CN110907601A - Urban road air pollutant big data acquisition device - Google Patents

Urban road air pollutant big data acquisition device Download PDF

Info

Publication number
CN110907601A
CN110907601A CN201911172631.0A CN201911172631A CN110907601A CN 110907601 A CN110907601 A CN 110907601A CN 201911172631 A CN201911172631 A CN 201911172631A CN 110907601 A CN110907601 A CN 110907601A
Authority
CN
China
Prior art keywords
detection assembly
air
pivot
wind speed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911172631.0A
Other languages
Chinese (zh)
Other versions
CN110907601B (en
Inventor
吕阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yilishun Environmental Protection Technology Co.,Ltd.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010438675.XA priority Critical patent/CN111579721A/en
Priority to CN201911172631.0A priority patent/CN110907601B/en
Publication of CN110907601A publication Critical patent/CN110907601A/en
Application granted granted Critical
Publication of CN110907601B publication Critical patent/CN110907601B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array

Abstract

The invention discloses a big data acquisition device for air pollutants on urban roads, and belongs to the technical field of air detection. A big data acquisition device for urban road air pollutants comprises a shell, a transmission assembly, an air detection assembly, a temperature and humidity detection assembly and a wind speed detection assembly; according to the invention, the transmission assembly is arranged in the shell, the air detection assembly, the temperature and humidity detection assembly and the wind speed detection assembly are respectively arranged on the outer side of the shell, and the transmission assembly is utilized to drive the air detection assembly, the temperature and humidity detection assembly and the wind speed detection assembly to be opened simultaneously, so that the air detection assembly is used for detecting air quality, and the temperature and humidity detection assembly is used for detecting air temperature and humidity and the wind speed detection assembly is used for detecting air temperature and humidity. The invention has reasonable structural design and convenient carrying, and can be used for monitoring the flowing environment of a multipoint city, carrying out emergency monitoring on the air quality after emergency event processing, performing irregular spot check on key pollution enterprises and the like.

Description

Urban road air pollutant big data acquisition device
Technical Field
The invention relates to the technical field of air detection, in particular to a big data acquisition device for air pollutants on urban roads.
Background
Environmental protection monitoring is firstly carried out, automation and informatization are the premise and guarantee of environmental monitoring, and when local economy develops rapidly for years, various regions continuously generate environmental pollution events such as water, gas and noise with different degrees, so that the life quality of people is seriously influenced, and the continuous development of the local economy is hindered. The ground stations for monitoring the air environment quality are planned and installed in various regions, but the monitoring stations can only measure the average air quality of the local regions, so that the monitoring of the flowing environment of urban roads is inconvenient, and therefore, how to provide a portable air quality monitoring device for monitoring the flowing environment of multipoint cities, performing emergency monitoring on the air quality after emergency events are processed, and performing irregular spot check on key pollution enterprises is particularly important, and in view of the above, a device for acquiring big data of air pollutants of urban roads is provided.
Disclosure of Invention
1. Technical problem to be solved
The invention aims to provide a device for collecting big data of air pollutants on urban roads, which aims to solve the problems in the background technology.
2. Technical scheme
A big data acquisition device for urban road air pollutants comprises a shell, a transmission assembly, an air detection assembly, a temperature and humidity detection assembly and a wind speed detection assembly;
the shell is of a hollow cuboid structure, the top surface of the shell is provided with an accommodating groove A, the front end of the shell is provided with an accommodating groove B, and the top surface of the shell is also provided with an installation groove;
the transmission assembly is arranged in the shell and used for driving the air detection assembly, the temperature and humidity detection assembly and the wind speed detection assembly to be opened;
the air detection assembly is arranged on the inner side of the accommodating groove A and is used for detecting the air quality;
the temperature and humidity detection assembly is arranged on the inner side of the mounting groove and used for detecting the temperature and humidity of air;
the wind speed detection assembly is arranged on the inner side of the accommodating groove B and used for detecting the wind direction and the wind speed of the air.
Preferably, the transmission assembly comprises a fixed seat, the fixed seat is fixed inside the shell, a rotating shaft A penetrates through the middle of the fixed seat, a guide block is limited on the outer side of the middle of the rotating shaft A and is rotatably connected with the rotating shaft A, and a bevel gear A is sleeved at the rear end of the rotating shaft A.
Preferably, a rotating shaft B is arranged below the rotating shaft A, the front end of the rotating shaft B is rotatably connected with the lower end of the fixing seat, a cylindrical cam is sleeved on the outer side of the front end of the rotating shaft B, a guide pillar at the lower end of the guide block is in sliding fit with a curved groove of the cylindrical cam, a helical gear B is sleeved at the rear end of the rotating shaft B, the helical gear B is meshed with the helical gear A, and the rear end of the rotating shaft B is coaxially and fixedly connected with the end part of the motor output shaft fixedly arranged in the shell.
Preferably, a rotating shaft C is arranged above the rotating shaft A and penetrates through the upper end of the fixing seat, a gear is sleeved at the front end of the rotating shaft C, a helical gear C is sleeved at a position, close to the rear end, of the rotating shaft C, the helical gear C is meshed with the helical gear A and the rear end of the rotating shaft C is further sleeved with a bevel gear A.
Preferably, the air detection assembly comprises a mounting seat, the mounting seat is of a T-shaped structure, the top surface of the mounting seat is fixedly provided with an air detector, the rear side of the lower end of the mounting seat is welded with a guide rail, and the guide rail is a hollow Z-shaped slide rail.
Preferably, the air detection assembly further comprises a screw rod arranged on the inner side of the accommodating groove A, one end of the screw rod is rotatably connected with the inner wall of the accommodating groove A, a bevel gear B is sleeved at the other end of the screw rod, the bevel gear B is in meshing transmission with the bevel gear A, a sliding block in threaded connection with the screw rod is arranged on the screw rod, and the sliding block is in sliding fit with the guide rail.
Preferably, the temperature and humidity detection assembly comprises a cover plate and a temperature and humidity detection probe, the cover plate is in sliding connection with the inner wall of the mounting groove, the temperature and humidity detection probe is fixedly arranged in the mounting groove, the cover plate is of a T-shaped structure, a plurality of tooth grooves are linearly arranged at equal intervals at the lower end of the T-shaped structure, and the tooth grooves are in meshing contact with the gears.
Preferably, the wind speed detection assembly is a wind speed detector, and the wind speed detector is mounted at the front end of the rotating shaft A.
3. Advantageous effects
Compared with the prior art, the invention has the advantages that:
according to the invention, the transmission assembly is arranged in the shell, the air detection assembly, the temperature and humidity detection assembly and the wind speed detection assembly are respectively arranged on the outer side of the shell, and the transmission assembly is utilized to drive the air detection assembly, the temperature and humidity detection assembly and the wind speed detection assembly to be opened simultaneously, so that the air detection assembly is used for detecting air quality, and the temperature and humidity detection assembly is used for detecting air temperature and humidity and the wind speed detection assembly is used for detecting air temperature and humidity. The invention has reasonable structural design and convenient carrying, and can be used for monitoring the flowing environment of a multipoint city, carrying out emergency monitoring on the air quality after emergency event processing, performing irregular spot check on key pollution enterprises and the like.
Drawings
FIG. 1 is a schematic view of the overall structure of the present invention;
FIG. 2 is a front side schematic view of a portion of the structure of the present invention;
FIG. 3 is a rear side schematic view of a portion of the structure of the present invention;
FIG. 4 is a schematic bottom view of a portion of the present invention;
the reference numbers in the figures illustrate: the wind speed detection device comprises a shell 1, a containing groove A101, a containing groove B102, a mounting groove 103, a transmission assembly 2, a fixed seat 201, a rotating shaft A202, a guide block 203, a bevel gear A204, a rotating shaft B205, a cylindrical cam 206, a bevel gear B207, a rotating shaft C208, a bevel gear C209, a gear 210, a motor 211, a bevel gear B212, an air detection assembly 3, a mounting seat 301, an air detector 302, a guide rail 303, a screw rod 304, a bevel gear B305, a sliding block 306, a temperature and humidity detection assembly 4, a cover plate 401, a tooth space 402 and a wind speed detection assembly 5.
Detailed Description
In the description of the present invention, it is to be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", and the like, indicate orientations and positional relationships based on those shown in the drawings, and are used only for convenience of description and simplicity of description, and do not indicate or imply that the equipment or element being referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, should not be considered as limiting the present invention.
In the description of the present invention, "a plurality" means two or more unless specifically defined otherwise.
Referring to fig. 1-4, the present invention provides a technical solution:
a big data acquisition device for urban road air pollutants comprises a shell 1, a transmission assembly 2, an air detection assembly 3, a temperature and humidity detection assembly 4 and a wind speed detection assembly 5;
the shell 1 is a cuboid structure with a hollow interior, the top surface of the shell 1 is provided with an accommodating groove A101, the front end of the shell 1 is provided with an accommodating groove B102, and the top surface of the shell 1 is also provided with an installation groove 103;
the transmission assembly 2 is arranged in the shell 1 and used for driving the air detection assembly 3, the temperature and humidity detection assembly 4 and the wind speed detection assembly 5 to be opened;
the air detection assembly 3 is arranged on the inner side of the accommodating groove A101 and is used for detecting the air quality;
the temperature and humidity detection assembly 4 is arranged on the inner side of the mounting groove 103 and is used for detecting the temperature and humidity of air;
the wind speed detection unit 5 is installed inside the storage groove B102, and detects the direction of the air and the wind speed.
The transmission assembly 2 comprises a fixed seat 201, the fixed seat 201 is fixed inside the shell 1, a rotating shaft A202 penetrates through the middle of the fixed seat 201, a guide block 203 is limited on the outer side of the middle of the rotating shaft A202, the guide block 203 is rotatably connected with the rotating shaft A202, and a bevel gear A204 is sleeved at the rear end of the rotating shaft A202.
A rotating shaft B205 is arranged below the rotating shaft A202, the front end of the rotating shaft B205 is rotatably connected with the lower end of the fixed seat 201, a cylindrical cam 206 is sleeved outside the front end of the rotating shaft B205, a guide pillar at the lower end of the guide block 203 is in sliding fit with a curved groove of the cylindrical cam 206, a helical gear B207 is sleeved at the rear end of the rotating shaft B205, the helical gear B207 is meshed with the helical gear A204, and the rear end of the rotating shaft B205 is coaxially and fixedly connected with the end part of an output shaft of a motor 211 fixedly.
A rotating shaft C208 is arranged above the rotating shaft A202, the rotating shaft C208 penetrates through the upper end of the fixing seat 201, a gear 210 is sleeved at the front end of the rotating shaft C208, a helical gear C209 is sleeved at a position, close to the rear end, of the rotating shaft C208, the helical gear C209 is in meshed connection with the helical gear A204, and a bevel gear A212 is further sleeved at the rear end of the rotating shaft C208.
Air detection subassembly 3 includes mount pad 301, and mount pad 301 is T type structure to set firmly air detector 302 at mount pad 301 top surface, mount pad 301 lower extreme rear side welded guide rail 303, guide rail 303 is hollow Z type slide rail.
The air detection assembly 3 further comprises a screw rod 304 arranged on the inner side of the accommodating groove A101, one end of the screw rod 304 is rotatably connected with the inner wall of the accommodating groove A101, a bevel gear B305 is sleeved at the other end of the screw rod 304, the bevel gear B305 is in meshing transmission with the bevel gear A212, a sliding block 306 in threaded connection with the screw rod 304 is arranged on the screw rod 304, and the sliding block 306 is in sliding fit with the guide rail 303.
Temperature and humidity measurement subassembly 4 includes the temperature and humidity measurement probe that sets firmly in mounting groove 103 with mounting groove 103 inner wall sliding connection's apron 401, and apron 401 is T type structure to be linear equidistant a plurality of tooth's socket 402 of having seted up at T type structure lower extreme, tooth's socket 402 and gear 210 meshing contact.
The wind speed detection component 5 is a wind speed detector which is arranged at the front end of the rotating shaft A202.
The working principle is as follows: the driving motor 211 rotates, the motor 211 drives the rotating shaft B205, the rotating shaft B205 drives the bevel gear B207, the bevel gear B207 drives the bevel gear A204, the bevel gear A204 drives the bevel gear C209, the bevel gear C209 drives the rotating shaft C208, the rotating shaft C208 drives the gear 210, the gear 210 drives the cover plate 401, and therefore the mounting groove 103 is opened; meanwhile, the rotating shaft B205 drives the cylindrical cam 206, and the cylindrical cam 206 drives the guide block 203 in sliding fit with the cylindrical cam 206 in the rotating process, so that the guide block 203 drives the rotating shaft a202 to slide towards the front side, and the wind speed detection assembly 5 is pushed out of the accommodating groove B102; meanwhile, the rotating shaft C208 drives the bevel gear a212, the bevel gear a212 drives the bevel gear B305, the bevel gear B305 drives the screw 304, the screw 304 drives the slider 306, and the slider 306 forces the guide rail 303 and the mounting seat 301 to rise upwards in the sliding process, so that the air detector 302 can conveniently rise out of the accommodating groove a 101.
The foregoing shows and describes the general principles, essential features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, and the preferred embodiments of the present invention are described in the above embodiments and the description, and are not intended to limit the present invention. The scope of the invention is defined by the appended claims and equivalents thereof.

Claims (8)

1. The utility model provides an urban road air pollutant big data acquisition device which characterized in that: the wind speed detection device comprises a shell (1), a transmission assembly (2), an air detection assembly (3), a temperature and humidity detection assembly (4) and a wind speed detection assembly (5);
the shell (1) is of a hollow cuboid structure, a storage groove A (101) is formed in the top surface of the shell (1), a storage groove B (102) is formed in the front end of the shell (1), and a mounting groove (103) is formed in the top surface of the shell (1);
the transmission assembly (2) is arranged in the shell (1) and used for driving the air detection assembly (3), the temperature and humidity detection assembly (4) and the wind speed detection assembly (5) to be opened;
the air detection assembly (3) is arranged on the inner side of the accommodating groove A (101) and is used for detecting the air quality;
the temperature and humidity detection assembly (4) is arranged on the inner side of the mounting groove (103) and is used for detecting the temperature and humidity of air;
the wind speed detection assembly (5) is arranged on the inner side of the accommodating groove B (102) and used for detecting the wind direction and the wind speed of air.
2. The device for collecting big data of air pollutants in urban roads according to claim 1, wherein: the transmission assembly (2) comprises a fixed seat (201), the fixed seat (201) is fixed inside the shell (1), a rotating shaft A (202) penetrates through the middle of the fixed seat (201), a guide block (203) is limited on the outer side of the middle of the rotating shaft A (202), the guide block (203) is rotatably connected with the rotating shaft A (202), and a bevel gear A (204) is sleeved at the rear end of the rotating shaft A (202).
3. The device for collecting big data of air pollutants in urban roads according to claim 2, wherein: the utility model discloses a motor, including pivot A (202), pivot B (205), guide block (203), fixing base (201), pivot B (202) below is equipped with pivot B (205), pivot B (205) front end rotates with fixing base (201) lower extreme to be connected, cylindrical cam (206) have been cup jointed in the pivot B (205) front end outside, guide pillar and cylindrical cam (206) curve recess sliding fit are gone down to the guide block (203), pivot B (205) rear end has cup jointed helical gear B (207), helical gear B (207) are connected with helical gear A (204) meshing, just pivot B (205) rear end with set firmly in the inside motor (211) output shaft end coaxial fixed connection of casing (1).
4. The device for collecting big data of air pollutants in urban roads according to claim 3, wherein: the utility model discloses a motor, including pivot A (202), pivot C (208) are equipped with pivot C (208) top, pivot C (208) run through fixing base (201) upper end, and pivot C (208) front end has cup jointed gear (210), the position that is close to the rear end on pivot C (208) has cup jointed helical gear C (209), helical gear C (209) and helical gear A (204) meshing connection, just bevel gear A (212) have still been cup jointed to pivot C (208) rear end.
5. The device for collecting big data of air pollutants in urban roads according to claim 4, wherein: empty gas detection surveys subassembly (3) including mount pad (301), mount pad (301) are T type structure, and mount pad (301) top surface has set firmly air detector (302), mount pad (301) lower extreme rear side welded guide rail (303), guide rail (303) are hollow Z type slide rail.
6. The device for collecting big data of air pollutants in urban roads according to claim 5, wherein: the air detection assembly (3) further comprises a screw rod (304) arranged on the inner side of the accommodating groove A (101), one end of the screw rod (304) is rotatably connected with the inner wall of the accommodating groove A (101), a bevel gear B (305) is sleeved at the other end of the screw rod (304), the bevel gear B (305) is in meshing transmission with the bevel gear A (212), a sliding block (306) in threaded connection with the screw rod (304) is arranged on the screw rod (304), and the sliding block (306) is in sliding fit with the guide rail (303).
7. The device for collecting big data of air pollutants in urban roads according to claim 1, wherein: temperature and humidity measurement subassembly (4) include with mounting groove (103) inner wall sliding connection's apron (401) and set firmly the temperature and humidity measurement probe in mounting groove (103), apron (401) are T type structure, and T type structure lower extreme is linear equidistant a plurality of tooth's sockets (402) of having seted up, tooth's socket (402) and gear (210) meshing contact.
8. The device for collecting big data of air pollutants in urban roads according to claim 1, wherein: the wind speed detection assembly (5) is a wind speed detector which is arranged at the front end of the rotating shaft A (202).
CN201911172631.0A 2019-11-26 2019-11-26 Urban road air pollutant big data acquisition device Active CN110907601B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010438675.XA CN111579721A (en) 2019-11-26 2019-11-26 Air pollutant big data acquisition method
CN201911172631.0A CN110907601B (en) 2019-11-26 2019-11-26 Urban road air pollutant big data acquisition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911172631.0A CN110907601B (en) 2019-11-26 2019-11-26 Urban road air pollutant big data acquisition device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010438675.XA Division CN111579721A (en) 2019-11-26 2019-11-26 Air pollutant big data acquisition method

Publications (2)

Publication Number Publication Date
CN110907601A true CN110907601A (en) 2020-03-24
CN110907601B CN110907601B (en) 2020-08-21

Family

ID=69819462

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010438675.XA Withdrawn CN111579721A (en) 2019-11-26 2019-11-26 Air pollutant big data acquisition method
CN201911172631.0A Active CN110907601B (en) 2019-11-26 2019-11-26 Urban road air pollutant big data acquisition device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010438675.XA Withdrawn CN111579721A (en) 2019-11-26 2019-11-26 Air pollutant big data acquisition method

Country Status (1)

Country Link
CN (2) CN111579721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816627A (en) * 2021-01-25 2021-05-18 黄其民 Urban road air pollutant big data acquisition equipment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203337639U (en) * 2013-07-26 2013-12-11 中国人民解放军63976部队 Integrated experimental platform for evaluating chemical pollution biological effect in outdoor air
EP2687844A2 (en) * 2012-07-16 2014-01-22 Fundacion Cartif Air quality monitoring device
CN203465254U (en) * 2013-09-05 2014-03-05 广州尚广环保科技有限公司 Monitoring box
CN203605972U (en) * 2013-10-25 2014-05-21 上海市环境监测中心 An environment air quality mobile monitoring vehicle
CN203929737U (en) * 2014-05-06 2014-11-05 深圳市万仪科技有限公司 A kind of anion test instrument mounting structure
CN205263059U (en) * 2015-12-01 2016-05-25 西京学院 Air circumstance real -time monitoring system
CN205607979U (en) * 2016-05-17 2016-09-28 河北吉川新能源有限公司 Ambient air quality on -line monitoring system
CN206450656U (en) * 2016-12-30 2017-08-29 天津拓普天地科技有限公司 A kind of unmanned plane applied to atmosphere environment supervision
CN206627400U (en) * 2017-04-19 2017-11-10 上海谱诺检测技术有限公司 A kind of fixed type environmental detects base station
CN206862839U (en) * 2017-07-11 2018-01-09 宜昌宜陵环境检测有限公司 Air PM2.5 detection devices in a kind of environment
CN207336468U (en) * 2017-07-26 2018-05-08 中华人民共和国南京出入境检验检疫局 Public place microclimate air quality detector
CN108469502A (en) * 2018-06-28 2018-08-31 山东智普信息科技有限公司 A kind of ambient air quality on-line computing model
CN109398434A (en) * 2018-12-14 2019-03-01 天津岩海华博科技发展有限公司 A kind of movable air detection device
CN208621580U (en) * 2018-08-09 2019-03-19 陈淑明 A kind of public place environment detection device
CN209102566U (en) * 2018-10-19 2019-07-12 深圳立讯检测股份有限公司 A kind of Portable bluetooth fine particle detection instrument with purification function
CN209247739U (en) * 2018-12-22 2019-08-13 南京万全检测技术有限公司 A kind of air detecting device for scalable storage of popping one's head in
CN209589985U (en) * 2019-02-26 2019-11-05 北京清环宜境技术有限公司 The miniature monitoring station of atmosphere

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687844A2 (en) * 2012-07-16 2014-01-22 Fundacion Cartif Air quality monitoring device
CN203337639U (en) * 2013-07-26 2013-12-11 中国人民解放军63976部队 Integrated experimental platform for evaluating chemical pollution biological effect in outdoor air
CN203465254U (en) * 2013-09-05 2014-03-05 广州尚广环保科技有限公司 Monitoring box
CN203605972U (en) * 2013-10-25 2014-05-21 上海市环境监测中心 An environment air quality mobile monitoring vehicle
CN203929737U (en) * 2014-05-06 2014-11-05 深圳市万仪科技有限公司 A kind of anion test instrument mounting structure
CN205263059U (en) * 2015-12-01 2016-05-25 西京学院 Air circumstance real -time monitoring system
CN205607979U (en) * 2016-05-17 2016-09-28 河北吉川新能源有限公司 Ambient air quality on -line monitoring system
CN206450656U (en) * 2016-12-30 2017-08-29 天津拓普天地科技有限公司 A kind of unmanned plane applied to atmosphere environment supervision
CN206627400U (en) * 2017-04-19 2017-11-10 上海谱诺检测技术有限公司 A kind of fixed type environmental detects base station
CN206862839U (en) * 2017-07-11 2018-01-09 宜昌宜陵环境检测有限公司 Air PM2.5 detection devices in a kind of environment
CN207336468U (en) * 2017-07-26 2018-05-08 中华人民共和国南京出入境检验检疫局 Public place microclimate air quality detector
CN108469502A (en) * 2018-06-28 2018-08-31 山东智普信息科技有限公司 A kind of ambient air quality on-line computing model
CN208621580U (en) * 2018-08-09 2019-03-19 陈淑明 A kind of public place environment detection device
CN209102566U (en) * 2018-10-19 2019-07-12 深圳立讯检测股份有限公司 A kind of Portable bluetooth fine particle detection instrument with purification function
CN109398434A (en) * 2018-12-14 2019-03-01 天津岩海华博科技发展有限公司 A kind of movable air detection device
CN209247739U (en) * 2018-12-22 2019-08-13 南京万全检测技术有限公司 A kind of air detecting device for scalable storage of popping one's head in
CN209589985U (en) * 2019-02-26 2019-11-05 北京清环宜境技术有限公司 The miniature monitoring station of atmosphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816627A (en) * 2021-01-25 2021-05-18 黄其民 Urban road air pollutant big data acquisition equipment

Also Published As

Publication number Publication date
CN111579721A (en) 2020-08-25
CN110907601B (en) 2020-08-21

Similar Documents

Publication Publication Date Title
CN110907601B (en) Urban road air pollutant big data acquisition device
CN205333042U (en) Cylinder body inside diameter measurement device that has height dimensions
CN219506198U (en) Buoy for water quality detection
CN217805100U (en) Rear armrest device and two-wheel vehicle
CN218974361U (en) Outdoor portable soil moisture content monitoring facilities that uses
CN217586903U (en) Methane gas detection probe with infrared detection principle
CN214149924U (en) Heavy metal contaminated soil's detection sampling device
CN213210068U (en) Gas on-line monitoring device
CN115684526A (en) Buoy type remote lake water quality mobile monitoring system and method
CN212738272U (en) Automobile steering angle detection potentiometer capable of improving detection precision
CN215114411U (en) Communication engineering wiring measuring tool
CN213749793U (en) Vehicle-mounted atmosphere measuring instrument
CN212364268U (en) Sensor of intelligent monitoring quality of water
CN214373835U (en) On-site measuring device for city planning
CN213600663U (en) Volatile organic compound on-line monitoring device
CN214895127U (en) Portable instrument for air quality detection
CN218122493U (en) Novel environmental monitoring is reported to police device
CN212904091U (en) Air sampler for indoor environment detection
CN220586572U (en) Pole setting formula atmospheric environment monitoring devices
CN219121506U (en) Water level monitoring device for hydraulic engineering
CN214087001U (en) Convenient-to-cut-at-distance cutting device for production of cast film
CN218378870U (en) Environment-friendly inspection device
CN217639141U (en) Hydrology monitoring water velocity of flow check out test set
CN208520333U (en) A kind of gear double-side meshed comprehensive measuring instrument with diameter of axle dimensional measurement function
CN216383344U (en) Urban air pollution detector for environmental monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200730

Address after: No. 45, Meizhu village, Meizhu Town, Xinchang County, Shaoxing City, Zhejiang Province

Applicant after: Xinchang Meiwei environmental protection Co.,Ltd.

Address before: 312500 Sunrise Science Park, Qixing Street, Xinchang County, Shaoxing City, Zhejiang Province

Applicant before: Lv Yang

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230407

Address after: Building 306, ITICC A, Industrial Technology Innovation Coordination Center, Shunfeng 777, High tech Zone, Jinan City, Shandong Province, 250013

Patentee after: Shandong Yilishun Environmental Protection Technology Co.,Ltd.

Address before: No. 45 Meizhu Village, Meizhu Town, Xinchang County, Shaoxing City, Zhejiang Province, 312500

Patentee before: Xinchang Meiwei environmental protection Co.,Ltd.