CN110909827A - 一种适用于风机叶片声音信号的降噪方法 - Google Patents

一种适用于风机叶片声音信号的降噪方法 Download PDF

Info

Publication number
CN110909827A
CN110909827A CN201911301369.5A CN201911301369A CN110909827A CN 110909827 A CN110909827 A CN 110909827A CN 201911301369 A CN201911301369 A CN 201911301369A CN 110909827 A CN110909827 A CN 110909827A
Authority
CN
China
Prior art keywords
noise
frame
signal
wind
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911301369.5A
Other languages
English (en)
Inventor
徐超林
李剑
王禹晴
周德洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinn Wind Power Co Ltd
Original Assignee
Tianjin Jinn Wind Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinn Wind Power Co Ltd filed Critical Tianjin Jinn Wind Power Co Ltd
Priority to CN201911301369.5A priority Critical patent/CN110909827A/zh
Publication of CN110909827A publication Critical patent/CN110909827A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/24Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being the cepstrum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Sustainable Development (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Sustainable Energy (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Artificial Intelligence (AREA)

Abstract

本发明提出一种适用于风机叶片声音信号的降噪方法,方法包括:首先建立不同风速尺度下的风噪数据库,并对待降噪的叶片声音信号通过左右声道的特性进行预处理;然后取出与待降噪信号同风速下的风噪信号作为参考信号,并基于皮尔逊相关系数和K_means算法找出待降噪信号的含有噪声的帧与不含噪声的帧;最后针对两类帧信号做不同方式的处理,并进行帧还原,从而得到纯净的风机叶片声音信号。本发明可以对风场中声音信号实现降噪的预处理,滤除长年存在的风噪的干扰。

Description

一种适用于风机叶片声音信号的降噪方法
技术领域
本发明涉及一种适用于风机叶片声音信号的降噪方法,针对风场中采集风机声音时会受到的风噪以及其他随机噪声的干扰问题,设计一种能够消除这些扰噪声的流程方法,属于声音信号降噪技术领域。
背景技术
风电场的叶片故障检测一直是一个不容忽视的问题,如果不能够在叶片故障初期诊断出故障,随着运行时间的增长,故障程度会进一步加深,造成维修成本加大,降低风能的捕获效率,严重时会降低叶片的使用寿命。
国内外众多学者在叶片的该组航诊断中做了大量的研究,而基于风机叶片声音信号实现叶片的故障诊断鲜有研究,在风场中采集风机声音信号时主要受到风噪的影响,这对基于声音信号的故障诊断造成极大的干扰,也是制约这方面研究的关键环节,所以如何消除风噪,得到纯净的风机叶片声音信号对叶片的故障诊断意义深远。
针对风机的降噪问题,普遍的方法是基于滤波器、小波变换、EMD分解等算法实现去噪,不同于这些算法,本发明通过建立不同风速尺度下的风噪信号数据库,从分帧的角度对含噪帧信号进行重新拟合,进而实现降噪的目的。
发明内容
本发明旨在研究一种适用于风机叶片声音信号的降噪方法,针对一个风场,首先建立不同风速尺度下风噪信号数据库,并将需要去噪的声音信号分帧处理并提取各帧的梅尔倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC);然后依据和风噪信号的相关性寻找到含噪帧和非噪帧,并对两种类型的帧信号进行不同的处理;最后将各帧信号重构回去从而得到纯净的风机叶片声音信号,实现声音信号的降噪处理。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明公开的一种适用于风机叶片声音信号的降噪方法流程图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,为本发明一种适用于风机叶片声音信号的降噪方法流程图,其步骤包括:
步骤1.风场中的风噪具有随机性,并不是一直存在的,所以针对某一风场,在远离风机的场地利用单声道采集装置采集不同风速尺度下的风噪信号,建立风场风噪信息的数据库,其中风速尺度间隔为1m/s;
步骤2.针对需要进行降噪处理的叶片声音信号x1(t)利用双声道声音采集装置进行采集,在时域上分别刻画左声道与右声道的待降噪信号的波形,对于某一个时间点的波形幅值,取对应时间点的左右声道波形幅值的最小值,依此原则,得到基于左右声道预处理后的叶片声音信号x2(t);
步骤3.从风噪数据库中,取出与待降噪信号同风速的参考风噪信号z(t),并分别针对z(t)、x2(t)做相同的分帧处理,其中x2(t)被分为n1帧,z(t)被分为n2帧,分帧公式如下:
fn=(N-wlen+inc)/inc (1)
overlap=wlen-inc (2)
式中,N为声音信号的长度,wlen为设置的帧长,inc为设置的帧移,通常是帧长的1/4左右,overlap为帧重叠,fn为信号分成的帧数;
MFCC是一种数据压缩技术,能够用一组12—16数值组成的向量代表一帧信号的特征情况,提取z(t)与x2(t)的每帧的MFCC系数,即mfcc(z,n2)、mfcc(x2,n1);
步骤4.针对x2(t)的每帧信号的mfcc(x2,k),分别求取与z(t)所有帧mfcc(z,q)的皮尔逊系数,然后求取平均值,从而得到x2(t)的每帧信号与参考风噪的相关性大小R(k),其中k取1—n1,q取1—n2,涉及到的公式如下:
Figure BDA0002321877790000031
Figure BDA0002321877790000032
式(3)是求取x,y两个变量皮尔逊相关系数的的过程Cov(x,y)是变量x,y的协方差,σx和σy分别为x,y的方差;
针对R(k)构成的数据集合,采用K_means方法进行聚类,聚类数目为2,聚类结果中,数值较小的类中R(k)对应的是帧是不含噪声的非噪帧,而数值较大的类中R(k)对应的是帧是含有噪声的含噪帧;
步骤5.针对非噪帧不做任何处理,予以保留,对含噪帧而言,任取一帧风噪帧进行傅里叶(FFT)变换,将含噪帧在频域上与风噪帧做差,重新进行频域上谱线的刻画,从而得到含噪帧的处理结果;
步骤6.对处理后的含噪帧和非噪帧进行帧还原处理,取出x2(t)第1帧的1—overlap数据点和第2帧到n1帧每帧中的overlap+1—wlen数据点重新组成一列数据,则这列数据即为降噪处理后的叶片声音信号。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

1.一种适用于风机叶片声音信号的降噪方法,所述的方法包括:
步骤1.建立不同尺度下的风噪声音信号数据库;
步骤2.基于左右声道预处理需要降噪的叶片声音信号;
步骤3.取出与待降噪信号同风速下的风噪信号,然后针对两种信号做同样的分帧处理,并且提取两种信号的MFCC系数;
步骤4.求取待降噪信号每帧数据与风噪帧的相关系数R(k),并利用K_means聚类方法辨识出不含噪声的帧信号与含噪声的帧信号;
步骤5.保留非噪帧信号,对于含噪帧信号,在频域上与风噪帧信号做差处理;
步骤6.将非噪帧信号和含噪帧信号进行帧还原,从而得到纯净的风机叶片的声音信号,实现了声音的降噪处理。
2.如权利要求1步骤2所述基于左右声道预处理需要降噪的叶片声音信号的特征为:采集信号的声因传感器是双声道的,在时域上分别刻画左声道与右声道的待降噪信号的波形,对于某一个时间点的波形幅值,取对应时间点的左右声道波形幅值的最小值,依此原则,得到基于左右声道预处理后的叶片声音信号x2(t)。
3.如权利要求1步骤4所述的待降噪信号每帧数据与风噪帧的相关系数R(k)的特征为:针对x2(t)的每帧信号的mfcc(x2,k),分别求取与z(t)所有帧mfcc(z,q)的皮尔逊系数,然后求取平均值,从而得到x2(t)的每帧信号与参考风噪的相关性大小R(k),R(k)的求取公式如下:
Figure FDA0002321877780000011
式中k取1—n1,q取1—n2
4.如权利要求1步骤4所述利用K_means聚类方法辨识出含噪声帧与非噪帧的特征为:针对R(k)构成的数据集合,设置聚类的数目为2,聚类结果中,数值较小的类中R(k)对应的是帧是不含噪声的非噪帧,而数值较大的类中R(k)对应的是帧是含有噪声的含噪帧。
5.如权利要求1步骤5所述含噪帧与非噪帧处理方式特征为:针对非噪帧不做任何处理,予以保留,对含噪帧而言,任取一帧风噪帧进行傅里叶变换,将含噪帧在频域上与风噪帧做差,重新进行频域上谱线的刻画,从而得到含噪帧的处理结果。
6.如权利要求1步骤6所述帧还原处理的特征为:取出x2(t)第1帧的1—overlap数据点和第2帧到n1帧每帧中的overlap+1—wlen数据点重新组成一列数据,则这列数据即为降噪处理后的叶片声音信号。
CN201911301369.5A 2019-12-17 2019-12-17 一种适用于风机叶片声音信号的降噪方法 Pending CN110909827A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911301369.5A CN110909827A (zh) 2019-12-17 2019-12-17 一种适用于风机叶片声音信号的降噪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911301369.5A CN110909827A (zh) 2019-12-17 2019-12-17 一种适用于风机叶片声音信号的降噪方法

Publications (1)

Publication Number Publication Date
CN110909827A true CN110909827A (zh) 2020-03-24

Family

ID=69826042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911301369.5A Pending CN110909827A (zh) 2019-12-17 2019-12-17 一种适用于风机叶片声音信号的降噪方法

Country Status (1)

Country Link
CN (1) CN110909827A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049252A (zh) * 2021-03-25 2021-06-29 成都天佑路航轨道交通科技有限公司 一种列车轴承箱的故障检测方法
CN115547356A (zh) * 2022-11-25 2022-12-30 杭州兆华电子股份有限公司 一种基于无人机异常声音检测的风噪处理方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049252A (zh) * 2021-03-25 2021-06-29 成都天佑路航轨道交通科技有限公司 一种列车轴承箱的故障检测方法
CN113049252B (zh) * 2021-03-25 2023-04-14 成都天佑路航轨道交通科技有限公司 一种列车轴承箱的故障检测方法
CN115547356A (zh) * 2022-11-25 2022-12-30 杭州兆华电子股份有限公司 一种基于无人机异常声音检测的风噪处理方法及系统
CN115547356B (zh) * 2022-11-25 2023-03-10 杭州兆华电子股份有限公司 一种基于无人机异常声音检测的风噪处理方法及系统

Similar Documents

Publication Publication Date Title
CN109145727A (zh) 一种基于vmd参数优化的轴承故障特征提取方法
Wang et al. ia-PNCC: Noise Processing Method for Underwater Target Recognition Convolutional Neural Network.
Jangjit et al. A new wavelet denoising method for noise threshold
CN101853665A (zh) 语音中噪声的消除方法
CN108922514B (zh) 一种基于低频对数谱的鲁棒特征提取方法
CN110909827A (zh) 一种适用于风机叶片声音信号的降噪方法
Hidayat et al. A Modified MFCC for Improved Wavelet-Based Denoising on Robust Speech Recognition.
CN103578466A (zh) 基于分数阶傅里叶变换的语音非语音检测方法
Huang et al. Dccrgan: Deep complex convolution recurrent generator adversarial network for speech enhancement
Li Speech denoising based on improved discrete wavelet packet decomposition
Ashraf et al. Ambient-noise free generation of clean underwater ship engine audios from hydrophones using generative adversarial networks
Yu et al. Sparse time–frequency representation for the transient signal based on low-rank and sparse decomposition
CN115655719A (zh) 一种轴承振动信号分阶段降噪方法及轴承故障识别方法
CN116312561A (zh) 一种电力调度系统人员声纹识别鉴权降噪和语音增强方法、系统及装置
CN113571074B (zh) 基于多波段结构时域音频分离网络的语音增强方法及装置
CN111968627B (zh) 一种基于联合字典学习和稀疏表示的骨导语音增强方法
CN114858430A (zh) 一种基于lcd-小波新阈值的机械密封声发射信号降噪方法
Tayachi et al. A New Approach for Detection of Gear Defects using a Discrete Wavelet Transform and Fast Empirical Mode Decomposition
CN113343887A (zh) 基于边缘计算与机器学习的多传感器混合故障信号盲分离方法
CN106997766B (zh) 一种基于宽带噪声的同态滤波语音增强方法
Sudheer Kumar et al. Noise Reduction in Audio File Using Spectral Gatting and FFT by Python Modules
Fenghua et al. Speech signal enhancement through wavelet domain MMSE filtering
TWI749547B (zh) 應用深度學習的語音增強系統
Kumar et al. Noise Reduction Algorithm for Speech Enhancement
Saxena et al. Comparative Study of White Gaussian Noise Reduction for Different Signals using Wavelet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination