CN110889324A - 一种基于yolo v3面向末端制导的热红外图像目标识别方法 - Google Patents

一种基于yolo v3面向末端制导的热红外图像目标识别方法 Download PDF

Info

Publication number
CN110889324A
CN110889324A CN201910967411.0A CN201910967411A CN110889324A CN 110889324 A CN110889324 A CN 110889324A CN 201910967411 A CN201910967411 A CN 201910967411A CN 110889324 A CN110889324 A CN 110889324A
Authority
CN
China
Prior art keywords
target
yolo
missile
frame
thermal infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910967411.0A
Other languages
English (en)
Inventor
赵兴科
李明磊
李家松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910967411.0A priority Critical patent/CN110889324A/zh
Publication of CN110889324A publication Critical patent/CN110889324A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/41Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/29Graphical models, e.g. Bayesian networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Multimedia (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明公开了一种基于YOLO V3面向末端制导的热红外图像目标识别方法,包括如下步骤:获取红外数据集;制作类别标签;处理数据集;先验框聚类;训练网络;评估模型;结果处理。发明首次将YOLO V3模型应用在导弹末端制导中复杂场景下的目标检测。卷积神经网络可以很好地提取图像特征,避免了早先手工提取特征的缺点。不同于R‑CNN目标检测模型在选择候选区域时所花费时间较多且算法复杂,本方法将特征提取和分类融合在一起,对红外目标检测的mAP值可以达到71.33%,检测速度达到了40帧每秒。

Description

一种基于YOLO V3面向末端制导的热红外图像目标识别方法
技术领域
本发明涉及热红外图像目标识别方法,特别涉及一种基于YOLO V3面向末端制导的热红外图像目标识别方法。
背景技术
导弹的智能化攻击面对复杂动态目标,要求导弹能自动跟踪并且命中目标。导弹制导过程中,导引系统不断测定飞行器与目标或预定轨道的相对位置关系,发出制导信息传递给飞行器控制系统,以控制飞行。末端制导是指飞行器在接近目标的最后阶段的制导过程。在飞行末端,根据目标的实时方位信息需要对导弹的攻击路线进行精密修正。末端制导的先进程度直接影响导弹命中率。在各种精确制导体系中,红外制导因其制导精度高、抗干扰能力强、隐蔽性好、效费比高等优点,在现代武器装配发展中占据着重要的地位。任何绝对温度零度以上的物体,由于原子和分子结构内部的热运动,而向外界辐射包括红外波段在内的电磁波能量,红外成像制导是利用红外探测器探测目标的红外辐射,以捕获目标红外图像的制导技术,其图像质量与电视相近,但却可在电视制导系统难以工作的夜间和低能见度下作战。红外成像制导技术已成为制导技术的一个主要发展方向。其中,图像处理与识别即目标检测与识别作为系统的中前端处理环节,是红外成像制导系统的重要组成部分,也是其中的一个关键技术难点问题。只有及时地检测到场景中的目标,才能保证后继的目标跟踪、导弹飞行控制等一系列环节的顺利推进。因此,开展红外成像目标检测与识别中关键技术的研究对于提高武器精确打击能力具有重要意义。
目前,红外目标检测识别主要有以下四种方法:第一,经典的统计模式识别方法;第二,基于知识的自动目标识别方法;第三,基于模型的自动目标识别方法;第四,基于多传感器信息融合的自动目标识别方法。
第一种是经典的统计模式识别方法。该方法主要是利用目标特性的统计分布,依靠目标识别系统的大量训练和基于模式空间距离度量的特征匹配分类技术,可在较窄的场景定义域内获得较有效的识别。该方法是早期使用的方法,仅在很窄的场景定义域内,且在目标图像和周围背景变化不大的情况下才比较有效,难以解决姿态变化、目标污损变模糊、目标部分被遮蔽等问题。第二种是基于知识的自动目标识别方法。20世纪70年代末,人工智能专家系统开始应用到自动识别的研究,形成了基于知识的自动识别,即知识基(Knowledge Based,KB)系统。基于知识的自动识别算法在一定程度上克服了经典统计模式识别法的局限性和缺陷。该方法目前存在的主要问题是可供利用的知识源的辩识和知识的验证很困难,同时难以在适应新场景中有效地组织知识。第三种是基于模型的自动目标识别方法。模型基(MB)的方法首先是将复杂的目标识别的样本空间模型化,这些模型提供了一种描述样本空问各种重要变化特性的简便途径。典型的MB系统抽取一定的目标特性,并利用这些特性和一些辅助知识来标记目标的模型参数,从而选择一些初始假设,实现目标特性的预测。一个MB系统的最终目标是匹配实际的特性和预测后面的特性,若标记准确,匹配过程则会成功和有效。目前,基于模型的自动目标识别系统均需要采用一些大型数据库,称之为大型数据库是因为它包罗了针对可能出现的各种目标在其外形特征方面的大量信息,库容量相当大。倘若将这样的系统应用于实战中,需要识别的目标数目将是上不封顶的,这样就会导致数据库的规模变得越来越大,最终很难实现实时模型提取和目标图形的匹配比较。因此,MB方法目前尚限于实验室研究阶段。第四种是基于多传感器信息融合的自动目标识别方法。20世纪70年代兴起的基于多传感器信息融合(Multi SensorInformation Fusion Based,MIFB)的自动识别方法克服了单一传感器系统在复杂环境中目标搜索、知识识别和易受干扰的缺陷。MIFB的每个传感器将数据反馈入各自的信号处理机,先分别进行目标检测,得出有无目标的判决以及目标的位置信息或运动轨迹,然后将这些信息送入数据融合单元,对目标位置或运动轨迹进行关联后再做进一步的判决。该方法的主要缺点是设备较复杂,操作难度高,难以满足实时性的要求。
实际使用中,这些方法往往无法平衡识别准确度与检测速度的关系,成为制约导弹末端制导技术发展的瓶颈。近年来快速发展的深度神经网络为我们提供了一种新的解决思路。最近,研究人员提出多种利用深度神经网络进行自动检测识别的方法,其中,YOLO(You Only Look Once)V3是一个基于Google Net的物体检测深度网络,以其高帧速和回调率正被运用于许多实时检测系统中。本发明基于YOLO V3设计实现了一种面向末端制导的热红外图像目标识别方法,为推动导弹末端制导发展提供技术支持。
发明内容
发明目的:本发明目的是提供一种检测准确率高、检测速度快的基于YOLO V3面向末端制导的热红外图像目标识别方法。
技术方案:本发明提供一种基于YOLO V3面向末端制导的热红外图像目标识别方法,包括如下步骤:
阶段一:训练网络,保存模型结果
步骤1、采集数据,获取完善的数据集。通过截取试验阶段飞行载体的红外摄像头跟踪系统中不同场景、种类、姿态、大小的红外行人及车辆图像作为制作数据集的材料。考虑到红外行人及车辆数据集的数量较少容易在训练时造成过拟合现象,本发明使用水平翻转、旋转、亮度变换、放大缩小、添加高斯白噪声这5种图片增广的策略来扩充红外数据集。数据集分为训练集和测试集,为了规划自己的数据,减少出错的可能性,为图片编一个合理的序号,例如0001~0999;
步骤2、制作类别标签。对从红外摄像头得到的行人和车辆照片进行裁剪,设定成固定大小。利用标注框标注训练集图像中每一个目标,得到训练集图像中每一个目标的位置信息与类别信息。位置信息为标注框中心点坐标和标注框宽、高,类别信息即为目标所属类别,以xml格式存储。最后,将标注完成的xml格式文件转换为txt格式文件。
步骤3、处理数据集。下载Pascal voc2007标准化数据集,清空其原有数据,保留JPEGImages文件夹、Annotations文件夹和ImageSets文件夹。将步骤(2)处理后的不同类型的原始红外图像数据存放于JPEGImages文件夹中,包括训练图片和测试图片。将步骤2中生成的模型可读的xml文件存放在Annotations文件夹中,每一个xml文件都对应于JPEGImages文件夹中的一张图片。在ImageSets文件夹下建立Main文件夹,并在该Main文件夹中新建test.txt、train.txt、trainval.txt、val.txt四个文件,即测试集、训练集、训练和验证集、验证集,这四个文件夹中存储的是上一步中xml文件的文件名。trainval和test内容相加为所有xml文件,train和val内容相加为trainval。
步骤4、针对热红外图像相比于可见光图像纹理特征弱、边缘不清晰的特点,利用K-means算法进行先验框聚类。先验框的作用是寻找图像里面可能存在目标的区域,设置合理的先验框能够使得预测结果与真实结果的交并比(Intersection over Union,以下简称IOU)表现更好。其中,IOU是衡量算法预测的目标输出框与人工标注的真实框之间差异的指标,其计算公式如下:
Figure BDA0002230835450000031
上式中,A表示算法预测的输出框,B表示标注原始框。
YOLO V3算法通过在COCO数据集(Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集)上进行聚类得到了9个不同维度的先验框。COCO为可见光数据集,包含了80类不同大小的目标,而本发明的检测目标是导弹红外摄像头所拍摄热红外图像中的行人与车辆,所以YOLO V3中原始的先验框数目与尺寸并不适用。本发明通过K-means算法对所述训练集中的图像进行聚类分析,得到新的先验框。聚类分析的具体过程为:首先,从输入的数据集合中随机选择一个点作为第一个聚类中心;接着,采用IOU得分评判标准,定义新的距离公式
d(box,centroid)=1-IOU(box,centroid)
式中,centroid表示簇中心框,box表示聚类框;其次,对于每个点,我们都计算其和最近的一个种子点的距离,记作D(x);然后,选择一个新的数据点作为新的聚类中心,选择的原则为使D(x)数值越大的点,被选取作为聚类中心的概率越大;重复上述两个步骤直到K个聚类中心被选出来;最后,利用这K个初始的聚类中心来运行K-means算法,直到聚类中心的位置不变,以K值作为anchor的个数,其中位于聚类中心的边框为最终要求的先验框。
步骤5、训练网络。将训练集输入卷积神经网络,通过不断迭代训练网络求取目标检测所需的权值。神经网络学习的本质,其实就是利用损失函数来调节网络中的权值。本发明检测网络采用Darknet-53网络结构,包括52个卷积层和1个全连接层,加入多个连续的3×3和1×1的卷积,每个卷积层均通过批归一化Batch Normalization和Leaky relu激活函数操作。同时,本发明在Darknet-53基础上借鉴了残差网络(residual network)的做法,在一些层之间设置了快捷链路(shortcut connections)。为了支持多标签对象,预测对象类别时不使用softmax,改成使用logistic的输出进行预测。
步骤6、采用多尺度预测方法,实现过大目标与过小目标的高精度检测。传统的目标检测算法在一个固定的特征图上进行物体检测识别,往往不能平衡过大目标和过小目标的检测效果,造成漏检或误检情况的发生。例如,YOLO V1在7×7的特征图上进行物体类别和位置预测,虽然这足以胜任大尺度物体的检测,但当图像中物体过小时检测正确率大幅度下降,达不到所规定的要求标准。因此,本发明通过不同比例的下采样,将步骤4中输出的特征图分割成21×21,42×42和84×84三种不同网格,同时兼顾图像中不同尺寸的物体。网格中每个格子负责检测“落入”该格子的物体,即,若某个物体的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。
步骤7、网格选取初始候选框,每个单元格会预测B个边界框(bounding box)以及目标类别M的类别置信度。所谓置信度包含两个方面,一是这个边界框含有目标的可能性大小,二是这个边界框的准确度。根据类别置信度设置卷积神经网络输出,将小于第一阈值的类别置信度confidence(M)置0,对剩余候选框进行非极大值抑制操作,得到最终预测框。
步骤8、对所设计的网络模型进行评估,以mAP值作为评估指标,当mAP值小于50%时,调整网络参数重新训练。
步骤9、模型达到要求时,保存结果,得到最终权值和训练完的卷积神经网络,用于阶段二的检测。
进一步地,阶段二:利用所得到的网络模型进行导弹末端制导中热红外图像的目标识别
步骤10、导弹进入末端制导阶段后,搭载的光电云台从预设好的位置开始转动,逐一遍历巡视下方场景,将所获得的信息以热红外视频的形式传入摄像头跟踪系统。
步骤11、导弹跟踪处理器获取热红外视频流,解码视频流为图片。
步骤12、利用阶段一中训练完的卷积神经网络和最终权值对实时热红外图片进行检测,确定图片中物体类别。
步骤13、判断图片中物体是否为打击目标。若不是,则返回步骤10,光电云台继续转动,遍历下方场景。若该物体是打击目标,则云台定向锁定,持续跟踪目标,获取目标的位置参数,同时将处理信息送入导弹控制系统。
步骤14、导弹控制系统综合所得到的信息,判断是否对目标进行打击。若是,则发送飞行控制指令,调整导弹飞行轨迹,飞向打击目标。否则,云台继续保持定向锁定状态,红外摄像头不断对目标进行拍摄,重复步骤11至步骤13的操作。
进一步地,步骤13中获取目标位置参数的具体方法为:通过导弹携带的导航系统获取导弹当前的航向角
Figure BDA0002230835450000054
俯仰角γ、横滚角θ,红外摄像头的方位角α和高低角β由光电云台输出,同时,导弹与目标的距离r由测距仪测出。在此条件下,目标在红外摄像头坐标系下的坐标为[xcmycmzcm]T=[r 0 0]T,则目标在地理坐标系下的坐标可以通过坐标转换求解得出,如下式所示:
Figure BDA0002230835450000051
式中,
Figure BDA0002230835450000052
为导弹坐标系向地理坐标系转换的旋转矩阵,
Figure BDA0002230835450000053
为红外摄像头坐标系向导弹坐标系转换的旋转矩阵,s(·)为sin(·)的简写,c(·)为cos(·)的简写。
进一步地,步骤1中获取数据集,数据集分为训练集和测试集。具体过程为:从红外摄像头跟踪系统中截取两万张图像作为数据集,数据集中一万五千张图像做训练集,剩余五千张图像做测试集。数据集中图像为导弹前方视野状况,图像包括行人和车辆两类目标。步骤2中对训练集图像进行预处理具体方法为将训练集图像大小调整为672×672,使得模型对小目标的敏感度更高。步骤2中使用的标注工具是labelimg。步骤2中采用YOLO V3算法中voc_label.py文件进行格式转化。步骤4中采用K-means聚类得到先验框的尺寸,为每种下采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。本发明使用的9个先验框是:(15×27),(25×39),(47×66),(72×53),(81×155),(154×188),(211×276),(398×501),(563×640)。分配上,在最小的21×21特征图上(有最大的感受野)应用较大的先验框(211×276),(398×501),(563×640),适合检测较大的对象。中等的42×42特征图上(中等感受野)应用中等的先验框(72×53),(81×155),(154×188),适合检测中等大小的对象。较大的84×84特征图上(较小的感受野)应用较小的先验框(15×27),(25×39),(47×66),适合检测较小的对象。步骤5中初始化卷积神经网络训练参数设定:迭代次数Iters=50000,学习率变化迭代次数Step=200,400,600,20000,30000,初始学习率m=0.001,Batch=32,学习率变化比率Scales=2.5,2,2,0.1,0.1,权值衰减Decay=0.0003。步骤5中损失函数主要分为三个部分:目标定位偏移量损失Lloc(l,g),目标置信度损失Lconf(o,c),以及目标分类损失Lcla(O,C),其中λ1,λ2,λ3是平衡系数,即:
L(O,o,C,c,l,g)=λ1Lconf(o,c)+λ2Lcla(O,C)+λ3Lloc(l,g)。
步骤7中网格进行目标检测,每一个候选框预测5个数据。5个数据包含归一化后的目标坐标x、y,归一化后的候选框的宽和高w、h,以及网格检测此类别目标的置信度confidence。置信度计算公式如下;
Figure BDA0002230835450000061
式中Pr(object)为候选框是否存在目标,若一个网格中出现了目标,则Pr(object)的值为1;若没有出现目标,则Pr(object)的值为0。
Figure BDA0002230835450000062
为候选框与标注框的面积交并比,计算公式如下:
Figure BDA0002230835450000063
式中Detection Re sult为候选框,GroundTruth为标注框。测试时,网络直接输出目标类别M的类别置信度confidence(M)。第一阈值为0.4。
步骤7中卷积神经网络输出与最终预测框对应关系为:
bx=σ(tx)+cx
by=σ(ty)+cy
Figure BDA0002230835450000064
Figure BDA0002230835450000065
bx,by,bw,bh分别是预测的中心坐标x,y,宽度和高度。tx,ty,tw,th是网络的输出。cx和cy是网格的左上角坐标。
有益效果:本发明首次将YOLO V3模型应用在导弹末端制导中复杂场景下的目标检测。YOLO V3模型结构简单,检测准确率高,检测速度快。实验结果表明,使用本发明模型对红外目标检测的mAP值可以达到71.33%,检测速度达到了40帧每秒,可满足目标检测要求。
附图说明
图1为热红外成像制导系统组成;
图2为本发明阶段一流程图;
图3为本发明阶段二流程图;
图4为本发明所使用的网络结构模型;
图5为本发明部分红外数据集图像;
图6为原始热红外图像与使用本发明所设计算法进行检测的结果。
具体实施方式
如图1-6,本实施例的检测方法,包括如下步骤:
阶段一:训练网络,保存模型结果
步骤1、采集数据,获取完善的数据集。通过截取试验阶段飞行载体的红外摄像头跟踪系统中不同场景、种类、姿态、大小的红外行人及车辆图像作为制作数据集的材料。考虑到红外行人及车辆数据集的数量较少容易在训练时造成过拟合现象,本发明使用水平翻转、旋转、亮度变换、放大缩小、添加高斯白噪声这5种图片增广的策略来扩充红外数据集。数据集分为训练集和测试集,为了规划自己的数据,减少出错的可能性,为图片编一个合理的序号,例如0001~0999;步骤1中获取数据集,数据集分为训练集和测试集。具体过程为:从红外摄像头跟踪系统中截取两万张图像作为数据集,数据集中一万五千张图像做训练集,剩余五千张图像做测试集。数据集中图像为导弹前方视野状况,图像包括行人和车辆两类目标。
步骤2、制作类别标签。对从红外摄像头得到的行人和车辆照片进行裁剪,设定成固定大小。利用标注框标注训练集图像中每一个目标,得到训练集图像中每一个目标的位置信息与类别信息。位置信息为标注框中心点坐标和标注框宽、高,类别信息即为目标所属类别,以xml格式存储。最后,将标注完成的xml格式文件转换为txt格式文件。步骤2中对训练集图像进行预处理具体方法为将训练集图像大小调整为672×672,使得模型对小目标的敏感度更高。使用的标注工具是labelimg。采用YOLO V3算法中voc_label.py文件进行格式转化。
步骤3、处理数据集。下载Pascal voc2007标准化数据集,清空其原有数据,保留JPEGImages文件夹、Annotations文件夹和ImageSets文件夹。将收集到的不同类型的原始红外图像数据存放于JPEGImages文件夹中,包括训练图片和测试图片。将步骤2中生成的模型可读的xml文件存放在Annotations文件夹中,每一个xml文件都对应于JPEGImages文件夹中的一张图片。在ImageSets文件夹下建立Main文件夹,并在该Main文件夹中新建test.txt、train.txt、trainval.txt、val.txt四个文件,即测试集、训练集、训练和验证集、验证集,这四个文件夹中存储的是上一步中xml文件的文件名。trainval和test内容相加为所有xml文件,train和val内容相加为trainval。
步骤4、针对热红外图像相比于可见光图像纹理特征弱、边缘不清晰的特点,利用K-means算法进行先验框聚类。先验框的作用是寻找图像里面可能存在目标的区域,设置合理的先验框能够使得预测结果与真实结果的交并比(Intersection over Union,以下简称IOU)表现更好。其中,IOU是衡量算法预测的目标输出框与人工标注的真实框之间差异的指标,其计算公式如下:
Figure BDA0002230835450000081
上式中,A表示算法预测的输出框,B表示标注原始框。
YOLO V3算法通过在COCO数据集(Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集)上进行聚类得到了9个不同维度的先验框。COCO为可见光数据集,包含了80类不同大小的目标,而本发明的检测目标是导弹红外摄像头所拍摄热红外图像中的行人与车辆,所以YOLO V3中原始的先验框数目与尺寸并不适用。本发明通过K-means算法对所述训练集中的图像进行聚类分析,得到新的先验框。聚类分析的具体过程为:首先,从输入的数据集合中随机选择一个点作为第一个聚类中心;接着,采用IOU得分评判标准,定义新的距离公式
d(box,centroid)=1-IOU(box,centroid)
式中,centroid表示簇中心框,box表示聚类框;其次,对于每个点,我们都计算其和最近的一个种子点的距离,记作D(x);然后,选择一个新的数据点作为新的聚类中心,选择的原则为使D(x)数值越大的点,被选取作为聚类中心的概率越大;重复上述两个步骤直到K个聚类中心被选出来;最后,利用这K个初始的聚类中心来运行K-means算法,直到聚类中心的位置不变,以K值作为anchor的个数,其中位于聚类中心的边框为最终要求的先验框。
步骤4中采用K-means聚类得到先验框的尺寸,为每种下采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。本发明使用的9个先验框是:(15×27),(25×39),(47×66),(72×53),(81×155),(154×188),(211×276),(398×501),(563×640)。分配上,在最小的21×21特征图上(有最大的感受野)应用较大的先验框(211×276),(398×501),(563×640),适合检测较大的对象。中等的42×42特征图上(中等感受野)应用中等的先验框(72×53),(81×155),(154×188),适合检测中等大小的对象。较大的84×84特征图上(较小的感受野)应用较小的先验框(15×27),(25×39),(47×66),适合检测较小的对象。
步骤5、训练网络。将训练集输入卷积神经网络,通过不断迭代训练网络求取目标检测所需的权值。神经网络学习的本质,其实就是利用损失函数来调节网络中的权值。本发明检测网络采用Darknet-53网络结构,包括52个卷积层和1个全连接层,加入多个连续的3×3和1×1的卷积,每个卷积层均通过批归一化Batch Normalization和Leaky relu激活函数操作。同时,本发明在Darknet-53基础上借鉴了残差网络(residual network)的做法,在一些层之间设置了快捷链路(shortcut connections)。为了支持多标签对象,预测对象类别时不使用softmax,改成使用logistic的输出进行预测。步骤5中初始化卷积神经网络训练参数设定:迭代次数Iters=50000,学习率变化迭代次数Step=200,400,600,20000,30000,初始学习率m=0.001,Batch=32,学习率变化比率Scales=2.5,2,2,0.1,0.1,权值衰减Decay=0.0003。步骤5中损失函数主要分为三个部分:目标定位偏移量损失Lloc(l,g),目标置信度损失Lconf(o,c),以及目标分类损失Lcla(O,C),其中λ1,λ2,λ3是平衡系数,即:
L(O,o,C,c,l,g)=λ1Lconf(o,c)+λ2Lcla(O,C)+λ3Lloc(l,g)。
步骤6、采用多尺度预测方法,实现过大目标与过小目标的高精度检测。传统的目标检测算法在一个固定的特征图上进行物体检测识别,往往不能平衡过大目标和过小目标的检测效果,造成漏检或误检情况的发生。例如,YOLO V1在7×7的特征图上进行物体类别和位置预测,虽然这足以胜任大尺度物体的检测,但当图像中物体过小时检测正确率大幅度下降,达不到所规定的要求标准。因此,本发明通过不同比例的下采样,将步骤4中输出的特征图分割成21×21,42×42和84×84三种不同网格,同时兼顾图像中不同尺寸的物体。网格中每个格子负责检测“落入”该格子的物体,即,若某个物体的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。
步骤7、网格选取初始候选框,每个单元格会预测B个边界框(bounding box)以及目标类别M的类别置信度。所谓置信度包含两个方面,一是这个边界框含有目标的可能性大小,二是这个边界框的准确度。根据类别置信度设置卷积神经网络输出,将小于第一阈值的类别置信度confidence(M)置0,对剩余候选框进行非极大值抑制操作,得到最终预测框。
步骤7中网格进行目标检测,每一个候选框预测5个数据。5个数据包含归一化后的目标坐标x、y,归一化后的候选框的宽和高w、h,以及网格检测此类别目标的置信度confidence。置信度计算公式如下;
Figure BDA0002230835450000101
式中Pr(object)为候选框是否存在目标,若一个网格中出现了目标,则Pr(object)的值为1;若没有出现目标,则Pr(object)的值为0。
Figure BDA0002230835450000102
为候选框与标注框的面积交并比,计算公式如下:
Figure BDA0002230835450000103
式中Detection Re sult为候选框,GroundTruth为标注框。测试时,网络直接输出目标类别M的类别置信度confidence(M)。第一阈值为0.4。
步骤7中卷积神经网络输出与最终预测框对应关系为:
bx=σ(tx)+cx
by=σ(ty)+cy
Figure BDA0002230835450000104
Figure BDA0002230835450000105
bx,by,bw,bh分别是预测的中心坐标x,y,宽度和高度。tx,ty,tw,th是网络的输出。cx和cy是网格的左上角坐标。
步骤8、对所设计的网络模型进行评估,以mAP值作为评估指标,当mAP值小于50%时,调整网络参数重新训练。
步骤9、模型达到要求时,保存结果,得到最终权值和训练完的卷积神经网络,用于阶段二的检测。
阶段二:利用所得到的网络模型进行导弹末端制导中热红外图像的目标识别
步骤10、导弹进入末端制导阶段后,搭载的光电云台从预设好的位置开始转动,逐一遍历巡视下方场景,将所获得的信息以热红外视频的形式传入摄像头跟踪系统。
步骤11、导弹跟踪处理器获取热红外视频流,解码视频流为图片。
步骤12、利用阶段一中训练完的卷积神经网络和最终权值对实时热红外图片进行检测,确定图片中物体类别。
步骤13、判断图片中物体是否为打击目标。若不是,则返回步骤10,光电云台继续转动,遍历下方场景。若该物体是打击目标,则云台定向锁定,持续跟踪目标,获取目标的位置参数,同时将处理信息送入导弹控制系统。
其中,获取目标位置参数的具体方法为:通过导弹携带的导航系统获取导弹当前的航向角
Figure BDA0002230835450000111
俯仰角γ、横滚角θ,红外摄像头的方位角α和高低角β由光电云台输出,同时,导弹与目标的距离r由测距仪测出。在此条件下,目标在红外摄像头坐标系下的坐标为[xcmycmzcm]T=[r 0 0]T,则目标在地理坐标系下的坐标可以通过坐标转换求解得出,如下式所示:
Figure BDA0002230835450000112
式中,
Figure BDA0002230835450000113
为导弹坐标系向地理坐标系转换的旋转矩阵,
Figure BDA0002230835450000114
为红外摄像头坐标系向导弹坐标系转换的旋转矩阵,s(·)为sin(·)的简写,c(·)为cos(·)的简写。
步骤14、导弹控制系统综合所得到的信息,判断是否对目标进行打击。若是,则发送飞行控制指令,调整导弹飞行轨迹,飞向打击目标。否则,云台继续保持定向锁定状态,红外摄像头不断对目标进行拍摄,重复步骤11至步骤13的操作。
热红外成像制导系统组成及工作原理如图1所示,包括红外摄像头、摄像头跟踪系统、跟踪处理器、图像处理、图像识别、导弹控制系统。

Claims (10)

1.一种基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:包括如下步骤:
步骤1、获取红外数据集:通过截取试验阶段飞行载体的红外摄像头跟踪系统中不同场景、种类、姿态、大小的红外行人及车辆图像作为制作数据集的材料;
步骤2、制作类别标签:对红外行人及车辆图像进行裁剪,设定成固定大小,利用标注框标注训练集图像中每一个目标,得到训练集图像中每一个目标的位置信息与类别信息,位置信息为标注框中心点坐标和标注框宽、高,类别信息即为目标所属类别,以xml格式存储,最后,将标注完成的xml格式文件转换为txt格式文件;
步骤3、处理数据集:制作Pascal voc2007标准化数据集,将步骤(2)处理后的不同类型的原始红外图像数据存放于JPEGImages文件夹中;将步骤2中生成的模型可读的xml文件存放在Annotations文件夹中;在ImageSets文件夹下建立Main文件夹,并在该Main文件夹中新建test.txt、train.txt、trainval.txt、val.txt四个文件,即测试集、训练集、训练和验证集、验证集;
步骤4、先验框聚类:针对热红外图像相比于可见光图像纹理特征弱、边缘不清晰的特点,利用K-means算法进行先验框聚类,通过K-means算法对所述训练集中的图像进行聚类分析,得到新的先验框;
步骤5、训练网络:将训练集输入卷积神经网络,检测网络采用Darknet-53网络结构,采用多尺度预测方法,网格选取初始候选框,每个单元格预测“落入”其中物体的B个边界框及M的置信度,根据类别置信度设置卷积神经网络输出,将小于第一阈值的类别置信度confidence(M)置0,对剩余候选框进行非极大值抑制操作,得到最终预测框;
步骤6、评估模型:对上述设计的网络模型进行评估,以平均精度均值(Mean AveragePrecision,mAP)作为评估指标,当mAP值小于50%时,调整网络参数重新训练网络;
步骤7、当mAP值大于或等于50%时,保存结果,得到最终权值和训练完的卷积神经网络。
2.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:利用所述的网络模型进行导弹末端制导中热红外图像的目标识别,识别步骤如下:
步骤10、导弹进入末端制导阶段后,搭载的光电云台从预设好的位置开始转动,逐一遍历巡视下方场景,将所获得的信息以热红外视频的形式传入红外摄像头跟踪系统;
步骤11、导弹跟踪处理器获取热红外视频流,解码视频流为图片;
步骤12、利用训练完的卷积神经网络和最终权值对实时热红外图片进行检测,确定图片中物体类别;
步骤13、判断图片中物体是否为打击目标,若不是,则返回步骤10,光电云台继续转动,遍历下方场景;若该物体是打击目标,则云台定向锁定,持续跟踪目标,获取目标的位置参数,同时将处理信息送入导弹控制系统;
步骤14、导弹控制系统综合所得到的信息,判断是否对目标进行打击,若是,则发送飞行控制指令,调整导弹飞行轨迹,飞向打击目标;否则,云台继续保持定向锁定状态,红外摄像头跟踪系统不断对目标进行拍摄,重复步骤11至步骤13的操作。
3.根据权利要求2所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤13中获取目标的位置参数的方法为通过导弹携带的导航系统获取导弹当前的航向角φ、俯仰角γ、横滚角θ,红外摄像头的方位角α和高低角β由光电云台输出,同时,导弹与目标的距离r由测距仪测出,在此条件下,目标在红外摄像头坐标系下的坐标为[xcm ycm zcm]T=[r 0 0]T,则目标在地理坐标系下的坐标可以通过坐标转换求解得出,如下式所示:
Figure FDA0002230835440000021
式中,
Figure FDA0002230835440000022
为导弹坐标系向地理坐标系转换的旋转矩阵,
Figure FDA0002230835440000023
为红外摄像头坐标系向导弹坐标系转换的旋转矩阵,s(·)为sin(·)的简写,c(·)为cos(·)的简写。
4.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤1中的红外数据集包括训练集和测试集,获取过程为:从红外摄像头跟踪系统中截取两万张图像作为数据集,数据集中一万五千张图像做训练集,剩余五千张图像做测试集。
5.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤2训练集图像图像大小调整为672×672;标注工具是labelimg;采用YOLOV3算法中voc_label.py文件进行格式转化。
6.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤4利用K-means算法进行先验框聚类是将每种采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。
7.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤5中卷积神经网络训练参数设定:迭代次数Iters=50000,学习率变化迭代次数Step=200,400,600,20000,30000,初始学习率m=0.001,Batch=32,学习率变化比率Scales=2.5,2,2,0.1,0.1,权值衰减Decay=0.0003。
8.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤5中损失函数分为三个部分:目标定位偏移量损失Lloc(l,g),目标置信度损失Lconf(o,c),以及目标分类损失Lcla(O,C),其中λ1,λ2,λ3是平衡系数,即:
L(O,o,C,c,l,g)=λ1Lconf(o,c)+λ2Lcla(O,C)+λ3Lloc(l,g)。
9.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤5中每个候选框预测5个数据,5个数据包含归一化后的目标坐标x、y,归一化后的候选框的宽和高w、h,以及网格检测此类别目标的置信度confidence,置信度计算公式如下;
Figure FDA0002230835440000031
式中,Pr(object)为候选框是否存在目标,若一个网格中出现了目标,则Pr(object)的值为1;若没有出现目标,则Pr(object)的值为0;
Figure FDA0002230835440000032
为候选框与标注框的面积交并比,计算公式如下:
Figure FDA0002230835440000033
式中Detection Re sult为候选框,GroundTruth为标注框,测试时,网络直接输出目标类别M的类别置信度confidence(M),第一阈值为0.4。
10.根据权利要求1所述的基于YOLO V3面向末端制导的热红外图像目标识别方法,其特征在于:所述步骤5中卷积神经网络输出与最终预测框对应关系为:
bx=σ(tx)+cx
by=σ(ty)+cy
Figure FDA0002230835440000034
Figure FDA0002230835440000035
式中,bx,by,bw,bh分别是预测的中心坐标x,y,宽度和高度,tx,ty,tw,th是网络的输出,cx和cy是网格的左上角坐标。
CN201910967411.0A 2019-10-12 2019-10-12 一种基于yolo v3面向末端制导的热红外图像目标识别方法 Pending CN110889324A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910967411.0A CN110889324A (zh) 2019-10-12 2019-10-12 一种基于yolo v3面向末端制导的热红外图像目标识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910967411.0A CN110889324A (zh) 2019-10-12 2019-10-12 一种基于yolo v3面向末端制导的热红外图像目标识别方法

Publications (1)

Publication Number Publication Date
CN110889324A true CN110889324A (zh) 2020-03-17

Family

ID=69746105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910967411.0A Pending CN110889324A (zh) 2019-10-12 2019-10-12 一种基于yolo v3面向末端制导的热红外图像目标识别方法

Country Status (1)

Country Link
CN (1) CN110889324A (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111476179A (zh) * 2020-04-10 2020-07-31 深圳市五元科技有限公司 关键目标的行为预测方法、ai追踪相机及存储介质
CN111611989A (zh) * 2020-05-22 2020-09-01 四川智动木牛智能科技有限公司 一种基于自主机器人的多目标精准定位识别方法
CN111709381A (zh) * 2020-06-19 2020-09-25 桂林电子科技大学 基于YOLOv3-SPP的道路环境目标检测方法
CN111738056A (zh) * 2020-04-27 2020-10-02 浙江万里学院 一种基于改进YOLO v3的重卡盲区目标检测方法
CN111898539A (zh) * 2020-07-30 2020-11-06 国汽(北京)智能网联汽车研究院有限公司 一种多目标检测方法、装置、系统、设备及可读存储介质
CN111932629A (zh) * 2020-10-15 2020-11-13 南京风兴科技有限公司 一种基于深度神经网络的目标定位方法及系统
CN111950451A (zh) * 2020-08-12 2020-11-17 南京师范大学 基于多尺度预测cnn及龙芯芯片的多类别目标识别方法
CN112052824A (zh) * 2020-09-18 2020-12-08 广州瀚信通信科技股份有限公司 基于YOLOv3算法的煤气管道特定物体目标检测告警方法、装置、系统及存储介质
CN112052826A (zh) * 2020-09-18 2020-12-08 广州瀚信通信科技股份有限公司 基于YOLOv4算法的智慧执法多尺度目标检测方法、装置、系统及存储介质
CN112217838A (zh) * 2020-11-02 2021-01-12 福州大学 一种基于云模型理论的网络攻击面评估方法
CN112285706A (zh) * 2020-11-18 2021-01-29 北京望远四象科技有限公司 一种fod探测方法、装置及系统
CN112380952A (zh) * 2020-11-10 2021-02-19 广西大学 基于人工智能的电力设备红外图像实时检测及识别方法
CN112712076A (zh) * 2020-12-29 2021-04-27 中信重工开诚智能装备有限公司 一种基于无标牌定位的视觉定位装置及方法
CN112989924A (zh) * 2021-01-26 2021-06-18 深圳市优必选科技股份有限公司 目标检测方法、目标检测装置及终端设备
CN113011465A (zh) * 2021-02-25 2021-06-22 浙江净禾智慧科技有限公司 一种基于分组多级融合的生活垃圾投放智能化监管方法
CN113028897A (zh) * 2021-03-11 2021-06-25 北京信息科技大学 图像导引方法及装置
CN113076804A (zh) * 2021-03-09 2021-07-06 武汉理工大学 基于YOLOv4改进算法的目标检测方法、装置及系统
CN113093726A (zh) * 2021-03-05 2021-07-09 华南理工大学 一种基于Yolo_v4算法的目标检测与跟踪方法
CN113160274A (zh) * 2021-04-19 2021-07-23 桂林电子科技大学 一种基于YOLOv4的改进DeepSort目标检测跟踪方法
CN113158753A (zh) * 2021-02-07 2021-07-23 北京信息科技大学 捷联图像制导飞行器的目标识别及制导方法
CN113343785A (zh) * 2021-05-19 2021-09-03 山东大学 一种基于透视降采样的yolo地面标志检测方法、设备及存储介质
CN113392857A (zh) * 2021-08-17 2021-09-14 深圳市爱深盈通信息技术有限公司 基于yolo网络的目标检测方法、装置和设备终端
CN113450573A (zh) * 2020-03-25 2021-09-28 重庆翼动科技有限公司 基于无人机图像识别的交通监测方法和交通监测系统
CN113591575A (zh) * 2021-06-29 2021-11-02 北京航天自动控制研究所 一种基于改进YOLO v3网络的目标检测方法
CN114821433A (zh) * 2022-05-05 2022-07-29 南京智慧水运科技有限公司 一种基于目标检测信度动态融合的目标识别方法
CN115240240A (zh) * 2022-04-29 2022-10-25 清远蓄能发电有限公司 基于yolo网络的红外人脸识别方法及系统
WO2023087420A1 (zh) * 2021-11-17 2023-05-25 南京航空航天大学 一种基于热红外视觉的停机坪人体动作识别方法及系统
CN116386017A (zh) * 2023-06-05 2023-07-04 南京航空航天大学 一种基于红外成像原理的模糊目标识别方法
CN117765243A (zh) * 2023-12-22 2024-03-26 北京中科航星科技有限公司 一种基于高性能计算架构的ai导引系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406459A (zh) * 2014-09-30 2015-03-11 成都市晶林科技有限公司 一种导弹精确制导系统及方法
CN106444829A (zh) * 2016-09-22 2017-02-22 北京机械设备研究所 一种针对“低慢小”目标的制导无人机抛网拦截方法
CN109117794A (zh) * 2018-08-16 2019-01-01 广东工业大学 一种运动目标行为跟踪方法、装置、设备及可读存储介质
CN109815886A (zh) * 2019-01-21 2019-05-28 南京邮电大学 一种基于改进YOLOv3的行人和车辆检测方法及系统
CN110135267A (zh) * 2019-04-17 2019-08-16 电子科技大学 一种大场景sar图像细微目标检测方法
CN110135503A (zh) * 2019-05-19 2019-08-16 重庆理工大学 一种装配机器人零件深度学习识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406459A (zh) * 2014-09-30 2015-03-11 成都市晶林科技有限公司 一种导弹精确制导系统及方法
CN106444829A (zh) * 2016-09-22 2017-02-22 北京机械设备研究所 一种针对“低慢小”目标的制导无人机抛网拦截方法
CN109117794A (zh) * 2018-08-16 2019-01-01 广东工业大学 一种运动目标行为跟踪方法、装置、设备及可读存储介质
CN109815886A (zh) * 2019-01-21 2019-05-28 南京邮电大学 一种基于改进YOLOv3的行人和车辆检测方法及系统
CN110135267A (zh) * 2019-04-17 2019-08-16 电子科技大学 一种大场景sar图像细微目标检测方法
CN110135503A (zh) * 2019-05-19 2019-08-16 重庆理工大学 一种装配机器人零件深度学习识别方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450573A (zh) * 2020-03-25 2021-09-28 重庆翼动科技有限公司 基于无人机图像识别的交通监测方法和交通监测系统
CN111476179A (zh) * 2020-04-10 2020-07-31 深圳市五元科技有限公司 关键目标的行为预测方法、ai追踪相机及存储介质
CN111476179B (zh) * 2020-04-10 2023-02-14 深圳市五元科技有限公司 关键目标的行为预测方法、ai追踪相机及存储介质
CN111738056A (zh) * 2020-04-27 2020-10-02 浙江万里学院 一种基于改进YOLO v3的重卡盲区目标检测方法
CN111738056B (zh) * 2020-04-27 2023-11-03 浙江万里学院 一种基于改进YOLO v3的重卡盲区目标检测方法
CN111611989A (zh) * 2020-05-22 2020-09-01 四川智动木牛智能科技有限公司 一种基于自主机器人的多目标精准定位识别方法
CN111611989B (zh) * 2020-05-22 2023-08-01 四川智动木牛智能科技有限公司 一种基于自主机器人的多目标精准定位识别方法
CN111709381A (zh) * 2020-06-19 2020-09-25 桂林电子科技大学 基于YOLOv3-SPP的道路环境目标检测方法
CN111898539A (zh) * 2020-07-30 2020-11-06 国汽(北京)智能网联汽车研究院有限公司 一种多目标检测方法、装置、系统、设备及可读存储介质
CN111950451A (zh) * 2020-08-12 2020-11-17 南京师范大学 基于多尺度预测cnn及龙芯芯片的多类别目标识别方法
CN112052826A (zh) * 2020-09-18 2020-12-08 广州瀚信通信科技股份有限公司 基于YOLOv4算法的智慧执法多尺度目标检测方法、装置、系统及存储介质
CN112052824A (zh) * 2020-09-18 2020-12-08 广州瀚信通信科技股份有限公司 基于YOLOv3算法的煤气管道特定物体目标检测告警方法、装置、系统及存储介质
CN111932629A (zh) * 2020-10-15 2020-11-13 南京风兴科技有限公司 一种基于深度神经网络的目标定位方法及系统
CN112217838A (zh) * 2020-11-02 2021-01-12 福州大学 一种基于云模型理论的网络攻击面评估方法
CN112217838B (zh) * 2020-11-02 2021-08-31 福州大学 一种基于云模型理论的网络攻击面评估方法
CN112380952A (zh) * 2020-11-10 2021-02-19 广西大学 基于人工智能的电力设备红外图像实时检测及识别方法
CN112380952B (zh) * 2020-11-10 2022-10-11 广西大学 基于人工智能的电力设备红外图像实时检测及识别方法
CN112285706A (zh) * 2020-11-18 2021-01-29 北京望远四象科技有限公司 一种fod探测方法、装置及系统
CN112712076A (zh) * 2020-12-29 2021-04-27 中信重工开诚智能装备有限公司 一种基于无标牌定位的视觉定位装置及方法
CN112989924B (zh) * 2021-01-26 2024-05-24 深圳市优必选科技股份有限公司 目标检测方法、目标检测装置及终端设备
CN112989924A (zh) * 2021-01-26 2021-06-18 深圳市优必选科技股份有限公司 目标检测方法、目标检测装置及终端设备
CN113158753A (zh) * 2021-02-07 2021-07-23 北京信息科技大学 捷联图像制导飞行器的目标识别及制导方法
CN113011465A (zh) * 2021-02-25 2021-06-22 浙江净禾智慧科技有限公司 一种基于分组多级融合的生活垃圾投放智能化监管方法
CN113093726A (zh) * 2021-03-05 2021-07-09 华南理工大学 一种基于Yolo_v4算法的目标检测与跟踪方法
CN113076804A (zh) * 2021-03-09 2021-07-06 武汉理工大学 基于YOLOv4改进算法的目标检测方法、装置及系统
CN113076804B (zh) * 2021-03-09 2022-06-17 武汉理工大学 基于YOLOv4改进算法的目标检测方法、装置及系统
CN113028897A (zh) * 2021-03-11 2021-06-25 北京信息科技大学 图像导引方法及装置
CN113160274A (zh) * 2021-04-19 2021-07-23 桂林电子科技大学 一种基于YOLOv4的改进DeepSort目标检测跟踪方法
CN113343785A (zh) * 2021-05-19 2021-09-03 山东大学 一种基于透视降采样的yolo地面标志检测方法、设备及存储介质
CN113591575A (zh) * 2021-06-29 2021-11-02 北京航天自动控制研究所 一种基于改进YOLO v3网络的目标检测方法
CN113392857B (zh) * 2021-08-17 2022-03-11 深圳市爱深盈通信息技术有限公司 基于yolo网络的目标检测方法、装置和设备终端
CN113392857A (zh) * 2021-08-17 2021-09-14 深圳市爱深盈通信息技术有限公司 基于yolo网络的目标检测方法、装置和设备终端
WO2023087420A1 (zh) * 2021-11-17 2023-05-25 南京航空航天大学 一种基于热红外视觉的停机坪人体动作识别方法及系统
CN115240240A (zh) * 2022-04-29 2022-10-25 清远蓄能发电有限公司 基于yolo网络的红外人脸识别方法及系统
CN114821433A (zh) * 2022-05-05 2022-07-29 南京智慧水运科技有限公司 一种基于目标检测信度动态融合的目标识别方法
CN114821433B (zh) * 2022-05-05 2024-04-12 南京智慧水运科技有限公司 一种基于目标检测信度动态融合的目标识别方法
CN116386017A (zh) * 2023-06-05 2023-07-04 南京航空航天大学 一种基于红外成像原理的模糊目标识别方法
CN117765243A (zh) * 2023-12-22 2024-03-26 北京中科航星科技有限公司 一种基于高性能计算架构的ai导引系统

Similar Documents

Publication Publication Date Title
CN110889324A (zh) 一种基于yolo v3面向末端制导的热红外图像目标识别方法
CN110232350B (zh) 一种基于在线学习的实时水面多运动目标检测跟踪方法
CN113485441B (zh) 结合无人机高精度定位和视觉跟踪技术的配网巡检方法
CN113705478B (zh) 一种基于改进YOLOv5的红树林单木目标检测方法
CN109598241B (zh) 基于Faster R-CNN的卫星图像海上舰船识别方法
CN109636848B (zh) 一种基于无人机的油气管道巡检方法
CN108052940A (zh) 基于深度学习的sar遥感图像水面目标检测方法
CN107818571A (zh) 基于深度学习网络和均值漂移的船只自动跟踪方法及系统
CN109740665A (zh) 基于专家知识约束的遮挡图像船只目标检测方法及系统
CN115943439A (zh) 一种基于雷视融合的多目标车辆检测及重识别方法
CN112859011B (zh) 一种单波长机载测深雷达波形信号提取方法
CN112347895A (zh) 一种基于边界优化神经网络的舰船遥感目标检测方法
CN110751077B (zh) 一种基于部件匹配与距离约束的光学遥感图片船舶检测方法
CN113469097B (zh) 一种基于ssd网络的水面漂浮物多相机实时检测方法
CN110826575A (zh) 一种基于机器学习的水下目标识别方法
CN115100741B (zh) 一种点云行人距离风险检测方法、系统、设备和介质
Sun et al. Image target detection algorithm compression and pruning based on neural network
CN110427030B (zh) 一种基于Tiny-YOLOship目标检测算法的无人艇自主对接回收方法
CN113379738A (zh) 一种基于图像的疫木检测与定位方法及系统
CN117876664A (zh) 一种光电经纬仪目标跟踪辅助方法
CN112906564A (zh) 用于无人机载sar图像自动目标识别的智能决策支持系统设计及实现方法
CN116935356A (zh) 基于弱监督的自动驾驶多模态图片和点云实例分割方法
CN116664545A (zh) 一种基于深度学习的近海底栖生物定量检测方法及系统
CN114694042A (zh) 一种基于改进Scaled-YOLOv4的伪装人员目标检测方法
CN114463628A (zh) 一种基于阈值约束的深度学习遥感影像船舰目标识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200317