CN110889868B - 一种结合梯度和纹理特征的单目图像深度估计方法 - Google Patents
一种结合梯度和纹理特征的单目图像深度估计方法 Download PDFInfo
- Publication number
- CN110889868B CN110889868B CN201911030699.5A CN201911030699A CN110889868B CN 110889868 B CN110889868 B CN 110889868B CN 201911030699 A CN201911030699 A CN 201911030699A CN 110889868 B CN110889868 B CN 110889868B
- Authority
- CN
- China
- Prior art keywords
- image
- features
- depth
- gradient
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012549 training Methods 0.000 claims abstract description 25
- 239000000284 extract Substances 0.000 claims abstract description 10
- 230000004913 activation Effects 0.000 claims description 13
- 230000006870 function Effects 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 10
- 238000013461 design Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- 238000013135 deep learning Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/529—Depth or shape recovery from texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911030699.5A CN110889868B (zh) | 2019-10-28 | 2019-10-28 | 一种结合梯度和纹理特征的单目图像深度估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911030699.5A CN110889868B (zh) | 2019-10-28 | 2019-10-28 | 一种结合梯度和纹理特征的单目图像深度估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110889868A CN110889868A (zh) | 2020-03-17 |
CN110889868B true CN110889868B (zh) | 2023-04-18 |
Family
ID=69746576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911030699.5A Active CN110889868B (zh) | 2019-10-28 | 2019-10-28 | 一种结合梯度和纹理特征的单目图像深度估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110889868B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112121418A (zh) * | 2020-09-07 | 2020-12-25 | 腾讯科技(深圳)有限公司 | 图像处理方法及装置、交互控制方法及装置 |
CN112927236B (zh) * | 2021-03-01 | 2021-10-15 | 南京理工大学 | 一种基于通道注意力和自监督约束的服装解析方法及系统 |
CN116563458A (zh) * | 2023-04-07 | 2023-08-08 | 郑州大学 | 一种基于图像深度估计的排水管道内部病害三维重构方法 |
CN119206251A (zh) * | 2024-11-28 | 2024-12-27 | 上海模呈信息技术有限公司 | 基于自监督数据增强与多分辨率知识蒸馏的无监督异常检测方法及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564611A (zh) * | 2018-03-09 | 2018-09-21 | 天津大学 | 一种基于条件生成对抗网络的单目图像深度估计方法 |
CN109255831A (zh) * | 2018-09-21 | 2019-01-22 | 南京大学 | 基于多任务学习的单视图人脸三维重建及纹理生成的方法 |
-
2019
- 2019-10-28 CN CN201911030699.5A patent/CN110889868B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564611A (zh) * | 2018-03-09 | 2018-09-21 | 天津大学 | 一种基于条件生成对抗网络的单目图像深度估计方法 |
CN109255831A (zh) * | 2018-09-21 | 2019-01-22 | 南京大学 | 基于多任务学习的单视图人脸三维重建及纹理生成的方法 |
Non-Patent Citations (2)
Title |
---|
Aniruddha等.Improvised Filter Design for Depth Estimation from Single Monocular Images.《Pattern Recognition and Machine Intelligence》.2018,第333-338页. * |
Olaf等.U-Net: Convolutional Networks for Biomedical Image Segmentation.《Medical Image Computing and Computer-Assisted Intervention》.2015,第234—241页. * |
Also Published As
Publication number | Publication date |
---|---|
CN110889868A (zh) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Robust dynamic radiance fields | |
CN110889868B (zh) | 一种结合梯度和纹理特征的单目图像深度估计方法 | |
CN110490928B (zh) | 一种基于深度神经网络的相机姿态估计方法 | |
CN110490919B (zh) | 一种基于深度神经网络的单目视觉的深度估计方法 | |
CN105654492B (zh) | 基于消费级摄像头的鲁棒实时三维重建方法 | |
CN108564041B (zh) | 一种基于rgbd相机的人脸检测和修复方法 | |
CN111950477B (zh) | 一种基于视频监督的单图像三维人脸重建方法 | |
CN111339870B (zh) | 一种针对物体遮挡场景的人体形状和姿态估计方法 | |
CN111105432B (zh) | 基于深度学习的无监督端到端的驾驶环境感知方法 | |
CN111915530A (zh) | 一种基于端到端的雾霾浓度自适应神经网络图像去雾方法 | |
CN111783582A (zh) | 一种基于深度学习的无监督单目深度估计算法 | |
CN114170286B (zh) | 一种基于无监督深度学习的单目深度估计方法 | |
CN115298708A (zh) | 多视角神经人体渲染 | |
CN111325782A (zh) | 一种基于多尺度统一的无监督单目视图深度估计方法 | |
CN116664782A (zh) | 一种基于融合体素的神经辐射场三维重建方法 | |
CN115115685A (zh) | 一种基于自注意力神经网络的单目图像深度估计算法 | |
CN117218246A (zh) | 图像生成模型的训练方法、装置、电子设备及存储介质 | |
CN114677479A (zh) | 一种基于深度学习的自然景观多视图三维重建方法 | |
Maxim et al. | A survey on the current state of the art on deep learning 3D reconstruction | |
CN114170304B (zh) | 一种基于多头自注意力和置换注意力的相机定位方法 | |
CN115457182A (zh) | 一种基于多平面图像场景表示的交互视点图像合成方法 | |
Chen et al. | Bidirectional optical flow NeRF: high accuracy and high quality under fewer views | |
Fan et al. | Learning bilateral cost volume for rolling shutter temporal super-resolution | |
CN118212337A (zh) | 基于像素对齐3d高斯点云表示的人体新视点渲染方法 | |
CN114926594B (zh) | 基于自监督时空运动先验的单视角遮挡人体运动重建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Kong Qing Inventor after: Yan Chenggang Inventor after: Shi Zhiguo Inventor after: Liu Yanyu Inventor after: Guan Fei Inventor after: Sun Yaoqi Inventor after: Zhang Jiyong Inventor after: Zhang Yongdong Inventor after: Shen Tao Inventor before: Kong Qing Inventor before: Yan Chenggang Inventor before: Liu Yanyu Inventor before: Guan Fei Inventor before: Sun Yaoqi Inventor before: Zhang Jiyong Inventor before: Zhang Yongdong Inventor before: Shen Tao |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |