05-03 徐州徐工汽车制造有限公司 节能驱动转矩控制方法和装置、新能源车辆和存储介质

Similar Documents

Publication Publication Date Title
CN111553024B (zh) 一种分布式驱动电动汽车驱动系统多目标优化方法和系统
CN110395243B (zh) 一种cvt插电式四驱混合动力汽车的cvt速比优化及能量管理方法
CN110203075B (zh) 一种四轮轮毂电机车辆系统动力匹配方法
CN104760591B (zh) 混合动力综合控制系统
CN110834625A (zh) 一种自适应异步粒子群的双电耦合燃料电池汽车能效优化方法
CN113911101B (zh) 一种基于同轴并联式结构的在线能量分配方法
CN110929335A (zh) 一种自适应异步粒子群的分布式驱动汽车能效控制方法
CN112026531A (zh) 前后轴双电机驱动电动汽车的驱动扭矩分配方法及系统
CN108215747B (zh) 基于纯电动汽车的双电机布置和凸优化算法的转矩优化方法
CN110834624B (zh) 一种自适应遗传算法的全混动汽车能效优化控制方法
CN110837679A (zh) 一种基于自适应遗传算法的分布式驱动汽车能效优化方法
CN108583293B (zh) 新能源汽车的制动回馈扭矩分配方法及其四驱控制系统
CN117465412A (zh) 基于能量流效率最优的混合动力车辆在线能量管理方法
CN111688497B (zh) 电动汽车电池高荷电状态下回馈制动系统及控制方法
CN111055694B (zh) 一种基于规则的四轮分布式驱动转矩分配方法
CN105774504A (zh) 一种动力驱动系统及汽车
CN105667346A (zh) 一种三电机混合驱动载货汽车及动力系统参数匹配方法
CN110816514B (zh) 一种基于多模式切换的轮毂电机驱动车辆控制方法及系统
CN117021977A (zh) 一种多轮独立电驱动车辆驱动力集成控制策略生成方法
CN110816291B (zh) 一种二阶振荡粒子群的分布式驱动汽车能效优化控制方法
CN110834548B (zh) 一种顺序选择遗传算法的分布式驱动汽车能效优化方法
CN110901628B (zh) 一种二阶振荡粒子群算法的全混动汽车能效优化方法
Huynh et al. Development of Torque-Speed Control Algorithms For Power-Split Hybrid Electric Vehicle
CN110941875A (zh) 一种自适应异步粒子群的全混动汽车能效优化控制方法
CN109515429A (zh) 一种商用车串联式气电混合动力系统的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200327

WW01 Invention patent application withdrawn after publication