CN110910613A - 一种岩体微震无线监测接收预警系统 - Google Patents

一种岩体微震无线监测接收预警系统 Download PDF

Info

Publication number
CN110910613A
CN110910613A CN201911258982.3A CN201911258982A CN110910613A CN 110910613 A CN110910613 A CN 110910613A CN 201911258982 A CN201911258982 A CN 201911258982A CN 110910613 A CN110910613 A CN 110910613A
Authority
CN
China
Prior art keywords
information
seismic source
microseismic
rock mass
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911258982.3A
Other languages
English (en)
Other versions
CN110910613B (zh
Inventor
唐世斌
李佳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201911258982.3A priority Critical patent/CN110910613B/zh
Publication of CN110910613A publication Critical patent/CN110910613A/zh
Priority to US16/833,084 priority patent/US11442187B2/en
Application granted granted Critical
Publication of CN110910613B publication Critical patent/CN110910613B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/288Event detection in seismic signals, e.g. microseismics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/223Radioseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/08Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Abstract

本发明公开一种岩体微震无线监测接收预警系统,通过卫星与岩体微震智能采集与无线发送系统连接,所述接收预警系统包括:无线接收模块,通过卫星接收经过各所述岩体微震信号无线发送系统处理后的微震数据包;存储模块,与所述无线接收模块连接,内置各所述岩体微震信号发送系统的基本数据信息,自动、实时对应存储所述微震数据包并管理;处理模块,与所述存储模块连接,用于进行计算分析得到岩体破裂信号的震源等级信息并发送至所述存储模块进行存储。本发明通过上述方案解决了微震大数据处理速度滞后、数量庞大、内容冗杂、实时显示弱等问题。

Description

一种岩体微震无线监测接收预警系统
技术领域
本发明涉及岩体微震技术领域,特别是涉及一种岩体微震无线监测接收预警系统。
背景技术
岩体中的破裂能将以弹性波的形式在岩体内传播,该岩体破裂称之为微震。通过分析岩体破裂产生的微震信息可以确定震源位置、破裂等特征,有助于岩体工程稳定性监测、分析及预警。随着电子技术和设备的突破性进展,特别是计算机数据处理能力的提升,使微震监测技术得到了飞速的发展,微震监测技术已经进入到全数字化时代,成为岩体工程灾害监测中的先进技术手段。随着微震技术的不断进步,世界各国逐渐将其应用于多种岩体工程稳定性监测领域并进行相关微震活动研究。
通过布置微震无线监测采集发送系统对现场岩体工程所产生的微震信息进行采集和发送。微震无线监测采集发送系统每天都可以采集到大量的微震数据,分析处理如此大量的微震数据是工作的重点和难点,如果数据处理速度滞后,则可能错过某些关键信息,因此实时、高效、迅速地处理微震数据对于岩体工程安全具有重要意义。而现有技术中针对大量的微震监测数据,容易造成内容冗杂、实时显示弱、定位误差大等问题。
发明内容
本发明的目的是提供一种高效率、高质量、快速的岩体微震无线监测接收预警系统。
为实现上述目的,本发明提供了一种岩体微震无线监测接收预警系统,通过卫星与n个岩体微震智能采集与数据无线发送系统连接,n为大于4的正整数,所述岩体微震无线监测接收预警系统包括:
无线接收模块,通过卫星接收经过各所述岩体微震信号无线发送系统处理后的微震数据包;所述微震数据包包括微震信息和时间信息;
存储模块,与所述无线接收模块连接,所述存储模块采用云计算技术构建的微震云平台(Microseismic cloudplatform,简称MCP);内置n个所述岩体微震智能采集与数据无线发送系统的基本数据信息,自动、实时对应存储所述微震数据包并管理;
处理模块,与所述存储模块连接,用于对所述微震信息进行计算分析得到所述微震信息的波形参数和特征参数,根据所述波形参数和所述特征参数采用神经网络和深度学习的人工智能识别技术对所述微震信号进行分类得到所述微震信号的类别信息并进行处理得到岩体破裂信号,再根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息,所述处理模块将所述波形参数、所述特征参数、所述震源位置信息、所述类别信息、所述震源发生时间和所述震源等级信息发送至所述存储模块进行对应存储。
优选地,所述无线接收模块包括:
信号接收单元,用于通过卫星接收所述微震数据包;
数据接口单元,与所述信号接收单元连接,用于将所述微震数据包发送至所述存储模块。
优选地,所述处理模块包括:
分类单元,与所述存储模块连接,用于对所述微震信息进行计算分析得到所述微震信息的波形参数和特征参数,根据所述波形参数和所述特征参数采用神经网络和深度学习的人工智能识别技术对所述微震信号进行分类得到所述微震信号的类别信息,所述类别信息包括:噪声信息、爆破震动信息、敲击信息、机车震动信息和岩体破裂信息;对所述噪声信息、所述爆破震动信息、所述敲击信息和所述机车震动信息进行剔除,提取所述岩体破裂信息;
计算单元,分别与所述存储模块和所述分类单元连接,根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息;
人工智能判断单元,分别与所述存储模块和所述计算单元连接,内置专家数据库,用于根据所述专家数据库、所述震源位置信息、所述震源发生时间、所述震源等级信息、所述波形参数和所述特征参数对所述岩体破裂信号对应的岩体区域进行稳定性判断,得到所述岩体破裂信号对应的岩体区域为稳定状态或失稳状态并进行人工校验;若人工校验与判断单元得到的结果一致,则不进行处理,若不一致,则通过机器学习更新所述专家数据库。
优选地,所述处理模块还包括:
报警单元,与所述人工智能判断单元连接,若所述判断结果为失稳,则进行失稳概率判断,若所述失稳概率大,则发出报警信息;所述报警信息包括声音报警、短信报警和光电报警。
优选地,所述得到震源位置信息以及震源发生时间,计算公式为:
Figure BDA0002311082060000031
通过上述公式建立n个等式,计算得到X0、Y0、Z0和t0的值,进而得到所述震源位置信息和所述震源发生时间;
式中:Xk、Yk、Zk表示第k个岩体微震智能采集与数据无线发送系统的三坐标,X0、Y0、Z0表示震源位置信息的三坐标,t0表示震源发出时间,tk表示接收时间,v表示震荡波的传播速度。
优选地,所述进而得到震源等级信息具体为:
根据所述震源位置信息得到震源能量,再根据所述震源能量得到所述震源能量等级;在得到所述震源能量等级之后根据所述震源位置信息得到震源强度,再根据所述震源强度得到所述震源强度等级;所述震源等级信息包括所述震源能量等级和所述震源强度等级。
优选地,所述基本数据信息包括:
各所述岩体微震智能采集与数据无线发送系统的位置信息、编号信息和分区信息。
优选地,所述波形参数包括:
振幅、频率、相位、波长和加速度电压幅值。
优选地,所述岩体微震无线监测接收预警系统还包括:
显示模块,与所述存储模块连接,用于显示所述各所述岩体微震智能采集与数据无线发送系统对应的位置信息、编号信息、分区信息、所述震源发生时间、所述震荡波的波形参数、特征参数、所述时间信息、所述震源位置信息和所述震源等级信息。
优选地,所述岩体微震无线监测接收预警系统还包括:
用户终端,与所述存储模块连接,工作人员和用户通过所述用户终端查看所述各所述岩体微震智能采集与数据无线发送系统对应的位置信息、编号信息、分区信息、所述震源发生时间、所述震荡波的波形参数、特征参数、所述时间信息、所述震源位置信息、所述震源等级信息和所述岩体破裂信号的稳定性。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提高了微震数据的处理速度、管理能力,解决了微震大数据处理速度滞后、数量庞大、内容冗杂、实时显示弱等问题,同时本发明可针对多个地区同时进行接收监测,适用性更加广泛。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明岩体微震信号接收系统的结构示意图。
其中,1-无线接收模块,2-存储模块,3-处理模块,4-显示模块,5-用户终端,11-信号接收单元,12-数据接口单元,31-分类单元,32-计算单元,33-人工智能判断单元,34-报警单元。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种高效率、高质量、快速处理的岩体微震信号接收预警系统。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明岩体微震无线监测接收预警系统,通过卫星与n个岩体微震智能采集与数据无线发送系统连接,n为大于4的正整数,所述岩体微震无线监测接收预警系统包括:无线接收模块1、存储模块2和处理模块3。
所述无线接收模块1通过卫星接收经过各所述岩体微震信号无线发送系统处理后的微震数据包;所述微震数据包包括微震信息和时间信息。
所述存储模块2与所述无线接收模块1连接,所述存储模块2采用云计算技术构建的微震云平台;内置n个所述岩体微震智能采集与数据无线发送系统的基本数据信息,自动、实时对应存储所述微震数据包并管理。所述基本数据信息包括:n个所述岩体微震信号发送系统的位置信息、编号信息和分区信息。
所述处理模块3与所述存储模块2连接,所述处理模块3用于对所述微震信息进行计算分析得到所述微震信息的波形参数和特征参数,根据所述波形参数和所述特征参数采用神经网络和深度学习的人工智能识别技术对所述微震信号进行分类得到所述微震信号的类别信息并进行处理得到岩体破裂信号,再根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息,所述处理模块3将所述波形参数、所述特征参数、所述震源位置信息、所述类别信息、所述震源发生时间和所述震源等级信息发送至所述存储模块2进行对应存储。
具体地,所述波形参数包括:振幅、频率、相位、波长和加速度电压幅值。
作为一种可选的实施方式,本发明所述无线接收模块1包括:信号接收单元11和数据接口单元12。
所述信号接收单元11用于通过卫星接收所述微震数据包。
所述数据接口单元12与所述信号接收单元11连接,所述数据接口单元12用于将所述微震数据包发送至所述存储模块2。
作为一种可选的实施方式,本发明所述处理模块3包括:分类单元31、计算单元32和人工智能判断单元33。
其中所述分类单元31与所述存储模块2连接,所述分类单元31采用微震数据处理与分析模块(Microseismic DataProcessingAndAnalysis,简称MDPA)对所述微震信息进行计算分析得到所述微震信息的波形参数和特征参数,根据所述波形参数和所述特征参数采用神经网络和深度学习的人工智能识别技术对所述微震信号进行分类得到所述微震信号的类别信息,所述类别信息包括:噪声信息、爆破震动信息、敲击信息、机车震动信息和岩体破裂信息;对所述噪声信息、所述爆破震动信息、所述敲击信息和所述机车震动信息进行剔除,提取所述岩体破裂信息。
计算单元,分别与所述存储模块和所述分类单元连接,根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息;
人工智能判断单元,分别与所述存储模块和所述计算单元连接,内置专家数据库,用于根据所述专家数据库、所述震源位置信息、所述震源发生时间、所述震源等级信息、所述波形参数和所述特征参数对所述岩体破裂信号对应的岩体区域进行稳定性判断,得到所述岩体破裂信号对应的岩体区域为稳定状态或失稳状态并进行人工校验;若人工校验与判断单元得到的结果一致,则不进行处理,若不一致,则通过机器学习更新所述专家数据库
其中,所述得到所述微震信息的波形参数具体为:
对所述微震信号进行标准化处理,得到第一信号;对所述第一信号进行特征提取,得到第二信号;将所述第二信号导入频谱测量函数,得到频谱图;根据上述频谱图得到所述微震信号的主频,再通过波形成分函数确定所述震荡波的波形参数。
所述计算单元32分别与所述存储模块2和所述分类单元31连接,所述计算单元32采用微震震源定位模块(Microseismic source location,MSL),根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息。
所述人工智能判断单元33分别与所述存储模块2和所述计算单元32连接,所述人工智能判断单元33内置专家数据库,用于根据所述专家数据库、所述震源位置信息、所述震源发生时间、所述震源等级信息、所述波形参数和所述特征参数对所述岩体破裂信号对应的岩体区域进行稳定性判断,得到所述岩体破裂信号对应的岩体区域为稳定状态或失稳状态并进行人工校验;若人工校验与判断单元得到的结果一致,则不进行处理,若不一致,则通过机器学习更新所述专家数据库。
作为一种可选的实施方式,本发明所述处理模块3还包括:
报警单元34,与所述人工智能判断单元33连接,若所述判断结果为失稳,则进行失稳概率判断,若所述失稳概率大,则发出报警信息;所述报警信息包括声音报警、短信报警和光电报警。
具体地,所述得到震源位置信息以及震源发生时间,计算公式为:
Figure BDA0002311082060000071
通过上述公式建立n个等式,计算得到X0、Y0、Z0和t0的值,进而得到所述震源位置信息和所述震源发生时间。
式中:Xk、Yk、Zk表示第k个岩体微震智能采集与数据无线发送系统的三坐标,X0、Y0、Z0表示震源位置信息的三坐标,t0表示震源发出时间,tk表示接收时间,v表示震荡波的传播速度。
进一步地,所述进而得到震源等级信息具体为:
根据所述震源位置信息得到震源能量,再根据所述震源能量得到所述震源能量等级;在得到所述震源能量等级之后根据所述震源位置信息得到震源强度,再根据所述震源强度得到所述震源强度等级;所述震源等级信息包括所述震源能量等级和所述震源强度等级。
具体的,所述得到震源能量具体计算公式为:
Figure BDA0002311082060000072
式中:E0表示震源能量;ρ表示传播介质的密度;v表示震荡波的传播速度;R表示震源与所述岩体微震信号发送系统之间的距离,R=v(tk-t0);g表示电压幅值灵敏度;a(t)表示加速度电压幅值。
根据设定震源能量等级数值对所述震源能量进行等级划分,得到震源能量等级。
所述得到震源强度具体计算公式为:
Figure BDA0002311082060000073
式中:M0表示震源强度;F表示辐射系数;Ω0表示位移幅值频谱电平。
所述得到震源强度等级具体公式为:
Figure BDA0002311082060000074
式中:M表示震源强度等级。
作为一种可选的实施方式,本发明所述岩体微震无线监测接收预警系统还包括:
显示模块4,与所述存储模块2连接,用于显示所述各所述岩体微震智能采集与数据无线发送系统对应的位置信息、编号信息、分区信息、所述震源发生时间、所述震荡波的波形参数、特征参数、所述时间信息、所述震源位置信息和所述震源等级信息。
所述震源等级信息可按颜色的深浅具体显示。
作为一种可选的实施方式,本发明所述岩体微震无线监测接收预警系统还包括:用户终端5。
所述用户终端5通过5G网络连接所述存储模块2,5G网络具有高速度、高可靠、高度灵活性、低时延、低功耗等特征。工作人员授权用户账号密码,用户可通过手机或电脑从浏览器或者应用程序界面登录用户管理系统,用户管理系统连接所述存储模块2可得到所述各所述岩体微震信号发送系统对应的位置信息、编号信息、分区信息、所述震源发生时间、所述震荡波的波形参数、所述时间信息、所述稳定性、所述震源位置信息和所述震源等级信息,用户可随时监控岩体的实时情况,使得微震监测数据可视、清晰,实现有效信息共享,所述存储模块2也支持用户输入某一监测点的关键字进行查询,让用户能够在一定程度上了解和参与具体的分析过程。
综上所述,本发明具有如下优点:
1、运用现场采集的微震信号实时对岩体工程进行监测,无线监测数据的接收、存储、处理、定位、分级全部自动化,大大的减少了工作人员的工作量。结合针对微震无线监测开发的MCP、MDPA、MSL等软件,提高了微震数据的处理速度、管理能力,解决了微震大数据处理速度滞后、数量庞大、内容冗杂、实时显示弱、定位误差大等问题。
2、微震无线监测接收处理系统可对多个地区的无线采集发送系统进行微震信号接收、处理,直接接收单个所述岩体微震信号发送系统所采集的微震信号,具有灵活性。对所需要监测的区域只需要布置微震无线监测采集发送系统,即可完成岩体微震信号的采集、发送、接收和处理,微震无线监测接收处理系统会对每个地区的微震信号进行单独存储、处理、定位和分级,改变了原来每个工程采集系统和处理系统一对一的固有模式,且节约了监测成本,相对应的用户也可以通过用户管理系统对所监测的岩体工程实时查看、管理。
3、MCP具有低成本、存储量大、可扩展性强(存储容量无限)、高可靠性、并行分析等优势;MDPA可对微震原始数据进行在线计算、模拟、分析,具有自适应、泛化功能、非线性映射功能、高度并行处理等特点;MSL准确定位震源,计算模块将微震信号的强度和能量进行分级,为后期的防护、处理提供基础条件,且不同级数的强度在区域图上的颜色不同,方便确定防护岩体工程灾害的区域。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的系统及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种岩体微震无线监测接收预警系统,通过卫星与n个岩体微震智能采集与数据无线发送系统连接,n为大于4的正整数,其特征在于,所述岩体微震无线监测接收预警系统包括:
无线接收模块,通过卫星接收经过各所述岩体微震信号无线发送系统处理后的微震数据包;所述微震数据包包括微震信息和时间信息;
存储模块,与所述无线接收模块连接,所述存储模块采用云计算技术构建的微震云平台;内置n个所述岩体微震智能采集与数据无线发送系统的基本数据信息,自动、实时对应存储所述微震数据包并管理;
处理模块,与所述存储模块连接,用于对所述微震信息进行计算分析得到所述微震信息的波形参数和特征参数,根据所述波形参数和所述特征参数采用神经网络和深度学习的人工智能识别技术对所述微震信号进行分类得到所述微震信号的类别信息并进行处理得到岩体破裂信号,再根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息,所述处理模块将所述波形参数、所述特征参数、所述震源位置信息、所述类别信息、所述震源发生时间和所述震源等级信息发送至所述存储模块进行对应存储。
2.根据权利要求1所述的一种岩体微震无线监测接收预警系统,其特征在于,所述无线接收模块包括:
信号接收单元,用于通过卫星接收所述微震数据包;
数据接口单元,与所述信号接收单元连接,用于将所述微震数据包发送至所述存储模块。
3.根据权利要求1所述的一种岩体微震无线监测接收预警系统,其特征在于,所述处理模块包括:
分类单元,与所述存储模块连接,用于对所述微震信息进行计算分析得到所述微震信息的波形参数和特征参数,根据所述波形参数和所述特征参数采用神经网络和深度学习的人工智能识别技术对所述微震信号进行分类得到所述微震信号的类别信息,所述类别信息包括:噪声信息、爆破震动信息、敲击信息、机车震动信息和岩体破裂信息;对所述噪声信息、所述爆破震动信息、所述敲击信息和所述机车震动信息进行剔除,提取所述岩体破裂信息;
计算单元,分别与所述存储模块和所述分类单元连接,根据所述岩体破裂信息和与之对应的所述时间信息和所述基本数据信息进行计算得到震源位置信息以及震源发生时间,进而得到震源等级信息;
人工智能判断单元,分别与所述存储模块和所述计算单元连接,内置专家数据库,用于根据所述专家数据库、所述震源位置信息、所述震源发生时间、所述震源等级信息、所述波形参数和所述特征参数对所述岩体破裂信号对应的岩体区域进行稳定性判断,得到所述岩体破裂信号对应的岩体区域为稳定状态或失稳状态并进行人工校验;若人工校验与判断单元得到的结果一致,则不进行处理,若不一致,则通过机器学习更新所述专家数据库。
4.根据权利要求3所述的一种岩体微震无线监测接收预警系统,其特征在于,所述处理模块还包括:
报警单元,与所述人工智能判断单元连接,若所述判断结果为失稳,则进行失稳概率判断,若所述失稳概率大,则发出报警信息;所述报警信息包括声音报警、短信报警和光电报警。
5.根据权利要求3所述的一种岩体微震无线监测接收预警系统,其特征在于,所述得到震源位置信息以及震源发生时间,计算公式为:
Figure FDA0002311082050000021
通过上述公式建立n个等式,计算得到X0、Y0、Z0和t0的值,进而得到所述震源位置信息和所述震源发生时间;
式中:Xk、Yk、Zk表示第k个岩体微震智能采集与数据无线发送系统的三坐标,X0、Y0、Z0表示震源位置信息的三坐标,t0表示震源发出时间,tk表示接收时间,v表示震荡波的传播速度。
6.根据权利要求3所述的一种岩体微震无线监测接收预警系统,其特征在于,所述进而得到震源等级信息具体为:
根据所述震源位置信息得到震源能量,再根据所述震源能量得到所述震源能量等级;在得到所述震源能量等级之后根据所述震源位置信息得到震源强度,再根据所述震源强度得到所述震源强度等级;所述震源等级信息包括所述震源能量等级和所述震源强度等级。
7.根据权利要求1所述的一种岩体微震无线监测接收预警系统,其特征在于,所述基本数据信息包括:
各所述岩体微震智能采集与数据无线发送系统的位置信息、编号信息和分区信息。
8.根据权利要求1所述的一种岩体微震无线监测接收预警系统,其特征在于,所述波形参数包括:
振幅、频率、相位、波长和加速度电压幅值。
9.根据权利要求7所述的一种岩体微震无线监测接收预警系统,其特征在于,所述岩体微震无线监测接收预警系统还包括:
显示模块,与所述存储模块连接,用于显示所述各所述岩体微震智能采集与数据无线发送系统对应的位置信息、编号信息、分区信息、所述震源发生时间、所述震荡波的波形参数、特征参数、所述时间信息、所述震源位置信息和所述震源等级信息。
10.根据权利要求9所述的一种岩体微震无线监测接收预警系统,其特征在于,所述岩体微震无线监测接收预警系统还包括:
用户终端,与所述存储模块连接,工作人员和用户通过所述用户终端查看所述各所述岩体微震智能采集与数据无线发送系统对应的位置信息、编号信息、分区信息、所述震源发生时间、所述震荡波的波形参数、特征参数、所述时间信息、所述震源位置信息、所述震源等级信息和所述岩体破裂信号的稳定性。
CN201911258982.3A 2019-12-10 2019-12-10 一种岩体微震无线监测接收预警系统 Active CN110910613B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911258982.3A CN110910613B (zh) 2019-12-10 2019-12-10 一种岩体微震无线监测接收预警系统
US16/833,084 US11442187B2 (en) 2019-12-10 2020-03-27 Microseismic wireless monitoring, receiving and early warning system of rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911258982.3A CN110910613B (zh) 2019-12-10 2019-12-10 一种岩体微震无线监测接收预警系统

Publications (2)

Publication Number Publication Date
CN110910613A true CN110910613A (zh) 2020-03-24
CN110910613B CN110910613B (zh) 2022-04-05

Family

ID=69824018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911258982.3A Active CN110910613B (zh) 2019-12-10 2019-12-10 一种岩体微震无线监测接收预警系统

Country Status (2)

Country Link
US (1) US11442187B2 (zh)
CN (1) CN110910613B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703038A (zh) * 2021-08-31 2021-11-26 中煤科工集团重庆研究院有限公司 一种微震信号自动采集识别方法及系统
CN113740899A (zh) * 2021-10-20 2021-12-03 辽宁工程技术大学 一种基于无线传输的煤矿采场震源监测定位系统
CN114302361A (zh) * 2021-12-30 2022-04-08 广西大学 一种用于岩体灾变监测的微震信号5g无线传输方法与装置
US11385370B2 (en) * 2019-12-10 2022-07-12 Dalian University Of Technology Microseismic intelligent acquisition and data wireless transmission system of rock

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703053B (zh) * 2021-08-31 2023-09-26 中煤科工集团重庆研究院有限公司 工作面水害微震动态监测方法及系统
CN114519920A (zh) * 2022-01-10 2022-05-20 广西大学 基于微震多前兆特征的硬岩塌方智能预警方法、系统及设备
CN114743350B (zh) * 2022-01-14 2022-12-06 中铁西南科学研究院有限公司 一种构造混杂岩区滑坡监测预警系统
CN116794718A (zh) * 2023-07-11 2023-09-22 福建师范大学 一种多通道矿区微震信号自动监测和预处理装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995582A (zh) * 2010-08-31 2011-03-30 成都林海电子有限责任公司 一种基于卫星通信的地震实时监测系统
CN103412283A (zh) * 2013-08-27 2013-11-27 中国地质调查局水文地质环境地质调查中心 地面塌陷微地震三维定位监测方法和系统
CN103777232A (zh) * 2014-02-20 2014-05-07 武汉大学 一种基于爆破振动监测的深部岩体岩爆预测预警方法
CN104077890A (zh) * 2014-07-17 2014-10-01 哈尔滨理工大学 分布式地震预警云监测网络系统及方法
CN104391321A (zh) * 2014-12-16 2015-03-04 吉林大学 无缆存储式地震仪低功耗电源管理系统及管理方法
CN105116440A (zh) * 2015-09-11 2015-12-02 中铁十九局集团矿业投资有限公司 一种边坡岩体监测系统及监测方法
CN105891874A (zh) * 2016-06-30 2016-08-24 马克 一种采动煤岩体突水微震监测方法
CN107015269A (zh) * 2017-06-07 2017-08-04 吉林大学 一种基于无线网络的微地震压裂实时监测系统及监测方法
CN107515419A (zh) * 2017-08-25 2017-12-26 平安煤炭开采工程技术研究院有限责任公司 岩体稳定性的估计方法和装置
CN107561579A (zh) * 2017-08-31 2018-01-09 北京市政建设集团有限责任公司 一种隧道施工微震监测系统及监测方法
CN107784276A (zh) * 2017-10-13 2018-03-09 中南大学 微震事件识别方法和装置
CN108122376A (zh) * 2017-12-29 2018-06-05 北京国电高科科技有限公司 一种地震监测预警系统及方法
CN109164482A (zh) * 2018-07-10 2019-01-08 北京昊锐科技有限公司 基于光纤传感器的井下微地震求解方法、装置及系统
CN109441546A (zh) * 2018-12-28 2019-03-08 湖北海震科创技术有限公司 基于微震信息矿山灾害自动分区预警的方法
CN110058294A (zh) * 2019-05-10 2019-07-26 东北大学 一种隧道微震监测岩石破裂事件自动识别方法
CN110220979A (zh) * 2019-06-26 2019-09-10 重庆地质矿产研究院 基于微地震技术的高陡岸坡稳定性监测系统与评价方法
CN110308485A (zh) * 2019-07-05 2019-10-08 中南大学 基于深度学习的微震信号分类方法、装置及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9417348B2 (en) * 2012-10-05 2016-08-16 Halliburton Energy Services, Inc. Updating microseismic histogram data
US11280185B2 (en) * 2014-09-10 2022-03-22 Fracture ID, Inc. Apparatus and method using measurements taken while drilling cement to obtain absolute values of mechanical rock properties along a borehole
US10408955B2 (en) * 2014-11-19 2019-09-10 Halliburton Energy Services, Inc. Filtering microseismic events for updating and calibrating a fracture model
CA3091766C (en) * 2018-03-29 2023-01-17 Exxonmobil Upstream Research Company Enhanced surveillance of subsurface operation integrity using microseismic data
US11320552B2 (en) * 2018-03-29 2022-05-03 Exxonmobil Upstream Research Company Enhanced surveillance of subsurface operation integrity using neural network analysis of microseismic data

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995582A (zh) * 2010-08-31 2011-03-30 成都林海电子有限责任公司 一种基于卫星通信的地震实时监测系统
CN103412283A (zh) * 2013-08-27 2013-11-27 中国地质调查局水文地质环境地质调查中心 地面塌陷微地震三维定位监测方法和系统
CN103777232A (zh) * 2014-02-20 2014-05-07 武汉大学 一种基于爆破振动监测的深部岩体岩爆预测预警方法
CN104077890A (zh) * 2014-07-17 2014-10-01 哈尔滨理工大学 分布式地震预警云监测网络系统及方法
CN104391321A (zh) * 2014-12-16 2015-03-04 吉林大学 无缆存储式地震仪低功耗电源管理系统及管理方法
CN105116440A (zh) * 2015-09-11 2015-12-02 中铁十九局集团矿业投资有限公司 一种边坡岩体监测系统及监测方法
CN105891874A (zh) * 2016-06-30 2016-08-24 马克 一种采动煤岩体突水微震监测方法
CN107015269A (zh) * 2017-06-07 2017-08-04 吉林大学 一种基于无线网络的微地震压裂实时监测系统及监测方法
CN107515419A (zh) * 2017-08-25 2017-12-26 平安煤炭开采工程技术研究院有限责任公司 岩体稳定性的估计方法和装置
CN107561579A (zh) * 2017-08-31 2018-01-09 北京市政建设集团有限责任公司 一种隧道施工微震监测系统及监测方法
CN107784276A (zh) * 2017-10-13 2018-03-09 中南大学 微震事件识别方法和装置
CN108122376A (zh) * 2017-12-29 2018-06-05 北京国电高科科技有限公司 一种地震监测预警系统及方法
CN109164482A (zh) * 2018-07-10 2019-01-08 北京昊锐科技有限公司 基于光纤传感器的井下微地震求解方法、装置及系统
CN109441546A (zh) * 2018-12-28 2019-03-08 湖北海震科创技术有限公司 基于微震信息矿山灾害自动分区预警的方法
CN110058294A (zh) * 2019-05-10 2019-07-26 东北大学 一种隧道微震监测岩石破裂事件自动识别方法
CN110220979A (zh) * 2019-06-26 2019-09-10 重庆地质矿产研究院 基于微地震技术的高陡岸坡稳定性监测系统与评价方法
CN110308485A (zh) * 2019-07-05 2019-10-08 中南大学 基于深度学习的微震信号分类方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
光东: "全光纤微震监测系统信号处理与阵列复用技术的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
孔令海: "采动覆岩裂隙分布特征的微震监测研究", 《煤炭科学技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385370B2 (en) * 2019-12-10 2022-07-12 Dalian University Of Technology Microseismic intelligent acquisition and data wireless transmission system of rock
CN113703038A (zh) * 2021-08-31 2021-11-26 中煤科工集团重庆研究院有限公司 一种微震信号自动采集识别方法及系统
CN113703038B (zh) * 2021-08-31 2024-05-07 中煤科工集团重庆研究院有限公司 一种微震信号自动采集识别方法及系统
CN113740899A (zh) * 2021-10-20 2021-12-03 辽宁工程技术大学 一种基于无线传输的煤矿采场震源监测定位系统
CN114302361A (zh) * 2021-12-30 2022-04-08 广西大学 一种用于岩体灾变监测的微震信号5g无线传输方法与装置
CN114302361B (zh) * 2021-12-30 2022-08-09 广西大学 一种用于岩体灾变监测的微震信号5g无线传输方法

Also Published As

Publication number Publication date
CN110910613B (zh) 2022-04-05
US11442187B2 (en) 2022-09-13
US20210173107A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN110910613B (zh) 一种岩体微震无线监测接收预警系统
JP6945895B2 (ja) 表面波探査方法および端末デバイス
CN103365916B (zh) 地震事件参数估计获取方法和系统,地震事件搜索引擎
Iannaccone et al. A prototype system for earthquake early-warning and alert management in southern Italy
CN102565855B (zh) 油田压裂地面微地震数据处理方法
CN105974469A (zh) 岩质边坡开挖扰动作用下的微震监测预警分析系统及方法
CN105388511A (zh) 速度各向异性微震监测定位方法、定位终端及定位系统
CN102279410A (zh) 矿山地下开采活动实时监测系统及其方法
CN112927478A (zh) 一种地质灾害普适型监测预警系统
CN103336298A (zh) 一种大地震断裂区域前兆数据的采集和分析方法
Dang et al. Stochastic finite-fault ground motion simulation for the M w 6.7 earthquake in Lushan, China
CN103742131A (zh) 随钻声波井下信号采集与处理系统的时差实时提取方法
CN104280772A (zh) 一种井中微地震震相识别方法
Watson et al. Volcano infrasound: progress and future directions
JP4506625B2 (ja) リアルタイム地震情報を利用した地震動の予測システム
CN115016006B (zh) 一种基于矿山安全监测的微震定位方法及定位系统
CN102156295A (zh) 基于可控震源的无缆地震仪触发时标快速定位方法
Koshimura Establishing the advanced disaster reduction management system by fusion of real-time disaster simulation and big data assimilation
CN106646661A (zh) 一种矿床水文地质综合勘查系统
CN113189644B (zh) 一种微震震源定位方法及系统
CN113639849A (zh) 基于固有振动频率的隧道围岩块体垮塌监测方法及系统
Wang et al. Cumulative absolute velocity prediction for earthquake early warning with deep learning
Chapman et al. Magnitude, recurrence interval, and near‐source ground‐motion modeling of the Mineral, Virginia, earthquake of 23 August 2011
Rontogianni et al. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan
Werner-Allen et al. Real-time volcanic earthquake localization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant