CN110912173B - VSC direct-current power grid control method - Google Patents
VSC direct-current power grid control method Download PDFInfo
- Publication number
- CN110912173B CN110912173B CN201911104248.1A CN201911104248A CN110912173B CN 110912173 B CN110912173 B CN 110912173B CN 201911104248 A CN201911104248 A CN 201911104248A CN 110912173 B CN110912173 B CN 110912173B
- Authority
- CN
- China
- Prior art keywords
- control
- power
- grid
- converter station
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000011217 control strategy Methods 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/36—Arrangements for transfer of electric power between AC networks via a high-tension DC link
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
技术领域Technical field
本发明属于交直流系统并列运行运行领域,电网规划领域,电力系统仿真领域,涉及直流电网,尤其是基于电压源换流站构成的直流电网且电网中交直流系统混合连接。The invention belongs to the field of parallel operation of AC and DC systems, the field of power grid planning, and the field of power system simulation, and relates to a DC power grid, especially a DC power grid based on a voltage source converter station and a hybrid connection of AC and DC systems in the power grid.
背景技术Background technique
随着电力电子元器件应用技术的提高,直流输电以及直流电网已成为交流电网的重要补充。直流输电已在中国成功运行了多年,将中西部多余的电能输送到东部沿海地区。同时特高压直流输电正与特高压交流输电一起,将西部和北部的风电以及太阳能发电,源源不断的输送到东部的负荷中心,为国家的节能减排做出重要贡献。With the improvement of application technology of power electronic components, DC transmission and DC grid have become important supplements to AC grid. DC transmission has been operating successfully in China for many years, transporting excess power from the central and western regions to the eastern coastal areas. At the same time, UHV DC transmission is working together with UHV AC transmission to continuously transport wind power and solar power from the west and north to the load center in the east, making an important contribution to the country's energy conservation and emission reduction.
在城市配电网中,由于空间有限,大部分的输电都采用电缆作为媒介。在较长距离的交流电缆输电中,采用直流输电的经济性更好一些,且直流输电比交流输电占用的空间小。电压源换流站(voltage source converter,VSC)的直流电网在整合风能与太阳能方面有较大优势,可以使风能与太阳能发电平滑接入,独立控制有功和无功。鉴于此,基于VSC的直流电网能够作为能源互联网的重要组成部分。In urban distribution networks, due to limited space, most power transmission uses cables as media. In longer-distance AC cable transmission, DC transmission is more economical, and DC transmission takes up less space than AC transmission. The DC grid of voltage source converter (VSC) has great advantages in integrating wind energy and solar energy. It can smoothly connect wind energy and solar power generation and independently control active and reactive power. In view of this, the VSC-based DC grid can serve as an important part of the energy Internet.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足之处,提供一种新的VSC直流电网控制方法,能够在含VSC较多的直流电网中,提高系统的控制稳定,尤其是提高依靠VSC逆变直接供电的弱交流系统的稳定。The purpose of the present invention is to overcome the shortcomings of the existing technology and provide a new VSC DC power grid control method, which can improve the control stability of the system in a DC power grid containing a lot of VSC, especially improve the direct current control method relying on VSC inverter. Stability of powered weak AC systems.
本发明解决技术问题所采用的技术方案是:The technical solutions adopted by the present invention to solve the technical problems are:
一种VSC直流电网控制方法,定义第一级控制是VSC直流电网中最外侧的换流站所采用的控制,定义第二级控制是与第一级换流站通过高压直流线路连接的换流站,第二级控制中的换流站交流侧连接的是弱交流电网,第一级控制使用直流电压控制,采用前馈双闭环解耦控制策略进行控制,第二级控制中,换流站通过前馈解耦控制策略和定相角控制来进行控制功率的流向和交流电压的平衡。A VSC DC power grid control method defines the first-level control as the control adopted by the outermost converter station in the VSC DC power grid, and defines the second-level control as the commutation connected to the first-level converter station through a high-voltage DC line. Station, the AC side of the converter station in the second-level control is connected to the weak AC power grid. The first-level control uses DC voltage control and adopts a feedforward double closed-loop decoupling control strategy for control. In the second-level control, the converter station The flow direction of power and the balance of AC voltage are controlled through feedforward decoupling control strategy and phase angle control.
而且,第一级控制中,直流电压通过外环PI控制向内环控制输入参数,在内环将有功和无功参量进行解耦,得到解耦的控制信号,通过dq->abc计算矩阵,将旋转直角坐标系中的参数转化为三相交流系统的坐标参数,通过该参数,换流站输出给定的直流侧的电压,进行直流电压控制。Moreover, in the first level control, the DC voltage controls the input parameters to the inner loop through the outer loop PI control. The active and reactive parameters are decoupled in the inner loop to obtain the decoupled control signal. The matrix is calculated through dq->abc, The parameters in the rotating rectangular coordinate system are converted into coordinate parameters of the three-phase AC system. Through these parameters, the converter station outputs a given DC side voltage for DC voltage control.
而且,第二级控制中,有功功率通过外环PI控制向内环控制输入参数,在内环将有功和无功参量进行解耦,得到解耦的控制信号,通过dq->abc计算矩阵,将旋转直角坐标系中的参数转化为三相交流系统的坐标参数,通过该参数,换流站输出给定的有功功率,进行功率控制。Moreover, in the second level control, the active power input parameters to the inner loop control through the outer loop PI control, and the active and reactive parameters are decoupled in the inner loop to obtain the decoupled control signal, and the matrix is calculated through dq->abc, The parameters in the rotating rectangular coordinate system are converted into coordinate parameters of the three-phase AC system. Through these parameters, the converter station outputs a given active power for power control.
而且,在定相角控制中,换流站通过给定的相角和信号发生装置,产生与相角信号相对应的三相交流控制信号,通过该信号,换流站能够输出给定相角的电压,进行弱交流电网的相角控制。Moreover, in the fixed phase angle control, the converter station generates a three-phase AC control signal corresponding to the phase angle signal through the given phase angle and signal generating device. Through this signal, the converter station can output the given phase angle. voltage to control the phase angle of the weak AC power grid.
而且,在含有弱交流系统的直流电网中,选择换流站连接到强电网的最短的一条路径,根据某个换流站与交流强电网之间所隔换流站数量n,定义该换流站的控制级别为n+1级控制。Moreover, in a DC power grid with a weak AC system, the shortest path connecting the converter station to the strong power grid is selected, and the converter is defined according to the number n of converter stations between a certain converter station and the AC strong power grid. The control level of the station is n+1 level control.
而且,第三级的换流站通过弱交流电网与第二级控制换流站联结。Moreover, the third-level converter station is connected to the second-level control converter station through the weak AC power grid.
本发明的优点和积极效果是:The advantages and positive effects of the present invention are:
1、该控制方法能够使VSC直流电网中的弱交流系统稳定运行。应用该控制策略的弱交流系统,能够同时稳定联结直流系统中的馈功率站和受功率站,且该交流系统能带一定量的交流负荷。该分级控制策略为直流电网的多换流站控制提供了一个解决方案。1. This control method can make the weak AC system in the VSC DC grid operate stably. The weak AC system applying this control strategy can stably connect the feeding power station and the power receiving station in the DC system at the same time, and the AC system can carry a certain amount of AC load. This hierarchical control strategy provides a solution for multi-converter station control of DC power grids.
2、该控制方法能够使得馈功率站连接的弱交流系统交流电压有较快的稳定速度,减少了系统的稳定平衡时间,使得整个直流输电网络有较好的动态稳定性。向弱交流电网输送电能的换流站称为“馈功率站”,从弱交流电网吸收电能的换流站称为“受功率站”。处于直流电网中的交流弱电网,根据馈功率站和受功率站的区分来设置与弱电网联结的换流站的控制模式和控制方案,能够增加系统的稳定性。2. This control method can stabilize the AC voltage of the weak AC system connected to the feed power station faster, reduce the stable equilibrium time of the system, and make the entire DC transmission network have better dynamic stability. The converter station that transmits electric energy to the weak AC grid is called a "feeding power station", and the converter station that absorbs electric energy from the weak AC grid is called a "power receiving station". For an AC weak grid in a DC grid, setting the control mode and control scheme of the converter station connected to the weak grid based on the distinction between the feeding power station and the power receiving station can increase the stability of the system.
3、使用该控制方法,当直流电网中弱交流系统功率增加时,弱交流电网电压控制站功率能够可靠反向,使得直流电网能够向弱交流系统提供更多的有功功率。直流电网能够保证中间弱交流系统在功率变化时可靠运行,平衡站能够准确及时地满足中间弱交流系统的功率变化和稳定需求。3. Using this control method, when the power of the weak AC system in the DC grid increases, the power of the weak AC grid voltage control station can be reliably reversed, allowing the DC grid to provide more active power to the weak AC system. The DC grid can ensure reliable operation of the intermediate weak AC system when the power changes, and the balancing station can accurately and timely meet the power changes and stability requirements of the intermediate weak AC system.
附图说明Description of the drawings
图1为本发明的控制原理图。Figure 1 is a control principle diagram of the present invention.
具体实施方式Detailed ways
下面结合附图并通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。The present invention will be further described in detail below with reference to the accompanying drawings and through specific examples. The following examples are only descriptive, not restrictive, and cannot be used to limit the scope of protection of the present invention.
一种VSC直流电网控制方法,控制系统中包括换流站VSC1,VSC2,VSC3,VSC4,交流强电网,弱交流电网,弱交流电网中的滤波器,直流输电线路,解耦控制策略,相角控制(定δ),有功控制(P),交流电压控制(Urms)和上层分级控制策略。交流强电网AC通过换流站VSC1和VSC4与直流电网进行能量交换。在直流电网中,含有一弱交流电网,该弱交流电网通过VSC2和VSC3与直流电网进行能量交换。换流站通过解耦控制策略进行控制,解耦控制策略,有功控制和定相角控制给换流站控制触发脉冲,上层分级控制给解耦控制策略控制量。A VSC DC power grid control method. The control system includes converter stations VSC1, VSC2, VSC3, VSC4, AC strong power grid, weak AC power grid, filters in the weak AC power grid, DC transmission lines, decoupling control strategies, and phase angles. control (fixed δ), active power control (P), AC voltage control (U rms ) and upper-layer hierarchical control strategy. The AC power grid exchanges energy with the DC grid through converter stations VSC1 and VSC4. The DC grid contains a weak AC grid, which exchanges energy with the DC grid through VSC2 and VSC3. The converter station is controlled through the decoupling control strategy. The decoupling control strategy, active power control and phase angle control control the trigger pulses of the converter station, and the upper layer hierarchical control controls the amount of the decoupling control strategy.
换流站VSC1和换流站VSC4是直接与交流强电网相连的,因此VSC1和VSC4属于第一级控制,VSC2通过直流电缆与VSC1相连,VSC2另一侧连接的是交流弱电网,因此VSC2与交流强电网的连接的最短路径为通过VSC1与强电网连接,即VSC2的控制层级为第二级。同样,VSC3的控制层级也为第二级。Converter station VSC1 and converter station VSC4 are directly connected to the AC strong power grid, so VSC1 and VSC4 belong to the first level of control. VSC2 is connected to VSC1 through a DC cable. The other side of VSC2 is connected to the AC weak power grid, so VSC2 and The shortest path to connect the AC strong power grid is to connect to the strong power grid through VSC1, that is, the control level of VSC2 is the second level. Similarly, the control level of VSC3 is also the second level.
功率由VSC1流向VSC2,再由VSC3流向VSC4,VSC2和VSC3之间的弱电网负荷消耗小部分交流功率,同时交流弱电网向VSC3输入功率。Power flows from VSC1 to VSC2, and then from VSC3 to VSC4. The weak grid load between VSC2 and VSC3 consumes a small part of the AC power, and at the same time, the AC weak grid inputs power to VSC3.
AC为交流强电网,AC将交流功率输入到换流站VSC1,换流站VSC1通过PWM信号发生器发出的信号来进行开关控制,PWM信号发生器的触发角来自于“dq->abc”的计算矩阵,dq参数来自于改进的前馈解耦控制,外环电压PI控制和取自于AC交流电网的控制信号输出到改进的前馈解耦控制进行计算,测定的直流电压值和给定的直流电压值进行比较,输出到外环电压控制器的PI控制器。AC is an AC strong power grid. AC inputs AC power to the converter station VSC1. The converter station VSC1 performs switching control through the signal sent by the PWM signal generator. The trigger angle of the PWM signal generator comes from "dq->abc" Calculation matrix, dq parameters come from the improved feedforward decoupling control, the outer loop voltage PI control and the control signal taken from the AC AC grid are output to the improved feedforward decoupling control for calculation, the measured DC voltage value and the given The DC voltage value is compared and output to the PI controller of the outer loop voltage controller.
VSC1通过第一级的直流电压控制将AC的交流功率转化成直流功率,然后输送到VSC2,VSC2采用定有功功率控制,直流电流输入到VSC2,换流站VSC2通过PWM信号发生器发出的信号来进行开关控制,PWM信号发生器的触发角来自于“dq->abc”的计算矩阵,dq参数来自与改进的前馈解耦控制,外环有功PI控制和取自于AC交流电网的测量信号输出到改进的前馈解耦控制进行计算,测定的有功功率值和给定的有功功率值进行比较,输出到外环电压控制器的PI控制器。VSC2通过定有功功率控制将直流功率转化为交流功率输出到弱交流系统。VSC1 converts AC AC power into DC power through the first stage of DC voltage control, and then transmits it to VSC2. VSC2 adopts constant active power control. The DC current is input to VSC2. The converter station VSC2 uses the signal sent by the PWM signal generator. For switching control, the trigger angle of the PWM signal generator comes from the calculation matrix of "dq->abc", the dq parameter comes from the improved feedforward decoupling control, the outer loop active PI control and the measurement signal taken from the AC AC power grid. It is output to the improved feedforward decoupling control for calculation, the measured active power value is compared with the given active power value, and then output to the PI controller of the outer loop voltage controller. VSC2 converts DC power into AC power and outputs it to the weak AC system through constant active power control.
VSC3和弱交流系统向量,VSC3通过PWM控制信号进行开关的控制操作,将弱交流系统的功率转化为直流功率输送到直流电网,VSC3的PWM控制信号来自于正弦信号发生器,正弦信号发生器的信号来自于定相角δ控制和给定的定电压控制,定电压控制的信号来自于给定电压值和电压测量值的差。VSC3 and weak AC system vector, VSC3 performs switch control operations through PWM control signals, converts the power of the weak AC system into DC power and transmits it to the DC power grid. The PWM control signal of VSC3 comes from the sine signal generator, and the sine signal generator The signal comes from the fixed phase angle δ control and the given constant voltage control. The signal of the constant voltage control comes from the difference between the given voltage value and the voltage measurement value.
VSC4将直流功率转化为交流功率输送到交流电网AC,VSC4通过PWM信号发生器发出的信号来进行开关控制,PWM信号发生器的触发角来自于“dq->abc”的计算矩阵,dq参数来自与改进的前馈解耦控制,外环电压PI控制和取自于AC交流电网的控制信号输出到改进的前馈解耦控制进行计算,测定的直流电压值和给定的直流电压值进行比较,输出到外环电压控制器的PI控制器。VSC4 converts DC power into AC power and delivers it to the AC power grid. VSC4 performs switching control through the signal sent by the PWM signal generator. The trigger angle of the PWM signal generator comes from the calculation matrix of "dq->abc", and the dq parameter comes from With the improved feedforward decoupling control, the outer loop voltage PI control and the control signal taken from the AC grid are output to the improved feedforward decoupling control for calculation, and the measured DC voltage value is compared with the given DC voltage value. , output to the PI controller of the outer loop voltage controller.
换流站VSC2控制交流电压,换流站VSC3控制有功功率,VSC2采用定相角控制方式产生出发脉冲,触发晶体管的开关,VSC1和VSC4采用定直流电压控制,控制整个直流电网的第一级直流电压,保证交流强电网和直流电网的功率传递,通过前馈解耦控制策略来进行换流站触发脉冲的控制。Converter station VSC2 controls the AC voltage, and converter station VSC3 controls the active power. VSC2 uses fixed phase angle control to generate starting pulses to trigger the switch of the transistor. VSC1 and VSC4 use constant DC voltage control to control the first-level DC of the entire DC grid. voltage to ensure the power transmission of AC strong power grid and DC power grid, and control the triggering pulse of the converter station through a feedforward decoupling control strategy.
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。What is described above is only the preferred embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the invention, and these all belong to the scope of the present invention. protected range.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911104248.1A CN110912173B (en) | 2019-11-13 | 2019-11-13 | VSC direct-current power grid control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911104248.1A CN110912173B (en) | 2019-11-13 | 2019-11-13 | VSC direct-current power grid control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110912173A CN110912173A (en) | 2020-03-24 |
CN110912173B true CN110912173B (en) | 2023-10-10 |
Family
ID=69816514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911104248.1A Active CN110912173B (en) | 2019-11-13 | 2019-11-13 | VSC direct-current power grid control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110912173B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103457287A (en) * | 2013-05-17 | 2013-12-18 | 湖南大学 | Multi-terminal VSC-HVDC grid-connected transmission system controlling method applied to wind power plant |
CN105071372A (en) * | 2015-07-20 | 2015-11-18 | 清华大学 | Voltage control method suitable for flexible direct current power distribution network |
CN105529732A (en) * | 2016-01-07 | 2016-04-27 | 武汉大学 | A decoupling control method for multi-terminal flexible DC transmission system with local DC voltage feedback |
CN105978013A (en) * | 2016-06-02 | 2016-09-28 | 华北电力大学 | DC converter station multi-control-mode undisturbed switching method |
CN107968424A (en) * | 2017-12-15 | 2018-04-27 | 全球能源互联网研究院有限公司 | Flexible DC power transmission hierarchical control method |
CN108199401A (en) * | 2017-09-07 | 2018-06-22 | 东南大学 | A kind of station level control method of true bipolar flexible direct current transmission system |
CN108258712A (en) * | 2017-12-01 | 2018-07-06 | 国网江苏省电力有限公司电力科学研究院 | VSC-HVDC system for subsynchronous oscillation analysis |
CN108521136A (en) * | 2018-04-24 | 2018-09-11 | 东南大学 | A multi-objective cooperative control method based on true bipolar flexible direct current transmission system |
CN108923448A (en) * | 2018-06-19 | 2018-11-30 | 东南大学 | A kind of Multi-end flexible direct current transmission control method for coordinating and system |
WO2019101305A1 (en) * | 2017-11-22 | 2019-05-31 | Siemens Aktiengesellschaft | Converter and operation thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060282239A1 (en) * | 2005-06-08 | 2006-12-14 | Chang Gung University | Method of setting-up steady state model of VSC-based multi-terminal HVDC transmission system |
CN102969733B (en) * | 2012-11-08 | 2014-12-03 | 南京南瑞继保电气有限公司 | Coordination control method of multiterminal flexible direct current power transmission system |
-
2019
- 2019-11-13 CN CN201911104248.1A patent/CN110912173B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103457287A (en) * | 2013-05-17 | 2013-12-18 | 湖南大学 | Multi-terminal VSC-HVDC grid-connected transmission system controlling method applied to wind power plant |
CN105071372A (en) * | 2015-07-20 | 2015-11-18 | 清华大学 | Voltage control method suitable for flexible direct current power distribution network |
CN105529732A (en) * | 2016-01-07 | 2016-04-27 | 武汉大学 | A decoupling control method for multi-terminal flexible DC transmission system with local DC voltage feedback |
CN105978013A (en) * | 2016-06-02 | 2016-09-28 | 华北电力大学 | DC converter station multi-control-mode undisturbed switching method |
CN108199401A (en) * | 2017-09-07 | 2018-06-22 | 东南大学 | A kind of station level control method of true bipolar flexible direct current transmission system |
WO2019101305A1 (en) * | 2017-11-22 | 2019-05-31 | Siemens Aktiengesellschaft | Converter and operation thereof |
CN108258712A (en) * | 2017-12-01 | 2018-07-06 | 国网江苏省电力有限公司电力科学研究院 | VSC-HVDC system for subsynchronous oscillation analysis |
CN107968424A (en) * | 2017-12-15 | 2018-04-27 | 全球能源互联网研究院有限公司 | Flexible DC power transmission hierarchical control method |
CN108521136A (en) * | 2018-04-24 | 2018-09-11 | 东南大学 | A multi-objective cooperative control method based on true bipolar flexible direct current transmission system |
CN108923448A (en) * | 2018-06-19 | 2018-11-30 | 东南大学 | A kind of Multi-end flexible direct current transmission control method for coordinating and system |
Non-Patent Citations (1)
Title |
---|
熊卿 ; 涂亮 ; 洪潮 ; 周保荣 ; .混合直流输电系统中柔性直流单元的作用和控制优化.水电能源科学.2014,(12),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN110912173A (en) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103023058B (en) | Control method for high-voltage direct-current flexible system for supplying power to passive network | |
CN104953686B (en) | Control method for charge-discharge virtual synchronization motor for electromobile energy storage | |
CN103683517B (en) | A kind of mixed energy storage system being applied to micro-capacitance sensor | |
US11289905B2 (en) | Voltage and current control method and device for direct-current power transmission system | |
CN107425553A (en) | Idle respectively control system and method based on voltage source inverter parallel system | |
CN108521136A (en) | A multi-objective cooperative control method based on true bipolar flexible direct current transmission system | |
CN106655291B (en) | A microgrid group architecture and its autonomous coordination control method | |
CN103580032B (en) | Power network compensation system and control method thereof | |
CN105871242B (en) | Single phase bidirectional converter control system | |
CN105743128A (en) | Low voltage ride through control method of grid-connected photovoltaic power generation system | |
CN108631363B (en) | Photovoltaic virtual synchronous control method for inverter based on master-slave control | |
CN106655239A (en) | Combined current converter and internal DC voltage balance control method thereof | |
CN107887919A (en) | A kind of distributed energy storage inverter control method for coordinating and system | |
CN110572067A (en) | An island energy storage type power unit series microgrid structure and control method | |
CN106972759A (en) | A power supply for simulating grid disturbance | |
CN104022523A (en) | Voltage and current polarity control method for modulation electrode of high-voltage direct current tripolar power transmission system | |
CN115603372A (en) | A new energy delivery system and its control method | |
CN107947623A (en) | The multi-modal autonomous progress control method of two-way AC/DC converters under the conditions of a kind of laod unbalance | |
CN105870963B (en) | A kind of VSC current conversion station control methods based on voltage to frequency slop control | |
CN105024385B (en) | Improve the quality of power supply of power network, have the photovoltaic DC-to-AC converter circuit of no-power compensation function | |
CN110912173B (en) | VSC direct-current power grid control method | |
CN104810855A (en) | Current servo control method of inverter in multi-energy ship electric power system | |
Hu et al. | Research on steady state control strategies of wind farm integration by VSC-LCC hybrid HVDC transmission | |
CN105576718B (en) | Alternating current-direct current distribution source lotus optimization distribution control method under a kind of distributed new high permeability situation | |
CN118100322A (en) | Fault ride-through control method, medium and system for network-structured converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |