CN110923229B - CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application - Google Patents

CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application Download PDF

Info

Publication number
CN110923229B
CN110923229B CN201910878588.3A CN201910878588A CN110923229B CN 110923229 B CN110923229 B CN 110923229B CN 201910878588 A CN201910878588 A CN 201910878588A CN 110923229 B CN110923229 B CN 110923229B
Authority
CN
China
Prior art keywords
dmrt
grna
sequence
target site
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910878588.3A
Other languages
Chinese (zh)
Other versions
CN110923229A (en
Inventor
李石竹
卢建国
方文宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201910878588.3A priority Critical patent/CN110923229B/en
Publication of CN110923229A publication Critical patent/CN110923229A/en
Application granted granted Critical
Publication of CN110923229B publication Critical patent/CN110923229B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a CRISPR/Cas9 system for knocking out a dmrt1 gene from double gRNA sites in pelteobagrus fulvidraco, wherein the CRISPR/Cas9 system comprises the following steps: (1) the target site 1 is designed on the first exon of the pelteobagrus fulvidraco dmrt1 gene, and the target site 2 is designed on the third exon; (2) designing a primer to detect the accuracy of the target site in the parent fish according to the target site sequence in step (1), amplifying the target site 1 and the nearby sequence by using dmrt 1E 1F and dmrt 1E 1R, and amplifying the target site 2 and the nearby sequence by using dmrt 1E 3F and dmrt 1E 3R; (3) using pUC19-gRNA-scaffold plasmid as template, performing PCR amplification of gRNA1 fragment with dmrt 1E 1gRNA F and gRNA R, and performing PCR amplification of gRNA2 fragment with dmrt 1E 3 gRNA F and gRNA R; taking the PCR product as a template, and carrying out in-vitro transcription and purification to obtain gRNA; (4) in vitro transcription synthesis of Cas9mRNA by using pXT7-hCas9 linearized plasmid as a template; (5) micro-injecting Cas9mRNA and two gRNAs into a pseudobagrus fulvidraco one-cell-stage embryo; (6) and detecting the mutation type and calculating the gene editing rate.

Description

CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application
Technical Field
The invention relates to the fields of biotechnology and genetic breeding, in particular to a CRISPR/Cas9 system for knocking out a dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application thereof.
Background
Pelteobagrus fulvidraco (Pelteobagrus fulvidraco) belongs to Osteichthyes, Clariales, Pseudobagriaceae and Pelteobagrus, and is one of important freshwater economic breeding fishes in China. The growth speed of the male fish of the pelteobagrus fulvidraco is 2-3 times that of the female fish. In recent years, the cultivation of full-orpiment catfishes is promoted in China, but with the rapid development of the cultivation industry of the catfishes, some problems occur in succession, for example, the supply of YY super-male fishes for producing full-male seedlings is short and the price is high; in addition, due to the serious close breeding phenomenon, the germplasm of the pelteobagrus fulvidraco is degraded, the growth speed is reduced, the disease resistance and stress resistance are reduced, and the like. The sustainable development of the yellow catfish breeding industry is severely restricted, so that the existing germplasm of the yellow catfish needs to be purified and rejuvenated urgently, and pure super-male fish and full-female fish with excellent genetic traits are bred.
Understanding the sex determination and differentiation of pelteobagrus fulvidraco and the reproductive regulation mechanism are the basis for artificial sex control breeding. The Dmrt (ble-sex and Mab-3 related transcription factor) gene family contains the consensus sequences of Drosophila's sex-determining gene Dsx and nematode sex-determining gene Mab-3, which encode proteins with zinc finger DNA binding motifs (DM domains) that are an ancient and conserved component of vertebrate sex-determining pathways. At least 8 members of the Dmrt gene family are currently found in a number of species, mammals, birds, fish, reptiles, and amphibians, and Dmrt1 is the most and representative gene among them that has been studied, and plays an important role in the differentiation and development of sex.
The gene editing technology is an important technical means in the field of life science, and the gene function research, disease research and treatment, drug development and the like are accelerated by editing the genome sequence of a specific target gene. Currently, commonly used gene editing technologies mainly include a Zinc-finger nuclease (ZFN) technology, a transcription activator-like effector nuclease (TALEN) technology, and a regularly clustered short interspersed palindromic repeats (CRISPR) system nuclease technology. The first two techniques rely on the DNA binding protein module for DNA sequence recognition, and are relatively complex, time-consuming and expensive in design. The CRISPR technology is used for mediating the recognition of DNA through guide RNA (gRNA), has simple design, high efficiency and low cost, and is widely applied to multiple species.
The full length 18952bp of the pelteobagrus fulvidraco dmrt1 gene comprises 5 exons and 4 introns, and how to select a proper target point makes the whole gene nonfunctional and a phenotype easy to screen appear is the key for successfully obtaining the mutant. The traditional single target spot knockout is low in targeting efficiency, nonsense mutation is easily caused due to high uncertainty of DNA self-repair, deletion of a plurality of bases is not easy to identify, and a large amount of funds are often spent on sequencing identification.
Disclosure of Invention
In view of the above disadvantages, one of the purposes of the present invention is to provide a CRISPR/Cas9 system for knocking out the dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco, so as to obtain a mutant with high editing efficiency and easy screening, to study the effect of the dmrt1 gene on sex determination and differentiation of pelteobagrus fulvidraco, and to solve the problem of breeding a new pelteobagrus fulvidraco germplasm by genome editing.
In order to achieve the purpose, the technical scheme provided by the invention is as follows: a CRISPR/Cas9 system for knocking out a dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco, wherein the CRISPR/Cas9 system comprises the following steps:
(1) the target site 1 is designed on the first exon of the pelteobagrus fulvidraco dmrt1 gene, and the target site 2 is designed on the third exon;
(2) designing a primer to detect the accuracy of the target site in the parent fish according to the target site sequence in step (1), amplifying the target site 1 and the nearby sequence by using dmrt 1E 1F and dmrt 1E 1R, and amplifying the target site 2 and the nearby sequence by using dmrt 1E 3F and dmrt 1E 3R;
(3) using pUC19-gRNA-scaffold plasmid as template, performing PCR amplification of gRNA1 fragment with dmrt 1E 1gRNA F and gRNA R, and performing PCR amplification of gRNA2 fragment with dmrt 1E 3 gRNA F and gRNA R; taking the PCR product as a template, and carrying out in-vitro transcription and purification to obtain gRNA;
(4) in vitro transcription synthesis of Cas9mRNA by using pXT7-hCas9 linearized plasmid as a template;
(5) micro-injecting Cas9mRNA and two gRNAs into a pseudobagrus fulvidraco one-cell-stage embryo;
(6) and detecting the mutation type and calculating the gene editing rate.
The sequence of the target site 1 in the step (1) is a sequence shown as SEQ ID NO. 1; the sequence of the target site 2 is a sequence shown in SEQ ID NO. 2.
The sequence of the primer dmrt 1E 1F in the step (2) is shown as SEQ ID NO. 3; the sequence of the primer dmrt 1E 1R is a sequence shown in SEQ ID NO. 4; the sequence of the primer dmrt 1E 3F is the sequence shown in SEQ ID NO. 5; the sequence of the primer dmrt 1E 3R is shown as SEQ ID NO. 6.
The sequence of the primer dmrt 1E 1gRNA F in the step (3) is a sequence shown as SEQ ID NO. 7; the sequence of the primer dmrt 1E 3 gRNA F is a sequence shown in SEQ ID No. 8; the sequence of the primer gRNA R is a sequence shown in SEQ ID NO. 9.
The gRNA purification method in the step (3) is a LiCl precipitation method, and the method specifically comprises the following steps: adding 1ul of 0.5M EDTA into a gRNA in-vitro transcription system to terminate the reaction, adding 2.5ul of 4M LiCl and 75ul of precooled absolute ethyl alcohol to carry out precipitation, centrifuging and collecting a precipitate; adding 1mL of precooled 75% ethanol to clean the precipitate, centrifuging, collecting the precipitate, and removing the ethanol; 50ul of nucleic-free water was added to dissolve the gRNA precipitate, and the concentration was measured by Nanodrop and stored at-80 ℃.
The precipitation is specifically precipitation at-20 ℃ for 16h or precipitation at-80 ℃ for 2 h.
The centrifugation temperature is 4 ℃, and the centrifugation time is 15 min.
The step (5) is specifically as follows: cas9mRNA with the concentration of 600ng/ul and two gRNAs with the concentrations of 120ng/ul are mixed uniformly according to the volume of 2:1:1, and are injected into the embryo of the Pelteobagrus fulvidraco in the one-cell stage in a micro-injection mode, wherein the injection dosage is 1 nL.
The step (6) is specifically as follows: collecting 20 tail of the film-removed fry, and extracting genome DNA; amplifying a target site and a nearby sequence by PCR, directly sending a part of PCR products to Sanger for sequencing, and preliminarily detecting the gene editing effect according to a sequencing peak diagram; recovering and purifying the residual PCR product, connecting the PCR product with a PMD-18T vector, selecting positive single clone, sending the positive single clone to Sanger for sequencing, determining a specific mutation type according to a sequencing result, and predicting the change of an amino acid sequence; PCR amplifying the mutant and wild type genome with the pair of primers dmrt 1E 1F and dmrt 1E 3R, agarose gel electrophoresis detecting whether long fragment deletion mutation occurs; and calculating the gene editing efficiency.
The gene editing efficiency calculation formula is as follows: gene editing efficiency ═ 1- (1-a) × (1-b), where a is the mutation rate at target site 1 and b is the mutation rate at target site 2.
The second purpose of the invention is to provide the application of the CRISPR/Cas9 system for knocking out the dmrt1 gene at the double gRNA sites in the pelteobagrus fulvidraco in researching the effect of the dmrt1 gene on sex determination and differentiation of the pelteobagrus fulvidraco and molecular module breeding of high-quality parents of the pelteobagrus fulvidraco.
Compared with the prior art, the invention has the following advantages:
1. according to the invention, two gRNA target sites are designed aiming at the first exon and the third exon of the pelteobagrus fulvidraco, so that the knockout efficiency is very high.
2. The invention generates the mutant with deletion of long fragment of about 3kb, and the mutant can determine whether the knockout is successful only by PCR and agarose gel electrophoresis, thereby greatly reducing the subsequent identification cost.
3. The invention provides a mutant model for researching the function of the yellow catfish dmrt1 gene, and provides a new method for creating new germplasm of the yellow catfish; a yellow catfish microinjection system is established, and an effective technical means is provided for genome editing and breeding of the yellow catfish.
Drawings
FIG. 1 is a structural diagram of the target site of the molteobagrus fulvidraco dmrt1 gene;
FIG. 2 is a graph showing sequencing peaks near the target site of the dmrt1 gene in wild-type Pelteobagrus fulvidraco and the mutant;
FIG. 3 is a graph of mutation types to account for possible amino acid sequence changes;
FIG. 4 shows the result of PCR detection of deletion mutation of long fragment.
Detailed Description
The following claims are further defined and explained in connection with the detailed description of the invention, but are not to be construed as limiting the claims in any way.
Experimental reagent: the primers used in this example were synthesized by Guangzhou Tianyihui, and the Sanger sequencing involved was sent to Guangzhou Tianyihui for sequencing; the pXT7-hCas9 plasmid and the pUC19-gRNA scaffold plasmid were derived from the literature: chang N, Sun C, Gao L, et al, genome editing with RNA-guided Cas9 nucleic in zebrafish elements cell research,2013,23(4):465 Tissue DNA Extraction Kit Tissue DNA Kit and Gel recovery Kit Gel Extraction Kit from Omega; premix Taq for PCR amplification was purchased from Wuhan Pongziaceae; PCR product recovery Kit PCR clean Kit was purchased from Axygen; XbaI endonuclease and PMD-18T vector were purchased from Takara; the gRNA in vitro Transcription Kit, Transcription Aid T7 High Yield Transcription Kit, was purchased from Thermo; cas9mRNA in vitro transcription Kit mMESSAGE mMACHINE T7Kit was purchased from Invitrogen.
The full-length sequence of the yellow catfish dmrt1 gene is shown in SEQ ID NO. 10.
Example 1
Designing a target site:
the genome DNA sequence and the mRNA sequence of the pelteobagrus fulvidraco dmrt1 gene are inquired on NCBI, and the full length of the pelteobagrus fulvidraco dmrt1 gene is 18952bp, and comprises 5 exons and 4 introns. A target site is designed for each of the first exon and the third exon, the target site sequence is shown in Table 1, and the structure diagram of the target site is shown in FIG. 1. And (3) carrying out Blast comparison on the target point sequence on an NCBI website to verify the specificity of the target point.
The principle of target site selection:
A. the target site comprises 20 bases, wherein the 5' end should be GG, because the T7 promoter is adopted for the in vitro transcription of gRNA used in the invention, the first two bits of the transcription initiation site of the T7 promoter are required to be GG, and the third bit is preferably G or A.
B. The PAM region is composed of 3 bases immediately 3' to the target site, and the sequence is required to be NGG (N is an arbitrary base).
C. The target site is preferably chosen in the first 2/3 region of the gene CDS and after the ATG, but not in the last exon, and is preferably disrupted for important domains.
D. The target site may also be selected at the junction of an exon and an intron to disrupt splicing of the gene.
TABLE 1 target site sequence of Pelteobagrus fulvidraco dmrt1 gene
Figure BDA0002205143500000051
Step (2) target site confirmation:
a. for parent fish for artificial breeding, tail fins were cut, and genomic DNA was extracted using Tissue DNA Kit from Omega.
b. Designing a detection primer according to the principle: the forward primer and the reverse primer are both more than 100bp away from the target site; the PCR product is a single band and preferably does not exceed 500 bp. The PCR reaction system is shown in Table 2, the PCR reaction conditions are shown in Table 3, and the primer sequences are shown in Table 4, wherein dmrt 1E 1F and dmrt 1E 1R are used for amplifying the target site 1 (on the first exon) and the nearby sequences, and dmrt 1E 3F and dmrt 1E 3R are used for amplifying the target site 2 (on the third exon) and the nearby sequences.
Table 2.PCR reaction system:
2x PCR mix 25ul
forward primer 1ul
Reverse primer 1ul
Genomic DNA 1ul
Sterilized water 22ul
Total volume 50ul
Table 3 PCR reaction conditions:
Figure BDA0002205143500000061
TABLE 4 primer information used in the experiments
Figure BDA0002205143500000062
Figure BDA0002205143500000071
Synthesizing gRNA:
a. gRNA primers were designed and synthesized, and PCR amplification was performed using pUC19-gRNA-scaffold plasmid as a template, with the PCR reaction system and the PCR reaction conditions shown in Table 5 and Table 6, respectively. Primer sequences are shown in table 4, wherein, dmrt 1E 1gRNA F and gRNA R are used for amplification of gRNA1, and dmrt 1E 3 gRNA F and gRNA R are used for amplification of gRNA 2. The base sequence of the front 17 th site of the forward primer is a T7 promoter, the base sequence of the front 18 th site to the front 37 th site is a gRNA target sequence, the base sequence of the front 38 th site to the front 57 th site is a pUC19-gRNA-scaffold plasmid upstream framework sequence, and the reverse primer sequence is a pUC19-gRNA-scaffold plasmid downstream framework sequence.
b. After the PCR product was detected by electrophoresis, Gel Extraction Kit (Omega Co.) was used to recover the Gel.
c. The gRNA was transcribed in vitro using the Transcript Aid T7 High Yield Transcription Kit from Thermo under the condition of RNA-free.
d. gRNA was purified by LiCl precipitation. The method comprises the following steps:
(1) the reaction was stopped by adding 1ul of 0.5M EDTA to the in vitro transcription system of the previous step.
(2) 2.5ul of 4M LiCl and 75ul of precooled absolute ethanol were added and precipitated at-20 ℃ overnight or at-80 ℃ for 2 hours.
(3) Centrifuge at 12000g for 15min at 4 ℃.
(4) The supernatant was discarded and 1mL of pre-cooled 75% ethanol was added to wash the pellet. Centrifugation was carried out at 4 ℃ and 10000g for 5 minutes.
(5) The supernatant was discarded, and the centrifuge tube was placed in a fume hood to volatilize ethanol.
(6) 50ul of Nuclear-free water was added to dissolve the gRNA precipitate.
(7) The concentration was measured by Nanodrop and stored at-80 ℃.
TABLE 5 PCR reaction System
Figure BDA0002205143500000072
Figure BDA0002205143500000081
TABLE 6 PCR reaction conditions
Figure BDA0002205143500000082
Step (4) synthesis of Cas9 mRNA:
a. digesting the plasmid pXT7-hCas9 by XbaI endonuclease, incubating for 5 hours at 37 ℃, taking 1ul of digested plasmid and undigested plasmid respectively, detecting whether the digestion reaction is complete by agarose gel electrophoresis, and if the migration rates of the digested plasmid and the undigested plasmid are completely different, indicating that the plasmids are completely linearized. The cleavage reaction system is shown in Table 7.
b. The digestion product was purified using the PCR clean Kit from Axygen to obtain linearized plasmid pXT7-hCas 9.
c. Cas9mRNA was transcribed and recovered in vitro using the mMESSAGE mMACHINE T7Kit from Invitrogen under RNA-free conditions.
TABLE 7 digestion system
10x reaction Buffer 5ul
BSA 5ul
XbaI 2ul
pXT7-hCas9 plasmid 30ul
Sterilized water 8ul
Total volume 50ul
Step (5), microinjection of pelteobagrus fulvidraco embryos:
cas9mRNA and two gRNAs (dmrt1gRNA1 and dmrt1gRNA2) were mixed at final concentrations of 300 ng/. mu.l, 30 ng/. mu.l, and 30 ng/. mu.l. About 1nL of the mixture was microinjected into embryos of the pelteobagrus fulvidraco in one-cell stage.
The artificial breeding method of the yellow catfish comprises the following steps:
firstly, artificially hastening parturition. The artificial oxytocic of the yellow catfish is generally divided into two needles to inject oxytocic hormone, the needle pitch is 10 to 12 hours, and the hormone is dissolved by medical normal saline and then injected. First injection ripening: injecting luteinizing hormone releasing hormone analog (LHRH-A2)15-20ug per kilogram female fish; and (3) hastening parturition by a second needle: LHRH-A215 ug, Deodourone (DOM)10mg and Human Chorionic Gonadotropin (HCG)800 International units were injected per kg of female fish. The male fish were injected with a second needle at doses 1/3 to 1/2 of the female fish. The temperature of parent fish induced spawning water is preferably controlled between 28 ℃ and 29 ℃, and the induced spawning effect time is generally 15 to 30 hours.
And secondly, artificial insemination. Preparing a clean anhydrous glass culture dish, grasping the female fish with the left hand, wiping water and mucus on the fish body, slightly pressing the belly of the female fish with the thumb of the right hand, and extruding the roe into the culture dish from the genital hole; killing male fish, taking out spermary, cutting with clean scissors, adding 2mL of physiological saline for dilution, collecting into a clean EP tube, and keeping in dark at 4 ℃; 50ul of semen was added to the petri dish containing the roe, and stirred with clean feathers for 30 seconds to allow the semen to be in full contact with the roe, and then spread in a glass dish containing clean saturated water. After five minutes, the fertilized eggs were stuck on a glass dish and washed several times with saturated air water. Twenty minutes later, the embryo develops to the first cell stage, microinjection is started, and the embryo develops to the second cell stage, and the microinjection is stopped, wherein the microinjection can be carried out in about 30 minutes.
And (6) detecting mutation types, and calculating the gene editing rate:
a. and (3) hatching the fertilized eggs in a water body at 28 ℃, taking out the fertilized eggs from the membrane after about 72 hours, collecting 20 tails of the small fish fries with the membrane, extracting genome DNA, and adopting Tissue DNA Kit of Omega company.
b. The genomic DNA was subjected to PCR amplification using two primer pairs, dmrt 1E 1F, dmrt 1E 1R, dmrt 1E 3F and dmrt 1E 3R, respectively. The PCR reaction system and the PCR reaction conditions are shown in Table 8 and Table 9, respectively.
TABLE 8 PCR reaction System
2x PCR mix 25ul
Forward primer 1ul
Reverse primer 1ul
Genomic DNA 1ul
Sterilized water 22ul
Total volume 50ul
TABLE 9 PCR reaction conditions
Figure BDA0002205143500000101
c. After the PCR product is detected by agarose gel electrophoresis, one part of the PCR product is directly sent to Sanger for sequencing, and the gene editing effect is preliminarily detected. As shown in FIG. 2, the sequencing peak pattern shows a nested peak after the target site, which indicates that insertion or deletion mutation occurs, and the gene editing is proved to be effective preliminarily.
d. The remaining PCR product was recovered and purified using the PCR clean Kit from Axygen. The purified product was ligated with PMD-18T vector overnight at 4 ℃ (ligation is shown in table 10), transformed into competent cells, plated, single clones were picked, positive clones were PCR detected, 20 positive clones were selected for Sanger sequencing, mutation patterns were statistically calculated and amino acid sequence changes that may result are shown in fig. 3.
The specific conversion steps are as follows: the ligation product was mixed with 50ul of competent cells and placed on ice for 20 min to mix well; after being heated in water bath at 42 ℃ for 90 seconds, the mixture is quickly placed on ice; adding 800ul of precooled non-resistant LB culture medium, and incubating for 50 minutes at 37 ℃ by a shaking table; centrifuging at 4000g for 2 minutes, discarding redundant supernatant, reserving about 100ul of supernatant, and resuspending the precipitate; ampicillin-resistant plates were evenly coated with the bacterial suspension and cultured at 37 ℃ for 16 hours.
TABLE 10 connection system
Solution I 5ul
PMD-18T carrier 0.5ul
Purified DNA 4.5ul
Total volume 10ul
e. The genome in step (6) a was PCR amplified using the pair of primers dmrt 1E 1F and dmrt 1E 3R, and agarose gel electrophoresis was performed, as shown in FIG. 4, the mutant detected a band of about 400bp, while the wild type did not detect it, indicating that a long fragment deletion mutation may occur. The PCR product was recovered and purified, and subjected to Sanger sequencing, and the sequencing result was aligned with the genomic sequence of dmrt1, whereby it was found that the genomic sequence of about 3kb including the intron was deleted between the two target sites.
f. Calculating the gene editing efficiency, wherein the calculation formula is as follows: the gene editing efficiency is 1- (1-a) × (1-b), wherein a is the mutation rate of the target site 1 of 62.5%, and b is the mutation rate of the target site 2 of 83.3%, so the editing efficiency of the gene of the Pelteobagrus fulvidraco dmrt1 knocked out by adopting the invention is 93.75%.
Sequence listing
<110> Zhongshan university
<120> CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ggagcgccag cgcgtcatgg 20
<210> 2
<211> 20
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gggctctgct gacatggtgg 20
<210> 3
<211> 22
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
acagcgcctc accaatgtcc tt 22
<210> 4
<211> 26
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
atacattgtt tggctaacgt gaccgt 26
<210> 5
<211> 25
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gactctgatt ccctgagctt ttagg 25
<210> 6
<211> 26
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ctgagagtgt accgaatatg tatgac 26
<210> 7
<211> 57
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
taatacgact cactatagga gcgccagcgc gtcatgggtt ttagagctag aaatagc 57
<210> 8
<211> 57
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
taatacgact cactataggg ctctgctgac atggtgggtt ttagagctag aaatagc 57
<210> 9
<211> 20
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
aaaagcaccg actcggtgcc 20
<210> 10
<211> 18952
<212> DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gcacgaggtt gtagagatga gcgacgacga gcaaagcaag cagccgtttt tagacagcgc 60
ctcaccaatg tccttggttt tggggggcaa aaaacagcct cgaatgccga aatgctcccg 120
ctgcaggaac cacggcttcg tctcgcctct gaagggccac aagcgcttct gtaactggcg 180
ggattgtcag tgccagaagt gcaaactgat agcggagcgc cagcgcgtca tggcggctca 240
ggtagctaag ttaagctagc tatccttcac tcacctcaaa acgtccatta atgctgtata 300
atcaacactt agactctttt ttgtttattt atttatacat ttatgtatat acatattttt 360
taaaaacaaa ctaaaacaaa atattactac ttgtttcttg tttgttagtg tttgttaatc 420
gaaattgcta gtttttaacg gtcacgttag ccaaacaatg tatttatata ttaacgtatc 480
gaattgtatc cctttgtaaa ccaagtcgaa aacactttca gacttctgtt aattcatatg 540
ttagctcgtt aaactaaagt aacggataag taactaagta cgttgtttat tttaggatac 600
agtgctttag ctacagtgtt acagggtttt tagctgttgt atagcaggtg tattgcgtag 660
tggagcagaa ataaacacat cacggataaa ataaagttca gttttttaga caggacgtaa 720
gtgtaacatg taactaaacc tttattgaga ccaataatat atattgagtt aaaaaaataa 780
actaatcact atattttgtg tttttttttc aggtggccct caggcgtcag caggctcagg 840
aggaggagat gggcatctgc actccagtca acctgtcaga tccggacatt gtggtgaaaa 900
atgagcctgg aagtgattat ggctttgcaa tgggaacgag atcaccttca tccaccagca 960
atggatctgc ttcttctccc gctgcttctg gtgagatgaa ttacttgtaa ttcaaccaga 1020
tggagttggt aggaagtcca acacagtgat gatatgcact tgtttaaagc atattaggtt 1080
aaaaggtgtg tctaatttaa gtgctgtagt atgagataac aaaacaactg catgctcaaa 1140
cacatatgtt tataacacac tgtacacaca aacatcaaac aaatgtttat aaaacatagg 1200
tatgtgtgtt ataccttccc tgttgaacaa agctttagtc tcatggtatc ttaagtatgt 1260
accctagtga accggagtta atgtatccaa tgatagagac ttaagcactt ctgtacgttg 1320
cttttttttg tttttgttag tttttggtct ttcagtatgc atttctaatt gaaattatat 1380
gaagcacgaa agaaaaaata aagaaaaaaa atagcaaatg ctgttagata agagcttacg 1440
ttttttatac aggttatata aatatcaaat catcagtctt ggattttttt tgctaccagt 1500
atacaccagt tttattatca aaagttgtta tttttatttt tatttttttg tcaaactgag 1560
agtcaggaca gacggtagaa tgaatctgaa aggagaaaat aaacaattat gactgagcag 1620
cgtaattaat atcagggcac gtcttgagat cagaaaattt ttataaatgt gtttctcttg 1680
gcctattggt tgtctataag ttgtactttt ttgtacatat ttacattttg tgagatataa 1740
attaaaatta aagatgacat gataccattt taaagaaaac ttatcagctg gtgcttatac 1800
tgataaccaa cttacagtat attgctttgt ttaaaacacc tgtgctttaa aatatatgta 1860
atttattttg aatatttata ttttatataa atgtttatta tataatatat aaataatatt 1920
ttataaatat tatatttcaa tttatattta ctcttatatt ttatatttat agttttcagc 1980
tgcatgaata agattttttt tttgaaacct aattgttacc gaatctgatg ttttctctaa 2040
tgtctgatgt ctctttattt ttgctggaat cagacagaaa ctgatcctag gtatggggtg 2100
gtgcagtctc aaaatgctgt atgacaacac taagatattt tgctgaaata ttggtcatct 2160
tagaaccatt aataaaacag tagtatactt attttacttg ttattttttc atatgacaaa 2220
atctgaataa tataaagaat taagacaaga tctaaataat aataaataaa gaattatacc 2280
ttaataattg ttaactaaga cccttaaata tctcatagca catttcggca aatctaaata 2340
gggcacatat ggaaacacca aattcaccaa aactgaattt aggaggaatg ttaaatgaaa 2400
aagactccac tccctcacat agcaccataa gacaccttta acccacttaa cttgtgactc 2460
ttgagataat gtgtgtgtgt gtgtgtgttt gtgtaagtgt gtgttggggt ggtttaagta 2520
gaagcgtgac catggacagt ctgtactgat ctatccattc tccatttttg tgacccattc 2580
atactcgaac acaatacagt cagtgaggta ctctctttgt tttcagaaaa cacagggagg 2640
ggataatgga ggagcaacag tgcctgtaac attccgtcac tgaacatgtg cctatctcta 2700
attctagtga ttgtgccttg gcatgttggc caatcgtttt gatggctctc tggccagaga 2760
tgtagagtca agaagggtgg gagagagaca ggctgttcct gcttgtctga tagtactgtg 2820
ctaggaggga aatatcagcc cggtcaaggc tgcttaaatt tgatctgtgc tgctgtcatg 2880
ggacaataga gagcaaagtg gcacttgctg gtcatcttct gaaaccaggg catagacggc 2940
acattccaaa cctgcacatg agataaaatg ggaggtgaaa agataacaaa aagacagcaa 3000
tgacgcattg acgcattaac aaggaataat gcaggaatag tttaatagca gggtcactgg 3060
tatgtttcac cagcagatgg ggccataagc tatgacaaca ctgatcttca tcgcttgtaa 3120
aactgagaag acaaagatgg catggaattt atcataaaaa tttgaaatac atatattttt 3180
caaaatcttt tgaattgact ctgattccct gagcttttag gttgtgtaat tattcatgac 3240
caataaattc agtttacagt ggtttgaatg gctctgtaag tgtaagatgt gttgtttcag 3300
ggagtcgctc ttcattgtcg cagagcccca ctgcagccag caggggacac tctgagggct 3360
ctgctgacat ggtggtggat gcctcctact acaactttta tcagcctacc cgatacccag 3420
cgtactacag caatctctac aattatcaac agtaccaggt aacaacacac atatgcagtc 3480
acattataca ttagaaatgt catacatatt cggtacactc tcagaaatat aataataaac 3540
tatacctttg cttgtaggat agtgtatctt tcttactcat aatatactca cagtatcttt 3600
catctggaaa tttttttata gtgtaacttt ataagggtat ttttgttaca ttaaaagact 3660
gtaattaaaa agaaacataa aagaaaaata caaattagta actagattgt atattacatg 3720
cagcatttaa tctgtttgaa ttaagccctt ctgatacccc ctgcaaaata atgtgttaaa 3780
acagcagcaa catgatgttc ctacattgta agttttatat agtaatcatt gctgcagaag 3840
ccataaccat tctacatagt attaatagat tagaagtatt atagtcatgt aaaatgaatt 3900
aagatttggg gagttattgg tgggaatatg tttaccatta aacacagtgg ctgcacattt 3960
tatgcagagt gagtgaatag aattggttag ttaatagaac agtagtgttg acatgacttt 4020
gtgtctggtt tttccaatcc cacttaaaaa tccactccaa acaggaagga ttgctccata 4080
ttaactcaac agccatgaag tagaccacca tggtacactc attttcccac tcacctaagc 4140
tgtgtcttat gtggtccagc agaatgtggt aatgagctga ttaagtgggt tagagcgctt 4200
gtttatacgg gttcctgtca gtgaacccag ctgcctgttc taacttggct cggtggcaca 4260
gtgagcattt acgcatagtg cctgtcctcc cgttccgagc cagtggctga gtacagcaag 4320
gaaggtgtgt agtcttcatg ccacgctgtc tcttttacaa attgtttact ttaccatgct 4380
tcccccagtc ggaactgcaa ctaatgctgc cactgggagt tctctaaccc ttatccaagc 4440
catgcaattc cactgaattt tgccacctta agctactcag tttggcaaaa gattttaatg 4500
catatcttta aatgcttgag gtggagttga tattgctttt gttctctggt ctgttagact 4560
ggagctgcaa aagcttcaaa caggagaaaa atatcttact tgctttaaag atcagatatg 4620
tcctatacac gtaattttac tgacagggtt aggcagggtt acactcctta agtttgcaca 4680
ttttacacat gtaatgttaa tattttgtgt gtttctcaac accataaaaa ttccttgtat 4740
gtatgagcat atttggcaca tttggcaaat gaggcacatt ctgattaagt gttagattta 4800
taactatata taacatatac aaaatgccag caacttataa taagggattg tagtgaaact 4860
ggttcttatt tttaataggc tctgtgatat agagcaaaga cgagtgtttt cacaaggatg 4920
agtctggtgg agtaataatg gtattattaa taatgataat atatgtttta tatgaatagg 4980
ctgtaaaggt atgacatatg atcctccgat gtaggtagtg agatggacgt agatttgaat 5040
aagatcgtga tccatgtata taatgtttga agacagtttt tttccatcac tgtttaactg 5100
ctgtacaaca aataaagagc aggttcttgg ttctaagaat tctgtttatt tttattcact 5160
gacagttaca gtgatctaaa agctaaaggt gtctaacttc taattaaggc acaatttcca 5220
ttgcgttaca taatgttaaa ggtttccatt tactcatatt gaatcggaca atttgaaatt 5280
gagggcatcc tcaaagtcat ggcccttcag ctttgatatc ccatcaactt gagacacttt 5340
tattaacctt aatcaatcag ccaagatatc tctgacatat gaggcactgt tcacacggtg 5400
acatgattgt agtatggaga tcatcctgta tatttactct gatttatgtt ataaagtatc 5460
accattgtat cctggatgat ttatccatgt gtgaaataaa ttaaaccagt atttcttctg 5520
ggacttaaaa atgactggta tgtccatgtg ggctgttgat ggagccatat ttcattatgt 5580
atgtgcaata gggtgcctga cagcaacatc ctgcaccatg gtcactgctt tcgtcacact 5640
tctttgtgcc atttgaattg caaaggttaa tgatattgct atagtgtttc agcacgcttg 5700
aatactttaa tgttgatttc attatgcata atggcactac ctgctagatt gcaaggattt 5760
attttctcag catgttgcat tgtaaacaaa gatggaccag atctgagctg atgttgcttt 5820
ggtagaaccg atgtttctta ggtgttaaag ctgaagatac agtagtagcc ttaattttgc 5880
aagaccttat gttatgtggt gtttttagca ttcagcttta ccagtcagct gtagacattt 5940
aatttttgct attgtgggca tgacaaaagc tttgggtatg ttgcattcag cctgcgcatt 6000
catatttaag ttttatgaaa tcctcctact aaatcttatt aaatccattt ttaataatat 6060
gcatttcctt aagaatctaa tccgttacca tggtctacaa tccttaggtg ataggttgat 6120
agaaatcggt ttagcgttgc tgtaggggaa aagttagtga atgaagaaaa ttctccccag 6180
cttgtcttta tctaagcacg tccatctcct gccctctacc atctcaagca aacagggctg 6240
cgctgcactg caggtggaga atgaaaatat gagggtggcg tagaggatcc agatagctga 6300
tggtgccaga taagagccct ctgagggagg taagggagat gagccagccc ctattaatgg 6360
gtgctgcact gaagctttca cactaaatgt agcactgcac ccacacgtta atacacaatt 6420
gtaactttct tcctgttgaa agggaaagtc ggactttaac atatatacac aaataaattc 6480
ctacatgaat atgatgtaga gagatatgaa ttttcattat atatttgaaa gatttgtctt 6540
gtgcttaaac tgaacatatt acctttgtac atgagtgtga gaggtgtcaa atacaatact 6600
aatactaatg aatgagggca gtttaagacc atgaggccga attagtctgg caaaaaattg 6660
aattggatta acatgagcat tgaaatcgaa ctgtgcctta aacagtcatc ttcaattctt 6720
gttgtgacag atttcaaatg cttagccatg tgtatttctg ttttgcagtg catgtttcag 6780
tggagcatgt ccagaaatat acagttcatt tttttgttgt atttgtcata ggcaatagga 6840
gaagcccagt gtagattaaa taacagttta taaagctgtc tgggattgat ggggtgaaca 6900
ataaatggtg acatattact ggctgacaga aatcaaattc cataaagcta gaattgaaaa 6960
accctttaag ctgctttgtt gctgactaga cagctcattt taaagttctc acaagacggt 7020
agaaaattga cctgagatgt gttgctgttt attttgaggg aataacttat caggtctgag 7080
aagccaggtg agactcgtaa gggctgtaga ctatatcttg cgttttttat ttcatgatga 7140
gacatgtaca actttgtttt aaatagcagg cttgttttca gaatttctaa tttgtgttgc 7200
attgttttgt atgtactatg atcaagatgg cttttttttt ttaaaaataa aggtgatttg 7260
agttgatcgc ccttgtataa acatatacat atgagctcca gaattattgg caatcttgct 7320
taaataatgt ttgtgtgtta attagctgga tgtatcagag tattataatc aatatttgta 7380
aagtaaatct gacgtttgaa gtaaatctga attctaagaa aattttaaca gaacatagat 7440
aaacatgaat catatattta attaaactct atgcatcaca ataattggca cctaatcatg 7500
ttggcatttt atgtttcctt ctgccatcac aacagtactg agtcttattg tacaattgaa 7560
ttgagtcgaa gacatttgag aatacagagc aaggttctat aagatcacat cgtagtatag 7620
aattcagatc ctctagggtc ttactgtagg tcctttcttg tgatatgtcc tcttaaacac 7680
agtagacttt gatggccaac agctaagatc actgaaacat ttatacatgg aattcattgt 7740
atgcttagga tcactgtcat gttgaaagat ctacacatga cccagttgta atatcttggc 7800
agaggcacat tttcatttaa aatatctggg taattggtaa ctggtacttg accaagtata 7860
taagggtctg ttgagagaaa gaaaacagtg ccatagaacc tctgctataa ttgaaagcca 7920
ggattaggtt attttttata tatatacaca ttctttttta tgcagaaccc accactagat 7980
gttgttgcca aaaaagtctt atttgaccat agtacccagt ttcagtgagc atatttcatt 8040
tgcattttta ttgagaaata ctagggctgc tgtacattga catggattta ttctaaaata 8100
aattttaggt ggaataatta tggagataac tgtattcata tttcatattt ccagttctat 8160
taatcttaca acgtggtggg tgtttgtatg tctgtgtctg tacgtgaatc atttcacttt 8220
gaagcagatg cccagtggag atagccgcct gtccagccac aacatgtccc agcaataccg 8280
tatgcactcc tactattctg cagcttccta tcttagtcag ggcctgggca ctgctacctg 8340
catgccaccc attttcacca tggaggacaa taacatctgc cctgaggcca aaactgcagg 8400
tcagtgtctt catcattctt ctaccccttc ctcctttctc tctcacatac acacatgcca 8460
ataccactca caggcccata aagttttatc cagagtttat caacagcgtg cacaaagtac 8520
atctgaggga ggctcactct gcaagtcaag agcgccataa aattcacaca aataaataaa 8580
ttcaaaagta aaacttttat tatagctatt tgttcttagg ccttggaatt taaagtgaca 8640
tgagctgcat ttacaagtgc agaagtcaca cttttttaat actttagttt cttgttgcac 8700
ctatcataaa tgcacacaaa tgtctggttg atgaactgcc cagagcagct caatttatga 8760
acaaatgctt gagaagtgat gttgatcaac atcttgcaat cttttgtatt ttattagacc 8820
caatgttccc tcatctcttg aaagccttta cctgtttgtg ttcttgatga attttacatg 8880
ctgcttaccc atgagggtgc ctgtccccct gcactctcac tccagggtgt cctacgctcc 8940
attacagcac aaaagcactc cagtctgggt ggtctcaaaa cattgatatt aactacccag 9000
ttgctggagt gatggctgtt tcctgtgact agcattaaac aaataatatg aggcttgttt 9060
gcaccagtag taaaaaatcc agtgctcaac aaagtgatct ataaagatta aatccctttg 9120
aattacaaat tcaggctatt atagtttagt gtttagatga aaattattta ttgcaaattt 9180
tttatttact tatgaaaatc atcatacatt ttacacatcc agtatgcaca taggaaatgg 9240
catggtatct ggtcattgtt tgccacagaa gccagctaga taaccttcct aatgttagta 9300
atgcataatc tggctgtcat ggtataattt gacaggtgta gctattgtta aaaacccaca 9360
gagaatatga cagtatactt caaggcttat acggaaacct gtgacaaatt actaatttac 9420
aaaaattaac ttcacagcta gcatagaata tctggttgac actaccacat ttctagtttg 9480
cgtaatcatg tagtatttag aaaaaaatac aggtaaagag atgtcctatg ccctattaat 9540
tgttttgtct tgggctttaa aacacttaac atcgttggat tgactagatt ttagaattgt 9600
ccagaggtac tttgaataac cttttaggag attatactga ctcagacgat gagtattaca 9660
ggagtattat taaaataata agccgttttg tgcttgtctt ctcccatgct actctgttta 9720
gatggtctta tttggaatga catggccatg accttgcatg catggccagg ctggcatggc 9780
cagaaaaagg ctgttatctg caaacggttg ctgcctgttc tagtgtggtg cacatagatt 9840
tcacattctt tctatcatca ttattagtac agggtacagg cagtacaact aggcttgatt 9900
agctatttag attagattcc tgagcacagt tcacaagtta ttgcacaagc cgacaagaga 9960
ttatgttctg ttcactatgt ctatctatct atcgatctaa caatctgtca gtctgtctat 10020
tctatatttt ttagatggaa gacatttgag ttggagatca aaagatggat ttgagacaat 10080
agatcagatt ataagatttt attccctgat atatatgtaa aacaacaagg aaatttcacc 10140
ttttgtttga atccacccat ctgttgtcag atgatcaata atattggaac atatgacagg 10200
tatatcttgt tgcccagatg tgccctgtta aattgatcgt ttaaacaatt aacatttcga 10260
aggttagaga agagagatca ttgcacaagc attgtttaaa agatttaaat ggtgtaaata 10320
agtaacagtt cctctccaga tttaattttg atactgcaga aaacgtctga tctttggtcc 10380
ttaagatgta atgctcttgt aaacatatgt ctttctatga gaaggcttgt gagtgcccca 10440
tacacctgct gtgcctcctg tgctcccacc ctgcacaatg tgtatttatt tcccccttgc 10500
tctgtggagt ggtgagggtg gagtgggggg aagtaatcag ttggccaaat atgaggccaa 10560
ataaccttca agaatgccat gctgtccttt ctgagcagcc ctctctgccg gtgtctcggg 10620
aaaattgcct ctggggttag tgagcgggaa cagttaagat ttacaaacaa tgatgaagct 10680
tgtcatgcgt ctttctccat ccgtcacgag tggcggccct gccggggcgt ccaagtgttc 10740
ttcataaaag ccagctcgct gtgaaatacg cccctgtgcg cactttactg ccgcgggctc 10800
gtcagcagcg ctttgctgta aatctccacg ccactagtga caccacactc catcacccgc 10860
ctggggttgg cttacatcca ccccacatct ctctcccaac ccatcctcct gccccgtcat 10920
gctctgagat gatgtgctcc ctgtgagtta tattggaatt ttagtgttgt atgagacagg 10980
ttttaaccat ttactttctt tcttgttttt gttgttgttg aatattgcta aaagtttcat 11040
gtaggaaggg aataatgtct tatgcagttc taaaaagaag gacaccagtt agtataccat 11100
gtagtaagca aatttagaaa gtaaatcttt aagttttagc agtcatttat ttgggtttta 11160
gtacttttgt caagtttaca aattcaatac attttaatct caagttttat tttttagtat 11220
tagaacgtgt aaagcttttc aaggctatgg atatttattg atcttactgt tctttgtgct 11280
gtgtctctaa gccacaaggg taatggatgc atctcattat tattcacatt tgaacttgtt 11340
aaagtaagac tcctttctgt gcaaggaatt tgatatttgt attcatatca attgcttgaa 11400
gaaatgctga ataaaagcca ttttgtttag tcatttcaaa ttctaaaata agcttataat 11460
gacaaattta caaaaatttg aaaattgtta ttctctcaga tcatccctca cagttgatgt 11520
ggctaaagaa ccagctgttc ttcacagatc atatagaact aaaatgtaag tgagttgacc 11580
tcagtgttaa aagatgtatt cacaatattt tccatcgcta agtagttgcc ttcgctgttt 11640
tcccattttc ccgtttgaca ttacaagttt aattcaagat cggtattttt gattactcat 11700
cttatcaaaa aaacctttat tttaaaaatg tatagtggaa caacacatta tgaaactgct 11760
taatataatg aattacttaa agtttcagtg tagtctcaac tcagattaca tgggaaccaa 11820
caaaaacaca ggttgtgaca aaataagtac ttgtagatca agtacaaaca aactacattt 11880
ctggaaaaag acagtttcac aataatcaaa ggccctattc actctttcag attatttcaa 11940
caatgaaaac tttctctaaa tgctgtgaag tgtgaaataa ttcaacagga aaaggtgtaa 12000
cgtctcatgt aacatagaag ccataccgct tttgtcaaca tgactaatct attctcttga 12060
catcacacct agcagagcag ttaactataa ttcgaactca gaaggagaaa tttttttctg 12120
taaattgaca gtctgttatg tatatttggc aagatttagg atgtatggaa atttgttttg 12180
cgtttgcata aatcagtcct gcaagcaata ttaattacgg aacataatat tttattgttt 12240
aattagctgt gttttttagt ctgattattc ctgctaagat aatgggcatc ttactggcag 12300
ctctgtggca tttttcatgt ttacattagc acagaggtta gtgcactgtt ggatatattt 12360
gttaaattat ttacatccct tattttccta agttagttag ataattttgg tgtctagatg 12420
agtggatatt atcaatggaa gtgcttgtat tgctgagtta tgatatctta tatgctgtca 12480
tccatattct gttatttggt tttcaagctg gaaaattatt gaagcacatg attctatttg 12540
ccaacatatt acacttctga atcaaacatg atatacacaa tgtggtcagt agtttgttgt 12600
cacctgacca tcacacccat atatgatttt tgaacaccac atttcagatt tattcccttt 12660
tcttttggtt atattaaagt acactcatct ggtaaggctt aacaatagat gtggctgtgg 12720
gattttgtta ttcagttagg acagcttaag tgaggtcagg cactgacgtc aggtgaggag 12780
acctggggtg aagtttgtgt tctagttcat ccaatttaga agctgcaaaa tatggtatgc 12840
atgtttttcc ttttgattaa taatgatttc tgttgacttg tatgaggagt taatttacta 12900
tagttaaatg tagcatttta tggatacaaa ataaacacat caaaccccaa atgacactct 12960
tttgttagag tgggcctgga ggtgaaatcc atgactggag tctaactaca gtttgctgtc 13020
taaaagcttt aggcacacag tgactcctcc atttcatgct gtcttgccct ctctcttgct 13080
gatgctaaat gctttgtctt ttctctctct atggattggt taaataccag tgtaattgtc 13140
tgctctggtc tgaagcactg ttgtaatgtg ttgtagaaca tcaccattaa gacttgcctg 13200
aggcattgga gagattaaat gtgtaaggag cattgcttta tgttcctcac cagccattgc 13260
cactgtccag tgctcagaat ggttgagcca ctgggacaca gacatattga aaagagtaga 13320
tactaaagta gagactggcc aatataacta gatatcaatg gaaatggaga aaatttgaga 13380
ttactccctt gataaaccaa gctagaatgg ctgtttcatg caaatgttta aaaaacgcat 13440
ccaagtaggt ttaatatatt cttaatgttt gtagttaagc ctatgatctc atagcacaca 13500
aagtgagtaa gggataagag ctgaggaagt tataagcttc gaaaaaggta gctttgtgtt 13560
taattttaaa ccattgcaat gttagtgtgg ctatgaaaag cttcttttgt atggttctga 13620
tcaattctct gtctgacttt ctgacattaa gagcccaatc tgaatgtaat gacacactta 13680
tttcaccctt gggagtgtag tctgtgctcc accccatgac gctatttttt tcacatctct 13740
aattccacat tcacaatttt aacagaatga caagaaatcc ctcaaagcat tgattgcatg 13800
tctcaggtca ttatagtata tctataatgt ttcgacagat cagagcatgt gtccagagat 13860
ggacaggtca ttttgtggaa gctggctgag tgccagtgat ttagcatggc ggtgggcctg 13920
tcaattctct caatgacact ctccggctgg ggacagattg gttaacaatg cgggactgga 13980
ggtgcttatg tgtttaatta gcctctgacc ctcacttgat gccttctgtc agacactact 14040
ggccactcat gctattctct aatagtccaa taatgatcat tgaatgtgtt ggttccaata 14100
ggtagtcatg aaaatatagt gatgcatttc aactgcttgg tcctctttaa gaattgtatt 14160
ttgacttcag ttatcagaga cattttatga tgatttgttt tagaatttac atagagtgca 14220
aatgtattaa tcacttattg gttttgtttt cagggtacta tttctgattt gtttggtcca 14280
taagcagtaa aagcttagtc tgtgagaatg tctctgttgc agctattgac tggtttgagg 14340
agtcagagtt tgtttaaggt ttaagtctcc actgcatttt ctgcttcata aagtcctgcc 14400
aaagctctaa tgatggagag tgatgcgcat gtctctcaat aagacagacc tccatctctt 14460
ttttgccctc atatcttcct tgccgcccta gaggacagct ttgcaaagtg cataactaag 14520
atttaattat tgtataaaac actaggttat gttagtgtag ctatattatg ttttaaaatt 14580
actaatacat gcatttatat aaattattat tattattatt tatttagtgt ttatttcatt 14640
gcttctttat ttacagctca gtattataca ggccttatat gtaagtacat ggcagagtat 14700
gtatatctgt gtttatctaa gtggagggat taggcaccct catggccctg tgcaggtagt 14760
ctatgagctc tggcagaaaa gccttatcca caatagatct ggcctaaatt accatcttct 14820
ctcacatctg ggcttttgtt cactttttgt tccgactgcc agaaatgatt gagctccttt 14880
caccttctcc cctccccttt tcctgggctt caaaaaaaaa aagacttcct tttgttaaaa 14940
cacacaaaga ctggttaata gtttggaaat ataagatatt cagttaaaca gaggtgaata 15000
gggcaaaagt tcacggaaga gaatacgttc tttctgaaca gaaagaaggg taaatcttct 15060
cttgtttcag tactgttcta cgcatgacag acgtgtacaa gtatttaaac aaacttgagt 15120
tcctgccaaa tctcagcttc aacatttttt gtaaccctgt ataccatacc aatgcctctg 15180
tatgaactgc atgatatcag atttagaaca ggaattattt gcttttctta aggttacagt 15240
atttcactct taactcagac atccatatat atatatatat atatatatat atatatatat 15300
atatatatat atatatatat atatatatat atatatatat atatatatgt gtgtatatat 15360
atattacatt ttttttgaac attgtttaac tgcttcacca tttaagaaca ttacaagtat 15420
tgtaaaacat ttgataggct tcacattcat ctggaattaa gtggcaatta ggtgatgatt 15480
atacagaaca aagctgtgac actggtcatg tctgcatgcc atgcaagccc tagtctgtta 15540
tttacctttt atacaaatga cctaccagtc accctcaagt gcttttgcct ttaattacac 15600
catagttttt cccccctgat gaactccttt agaattaaca cagccactaa ttcaaaatcc 15660
cttatctata tcacaccatg ttattgctgt tcacagagca tctctgcagt ttagctacac 15720
aaacattagt attaacgatt ggttggtttg gaatgggtga caaactgcag acagcatgcc 15780
aagtcctgaa gcctgaaacc aatcagaagg ttaatgagga gaaaaattgc tccttttttc 15840
accagtgctc cttaattacc tccatgccag agcagagcac tgggtagaag gaggagaata 15900
aaggcaagag tggcattgag atgaacttta tatcgtctct tgtgagttac gaacgtcagc 15960
tgaattagat ttatgtaatc cctcttgcat tgtaacttcc atagaccgca cagacactat 16020
agtatcagtt ttatatgtgc agttagttaa atactgaact gaactggctc agtgcacaag 16080
tcatgatcca tgtgtttata gtaatgtaga ttattctaat agagagtgct cagtgtttca 16140
aattaaaatt agcatcacag ataatttgtc aatactgtga gtgcaataaa accgaataca 16200
taaccaactg gaaaaaataa catttaacag ttatattctt attaattttc ttaccagtaa 16260
aatttccatt attttcctgc tagtgttttg ttgagagagt gttaaagaaa gctaaattca 16320
gttgatatat tgcttatcca gcactgcttg ttctacatct gtctgtactg tgcatgccca 16380
gcactcaata tgacatcaag ttcaatggtt ctgcccaagg ggcttgaact cacctcagcc 16440
tgtgtgattt atgtttgcga gcactttgtc tactttgttg taatgttgag tgctgtcact 16500
attataattg caaaaagctg acagattgca tgtacactga ctttcaaaac tgaggctgta 16560
aaaatgcttt cactcaccaa tttctcacat tagtatgtaa tctacaaggc atttgggccg 16620
ttttgcagat tttacagtaa ggaaaaataa acatgcaaac acttttgttt ttgttattaa 16680
acacttatta tattaaattt ctatctaaca attatcaaca cttaatgtgt gtgtgtgtgt 16740
gtgtttttgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt ataatacttt cagtacatat 16800
gttcatttca aaattccaca catgcacaca cagtgtagtt tttctaatat tagtaatttg 16860
tctcagagtt ttgttgactc attcttcttg gcaaatcatc ttattttctt caaaatataa 16920
gggtcctaca aatttagacc agcagtctct tacatcaaag ctcttatcac tccctgcact 16980
gcaccacact ccctcagatc ctctagcact gcttgactgg tcccaacctt tttcagggta 17040
caaggtaggt ctgcatcaag actcatctct gttctagcac ctaggtggtg gtatgaaatt 17100
cccataaatg tgagaacagc caagtcactg gctgacaaag gttagttaaa gagttacctt 17160
ttcctgaaat acataaacta gcacttgttt tatcattatt ttttaaattg tttgtgtgct 17220
tttcttgatg tattacctat caacagagtt ttagattgta gatcagtgat tcagtgtcaa 17280
tatattcact tataaagaca aagcactttt ttgacatcac tctgtataag ggcatctgcc 17340
aaatgccata catgtatatg gaaatactag tagttttgct gcattgttca catgtttgag 17400
cttctgtgct ttgcagcttt ctctgctgat ggcgttcctg acaccagctt ggcctgcata 17460
cccatcatca gccctatggt gagtgctgag aacaaggcag aatgtgagcc caactctgac 17520
tctggagcat ttactgtgga ctccatcata gagggagctg ccaagtaaaa gtctcagaga 17580
atataccagc tgcacttgac ttatctcatg gcactagggt attaaggcca tgtttttttc 17640
cctcacaaga tcagcattat atgctaaata agttgtgacc aacaagttta gattttcatt 17700
ataatttgtt tcagttcgat tttgcccaat agctgcagtt tttaatgact gaattttgtg 17760
aagtttgttg aaatatttta aaatttggtt ttagggcaaa ttacttaata ctttatattt 17820
cttcataatc atttagatgc cttctgcttt tttgaaatca caagacagtt aaagagtttt 17880
agtaaacaga agacctttta aatgtgtgtc tgatcacccc ctagaaaaag ttccttcaat 17940
gtttgcatgt gaatgcaatc tgcggcacat gtcagcttta taactgttat tattgcttta 18000
ataaatacaa atgtttccac cacatttttt ttaccattaa tgtaaagcaa atgagtttct 18060
cccaatgcta tgatattcag tctcagatca tttttagcac ctttcatcca gacaacaggg 18120
gatgcagtta tgggttagta tgcaggaagg aatactaatg aattatgctt caatctcact 18180
acaaacagtg cgttgtttat ttatggccac cagcaaaagg gcatcattta aatttggatg 18240
atttgcatca ctatctacct ccttgaattg tgagaggtgc tttaacacac tttagtttat 18300
aagctatata tgagtgcttc tgccctttct ttgcacaccc cagagttgta ctgtttgccc 18360
ttgaaaatat ccctgaataa tgtgtgataa cttgccttaa ttaaggaata tactctacac 18420
agcctcagat caaggcagta atttttatac attttgacat aataataata ataataataa 18480
taataataat aataataata ataataagta cacatatctg ttgcaaatag atctctgcca 18540
ttaacttaga cacagtttaa agaaaatata tattatccag caaaatattt tgtactatat 18600
aatttttata ctccagaaaa tgaaatatct tccagttaaa taaggcaagt tgaattacac 18660
atgcaagtca ttatttgtat attttcttac taataaagca agaagactga atcactcatt 18720
tattatgaag agtggaggtg ttaccatttt agacaatatg ttcatgttaa gatttacttc 18780
cttaattatt gcaacattga gttgtgagct gtaccacaaa ctggttctat ttctttagtc 18840
tctgcactgt gttactgtga ctgactgtta tggagattaa tttcaaatgc catgttacaa 18900
aagcggcagt tattgttatg tcttaataaa acagcaagaa agctcattta aa 18952

Claims (9)

1. A CRISPR/Cas9 system for knocking out the dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco, wherein the CRISPR/Cas9 system comprises the following steps:
(1) the target site 1 is designed on a first exon of a pelteobagrus fulvidraco dmrt1 gene, the target site 2 is designed on a third exon, and the sequence of the target site 1 is a sequence shown in SEQ ID NO. 1; the sequence of the target site 2 is a sequence shown as SEQ ID NO. 2;
(2) designing a primer to detect the accuracy of the target site in the parent fish according to the target site sequence in step (1), amplifying the target site 1 and the nearby sequence by using dmrt 1E 1F and dmrt 1E 1R, and amplifying the target site 2 and the nearby sequence by using dmrt 1E 3F and dmrt 1E 3R;
(3) using pUC19-gRNA-scaffold plasmid as template, performing PCR amplification of gRNA1 fragment with dmrt 1E 1gRNA and gRNA R, and performing PCR amplification of gRNA2 fragment with dmrt 1E 3 gRNA and gRNA R; taking the PCR product as a template, and carrying out in-vitro transcription and purification to obtain gRNA;
(4) in vitro transcription synthesis of Cas9mRNA by using pXT7-hCas9 linearized plasmid as a template;
(5) micro-injecting Cas9mRNA and two gRNAs into a pseudobagrus fulvidraco one-cell-stage embryo;
(6) and detecting the mutation type and calculating the gene editing rate.
2. The system according to claim 1, wherein the primer dmrt 1E 1F in step (2) has the sequence shown in SEQ ID No. 3; the sequence of the primer dmrt 1E 1R is a sequence shown in SEQ ID NO. 4; the sequence of the primer dmrt 1E 3F is a sequence shown in SEQ ID NO. 5; the sequence of the primer dmrt 1E 3R is shown as SEQ ID NO. 6.
3. The system according to claim 1, wherein the primer dmrt 1E 1gRNA F in step (3) has the sequence shown in SEQ ID No. 7; the sequence of the primer dmrt 1E 3 gRNA F is a sequence shown in SEQ ID No. 8; the sequence of the primer gRNA is shown as SEQ ID NO. 9.
4. The system according to claim 1, wherein the gRNA purification method in step (3) is LiCl precipitation, and the specific steps are as follows: adding 1ul of 0.5M EDTA into a gRNA in-vitro transcription system to terminate the reaction, adding 2.5ul of 4M LiCl and 75ul of precooled absolute ethyl alcohol to carry out precipitation, centrifuging and collecting a precipitate; adding 1mL of precooled 75% ethanol to clean the precipitate, centrifuging, collecting the precipitate, and removing the ethanol; 50ul of nucleic-free water was added to dissolve the gRNA precipitate, and the concentration was measured by Nanodrop and stored at-80 ℃.
5. The system according to claim 4, wherein the precipitation is in particular a precipitation at-20 ℃ for 16h or a precipitation at-80 ℃ for 2 h.
6. The system according to claim 1, wherein the step (5) is specifically: cas9mRNA with the concentration of 600ng/ul and two gRNAs with the concentrations of 120ng/ul are mixed uniformly according to the volume of 2:1:1, and are injected into the embryo of the Pelteobagrus fulvidraco in the first cell stage in a micro-injection mode, wherein the injection dosage is 1 nL.
7. The system according to claim 1, characterized in that said step (6) is in particular: collecting 20 tail of the film-removed fry, and extracting genome DNA; amplifying a target site and a nearby sequence by PCR, directly sending a part of PCR products to Sanger for sequencing, and preliminarily detecting the gene editing effect according to a sequencing peak diagram; recovering and purifying the residual PCR product, connecting the PCR product with a PMD-18T vector, selecting positive single clone, sending the positive single clone to Sanger for sequencing, determining a specific mutation type according to a sequencing result, and predicting the change of an amino acid sequence; PCR amplifying the mutant and wild type genome with the pair of primers dmrt 1E 1F and dmrt 1E 3R, agarose gel electrophoresis detecting whether long fragment deletion mutation occurs; and calculating the gene editing efficiency.
8. The system of claim 7, wherein the gene editing efficiency calculation formula is: gene editing efficiency ═ 1- (1-a) × (1-b), where a is the mutation rate at target site 1 and b is the mutation rate at target site 2.
9. The CRISPR/Cas9 system of the double gRNA site knockout dmrt1 gene in the pelteobagrus fulvidraco as claimed in claim 1 is applied to research on the effect of the dmrt1 gene on sex determination and differentiation of pelteobagrus fulvidraco and molecular module breeding of high-quality parents of the pelteobagrus fulvidraco.
CN201910878588.3A 2019-09-18 2019-09-18 CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application Active CN110923229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910878588.3A CN110923229B (en) 2019-09-18 2019-09-18 CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910878588.3A CN110923229B (en) 2019-09-18 2019-09-18 CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application

Publications (2)

Publication Number Publication Date
CN110923229A CN110923229A (en) 2020-03-27
CN110923229B true CN110923229B (en) 2022-03-15

Family

ID=69848698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910878588.3A Active CN110923229B (en) 2019-09-18 2019-09-18 CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application

Country Status (1)

Country Link
CN (1) CN110923229B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011569A (en) * 2020-09-16 2020-12-01 华南农业大学 Method for artificially accelerating maturation of grouper spermary

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671084A (en) * 2016-03-21 2016-06-15 中国水产科学研究院黄海水产研究所 Genome-editing-based seawater flounder germplasm building method and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671084A (en) * 2016-03-21 2016-06-15 中国水产科学研究院黄海水产研究所 Genome-editing-based seawater flounder germplasm building method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrus fulvidraco);Cheng Dan;《Science Bulletin》;20180831;第1420-1430页 *
Distinct and cooperative roles of amh and Dmrt1 in self-renewal and differentiation of male germ cells in zebrafish.;Qiaohong Lin;《GENETICS》;20170911;第1007-1022页 *
Jianguo Lu.The application of genome editing technology in fish.《Marine Life Science & Technology》.2021,第326-346页. *

Also Published As

Publication number Publication date
CN110923229A (en) 2020-03-27

Similar Documents

Publication Publication Date Title
CN107858373B (en) Construction method of endothelial cell conditional knockout CCR5 gene mouse model
CN108660161B (en) Method for preparing chimeric gene-free knockout animal based on CRISPR/Cas9 technology
CN110551759B (en) Composition and method for improving recombination efficiency of transgenic cells
KR20150023670A (en) Methods and compositions for generating conditional knock-out alleles
CN109943564B (en) Construction method and application of hybrid mouse model with Amh gene fixed-point knock-in 2A-Cre
CN110643636B (en) Megalobrama amblycephala MSTNa &amp; b gene knockout method and application
CN111172191B (en) Efficient gene knockout vector and application thereof
CN110885858A (en) Construction method and application of Amy1 gene knockout mouse animal model
JP2022113700A (en) Fel d1 knockouts and associated compositions and methods based on crispr-cas genomic editing
CN114277055A (en) Non-human animal humanized by IL1B and IL1A genes and construction method and application thereof
CN111808887A (en) Method for preparing double-muscle gluteal beef cattle similar to natural mutation Belgian blue cattle
CN109929875B (en) Construction method and application of LAG3 gene humanized animal model
CN110923229B (en) CRISPR/Cas9 system for knocking out dmrt1 gene at double gRNA sites in pelteobagrus fulvidraco and application
CN110684767B (en) Method for knocking out amh gene from double gRNA sites in pelteobagrus fulvidraco and application
CN113678789A (en) Mir-379/410 gene cluster knockout mouse model and construction method thereof
CN111500589A (en) Pig SOX10 mutant gene causing inner ear hypoplasia and application thereof
CN114480497B (en) Construction and application method of ep400 gene knockout zebra fish heart failure model
CN113046389B (en) CCR2 gene humanized non-human animal and construction method and application thereof
WO2013056664A1 (en) Method and uses for bombyx mori silk fibroin heavy chain gene mutation sequence and mutant
CN111549070B (en) Method for editing X chromosome multicopy gene to realize animal sex control
CN109694885B (en) Method for preparing PI3K gamma whole-body knockout mode mouse based on CRISPR/Cas9 technology, application thereof and kit
EP2246429A1 (en) Non-human mammal model of epilepsy
CN115322993B (en) Safety site for site-directed integration of exogenous genes in pig genome and method for constructing pig breeding group by using safety site
CN110643605B (en) gRNA of megalobrama amblycephala MSTNa &amp; b gene knockout and template thereof
CN111321171A (en) Method for preparing gene targeting animal model by applying CRISPR/Cas9 mediated ES targeting technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant