CN110889256B - 一种中低空气球飞行航迹预测方法 - Google Patents

一种中低空气球飞行航迹预测方法 Download PDF

Info

Publication number
CN110889256B
CN110889256B CN201911227995.4A CN201911227995A CN110889256B CN 110889256 B CN110889256 B CN 110889256B CN 201911227995 A CN201911227995 A CN 201911227995A CN 110889256 B CN110889256 B CN 110889256B
Authority
CN
China
Prior art keywords
balloon
flying
track
altitude
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911227995.4A
Other languages
English (en)
Other versions
CN110889256A (zh
Inventor
吴孟君
孙娜
王斌斌
刘兴兵
姚志友
李庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Special Vehicle Research Institute
Original Assignee
China Special Vehicle Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Special Vehicle Research Institute filed Critical China Special Vehicle Research Institute
Priority to CN201911227995.4A priority Critical patent/CN110889256B/zh
Publication of CN110889256A publication Critical patent/CN110889256A/zh
Application granted granted Critical
Publication of CN110889256B publication Critical patent/CN110889256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Toys (AREA)

Abstract

本发明属于气球航迹规划技术领域,公开了一种中低空气球飞行航迹预测方法,包括:获取气球系统参数,以及气球的预定任务飞行高度和降落点;插值得到气球从地面到预定任务飞行高度之间任意高度的环境参数;计算气球在地面放飞时的配重;建立气球上升过程中的热力学方程;动力学方程;运动学方程;预测得到气球的放飞点,气球从地面到平飞阶段起点的上升轨迹,以及气球平飞阶段的运动轨迹;解决气球飞行轨迹预测及规划,能够使气球根据规划航迹及高度圆满完成飞行任务,实现了中低空气球飞行轨迹的高精度预测。

Description

一种中低空气球飞行航迹预测方法
技术领域
本发明属于气球航迹规划技术领域,尤其涉及一种中低空气球飞行航迹预测方法。
背景技术
目前,国内对中低空气球飞行轨迹预测方法的研究较少,对于气球的轨迹预测方法以理论研究为主,应用不多,大部分研究针对高空气球单独上升过程或者下降过程进行仿真分析,在进行全过程飞行仿真时,国内主要研究了气球参数、高度和速度的变化,对执行任务区域没有要求,难以达到预定目标位置和高度。
气球系统通过携带光学、微波等遥感载荷和无线通信载荷,为空天预警、战场侦察监视、实时监视、反恐维稳、防灾减灾、环境监测和高速通信等应用需求提供崭新的技术手段。如若飞行轨迹规划不准,气球放飞后无迹可寻,高度及位置难以达到标准,将直接导致任务失败。
发明内容
针对上述技术问题,本发明的目的在于提供一种中低空气球飞行航迹预测方法,解决气球飞行轨迹预测及规划,能够使气球根据规划航迹及高度圆满完成飞行任务,达到飞行轨迹及高度精准可控。
为达到上述目的,本发明采用如下技术方案予以实现。
一种中低空气球飞行航迹预测方法,所述方法包括:
S1,获取气球系统参数,以及气球的预定任务飞行高度和降落点;
S2,据给定的实际放飞区域的环境参数,插值得到气球从地面到预定任务飞行高度之间任意高度的环境参数;
S3,根据气球到达所述预定任务飞行高度时需处于重浮力平衡状态,计算气球在地面放飞时的配重;
S4,建立气球上升过程中的热力学方程;
S5,建立气球上升过程中的动力学方程;
S6,建立气球上升过程中的运动学方程;
S7,根据气球的预定任务飞行高度和降落点、气球从地面到预定任务飞行高度之间任意高度的环境参数、气球在地面放飞时的配重、气球上升过程中的热力学方程、气球上升过程中的动力学方程以及气球上升过程中的运动学方程,反推得到气球的放飞点,气球从地面到平飞阶段起点的上升轨迹,以及气球平飞阶段的运动轨迹。
本发明技术方案的特点和进一步的改进为:
(1)S1中所述气球系统参数至少包括:气球上升目标海拔高度,气球放飞点目标海拔高度,预定任务飞行高度与气球放飞点之间的压力差,升力球压差,升力球直径,升力球质量,任务载荷总质量以及升力球实际体积。
(2)S2中所述某一高度的环境参数至少包括:该高度的气压、温度、露点温度、风向以及风速。
(3)S3中,计算气球在地面放飞时的配重具体为:
气球配重=(ρh_airh_He)*V-m
式中ρh_air为气球上升至预定任务飞行高度后的空气密度,ρh_He为气球上升至预定任务飞行高度后的氦气密度,V为气球上升至预定高度后的体积,m为气球整体的质量。
(4)S4中,将太阳辐射公式作为气球上升过程中的热力学模型;
太阳辐射公式表示为:
Isun,d=Isun×τatm
式中Isun,d为太阳直接辐射,τatm为大气透射率,Isun为大气层外的太阳辐照量,ma,r为大气透过率,TA为平均近点角。
(5)S5中,建立气球上升过程中的动力学方程具体为:
将动力学方程简化为水平方向的运动和垂直方向的运动:
式中,m为气球整体的质量,B为气球实时阿基米德浮力,G为重力,Cd为实时阻力系数,ρair为实时空气密度,ρHe为实时氦气密度,v为实时气球速度,U为球体体积;Fadm,1、Fadm,2分别为垂直方向与水平方向的附加惯性力。
(6)所述实时阻力系数Cd的计算为:
其中,Re为雷诺数。
(7)S6中,建立气球上升过程中的运动学方程具体为:
式中x(i)为气球水平面上东西方向位移,y(i)为气球水平面上南北方向位移,h(i)为气球垂直方向的高度位移,Vh为气球上升速度,i表示某时刻。
(8)所述方法还包括:
在气球到达预定任务飞行高度完成任务,并到达降落点后,执行降落指令,气球开始降落形成气球降落轨迹,由气球上升轨迹、气球平飞阶段的运动轨迹以及气球降落轨迹组成完整的气球飞行航迹。
本发明方法使气球借助自然风场到达预定任务目标区域,飞行可控,预测精度高,提供了准确的飞行轨迹及高度,计算快捷简便,在实际任务中为飞行提供了有力保障。
附图说明
图1为本发明实施例提供的一种中低空气球飞行航迹预测方法的示意图;
图2为气球升空热环境示意图;
图3为仿真得到的气球水平漂移距离示意图;
图4为仿真得到的气球飞行高度随时间的变化示意图;
图5为仿真得到的气球上升速度随时间的变化示意图;
图6为仿真得到的气球飞行时的三维坐标图;
图7为仿真得到的气球飘飞时高度随时间的变化示意图;
图8为气球全飞行轨迹规划示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开一种结合实时气象数据的中低空气球全飞行航迹预测方法(以海拔5500工况为例),如图1所示,包括以下步骤:
步骤A:首先获取预定任务飞行高度与气球系统参数(气球大小、气球质量、任务载荷质量等),如表一所示:
表1气球系统参数
球体上升目标海拔高度 5500米
球体放飞点目标海拔高度 1024米
预定高度与放飞点之间的压力差 37275.856帕
升力球压差 400.0帕
升力球直径 2.0米
升力球质量 450.00克
任务载荷总质量 870.00克
升力球实际体积 4.45立方米
结合当地气象局提供的放飞环境数据(见表2),根据实际飞行高度能够插值得到全飞行过程中的实时压强、温度、水平风速Vx及垂直风速Vy,实时风向角可定义为:
表2气象局提供的放飞环境数据
气球刚放飞时,由气球系统的净浮力带动上升,随着高度的增加,大气密度及压强逐渐减小,静浮力也随之降低,当气球升至预定高度开始平飞时,处于重浮力平衡的状态,气球在地面放飞时的配重计算公式可以推算为:
气球配重=(ρh_airh_He)*V-m (2)
式中ρh_air为气球上升至预定高度后的空气密度,ρh_He为上升至预定高度后的氦气密度,V为气球上升至预定高度后的体积。
步骤B:气球升空过程中热环境成分较为复杂,既有来自太阳的直接辐射、外部空气对流换热还包含大气中的长波(红外)辐射,但太阳直射辐射仍是气球受热作用的主要因素;地球大气层外太阳辐射强度几乎是一个常数,即“太阳常数”,它是指在平均日地面距离时,在地球大气层上界垂直于太阳的单位表面积上所接受的太阳能,太阳常数的标准值为1353W/m2。平流层和地面辐射强度分别为1280W/m2和925W/m2。基于Matlab环境,建立气球的热力学模型,如图2所示,其中太阳辐射的公式可表示为:
Isun,d=Isun×τatm (3)
式中Isun,d为太阳直接辐射,τatm为大气透射率,Isun为大气层外的太阳辐照量,ma,r为大气透过率,TA为平均近点角。
对于单气囊气球的升空过程可忽略其姿态的影响,将整个系统视为质点,建立气球动力学方程。实际飞行过程中,空飘球重量轻,体积大,易受水平风的影响而横向漂移,且一般为无动力飞行,漂移是随风的,故而矢量形式的运动学方程可简化为水平方向与垂直方向的运动,如下式:
式中,m为气球系统的总质量;B为气球实时阿基米德浮力,G为重力,Cd为实时阻力系数,ρair为实时空气密度,ρHe为实时氦气密度,v为实时气球速度,U为球体体积;Fadm,1、Fadm,2分别为垂直方向与水平方向的附加惯性力。
由式(7)可得出圆球阻力系数Cd的经验公式,其中Re为雷诺数,给定实际雷诺数的大小可以计算出球体的阻力系数。
由步骤A可知,结合实际风场数据,vx(东西风速)及vy(南北风速)可根据飞行高度插值得出,建立如下气球运动学方程:
式中x(i)为水平面上东西方向位移,y(i)为水平面上南北方向位移,h(i)为垂直方向的高度位移,Vh为气球上升速度.i表示某时刻
通过计算得出海拔5500定高飞行所需配重及气球所需净浮力,各项飞行参数实时仿真结果如图3至图7所示。
步骤C:在气球试验中,通常只给定了平飞执行任务区域及降落点的位置,之前的所有轨迹路线及放飞起点位置需要通过计算反推得出,以保证准确到达预定地点。将步骤C计算得出的上升段的飞行轨迹的末端设置为飞行终点,则轨迹的起点则为理论放飞点,结合实际地形,可以快速计算出放飞地点,确定放飞点的GPS坐标(如表3所示);
表3放飞点位置确定
球体上升到海拔5500.0米高度放飞时间 21.7分钟
球体最大飞行高度 5505.5米
球体最大上升速度 5.6米/秒
放飞点距离目标空域位置 17.3千米
放飞点在目标位置的方向 西偏北20.0度
步骤D:在气球实际飞行过程中到达目标点完成任务后,执行降落指令,由气球上升段、平飞段、下降段轨迹共同组成气球全航迹预测,如图8所示。
若气球轨迹预测不准,放飞后无迹可寻,将导致任务直接失败。本发明实际飞行高度及航迹的预测精度高,通过放飞更少数量的气球便可达到试验效果,有效缩短了试验周期,经济成本大大降低。同时,本方法适用于所有类型气球,计算简便,在实际任务中快速部署气球,无需长时间推算航迹,机动性较强。
以上所述,仅为本发明的具体实施例,对本发明进行详细描述,未详尽部分为常规技术。但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以所述权利要求的保护范围为准。

Claims (4)

1.一种中低空气球飞行航迹预测方法,其特征在于,所述方法包括:
S1,获取气球系统参数,以及气球的预定任务飞行高度和降落点;所述气球系统参数至少包括:气球上升目标海拔高度,气球放飞点目标海拔高度,预定任务飞行高度与气球放飞点之间的压力差,升力球压差,升力球直径,升力球质量,任务载荷总质量以及升力球实际体积;
S2,根据给定的实际放飞区域的环境参数,插值得到气球从地面到预定任务飞行高度之间任意高度的环境参数;所述给定的实际放飞区域的环境参数至少包括:该高度的气压、温度、露点温度、风向以及风速;
S3,根据气球到达所述预定任务飞行高度时需处于重浮力平衡状态,计算气球在地面放飞时的配重;
S4,建立气球上升过程中的热力学方程;S4中,将太阳辐射公式作为气球上升过程中的热力学模型;
太阳辐射公式表示为:
Isun,d=Isun×τatm
式中Isun,d为太阳直接辐射,τatm为大气透射率,Isun为大气层外的太阳辐照量,ma,r为大气透过率,TA为平均近点角;
S5,建立气球上升过程中的动力学方程;S5中,建立气球上升过程中的动力学方程具体为:
将动力学方程简化为水平方向的运动和垂直方向的运动:
ma垂直方向=B-G-Cd-Fadm,1
ma水平方向=-Fadm,2
B=[(ρairhe)]*U*g
式中,m为气球整体的质量,B为气球实时阿基米德浮力,G为重力,Cd为实时阻力系数,ρair为实时空气密度,ρhe为实时氦气密度,v为实时气球速度,U为球体体积;Fadm,1、Fadm,2分别为垂直方向与水平方向的附加惯性力;
S6,建立气球上升过程中的运动学方程;S6中,建立气球上升过程中的运动学方程具体为:
式中x(i)为气球水平面上东西方向位移,y(i)为气球水平面上南北方向位移,h(i)为气球垂直方向的高度位移,Vh为气球上升速度,i表示某时刻;
S7,根据气球的预定任务飞行高度和降落点、气球从地面到预定任务飞行高度之间任意高度的环境参数、气球在地面放飞时的配重、气球上升过程中的热力学方程、气球上升过程中的动力学方程以及气球上升过程中的运动学方程,反推得到气球的放飞点,气球从地面到平飞阶段起点的上升轨迹,以及气球平飞阶段的运动轨迹。
2.根据权利要求1所述的一种中低空气球飞行航迹预测方法,其特征在于,
S3中,计算气球在地面放飞时的配重具体为:
气球配重=(ρh_airh_He)*V-m
式中ρh_air为气球上升至预定任务飞行高度后的空气密度,ρh_He为气球上升至预定任务飞行高度后的氦气密度,V为气球上升至预定高度后的体积,m为气球整体的质量。
3.根据权利要求1所述的一种中低空气球飞行航迹预测方法,其特征在于,
所述实时阻力系数Cd的计算为:
其中,Re为雷诺数。
4.根据权利要求1所述的一种中低空气球飞行航迹预测方法,其特征在于,所述方法还包括:
在气球到达预定任务飞行高度完成任务,并到达降落点后,执行降落指令,气球开始降落形成气球降落轨迹,由气球上升轨迹、气球平飞阶段的运动轨迹以及气球降落轨迹组成完整的气球飞行航迹。
CN201911227995.4A 2019-12-04 2019-12-04 一种中低空气球飞行航迹预测方法 Active CN110889256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911227995.4A CN110889256B (zh) 2019-12-04 2019-12-04 一种中低空气球飞行航迹预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911227995.4A CN110889256B (zh) 2019-12-04 2019-12-04 一种中低空气球飞行航迹预测方法

Publications (2)

Publication Number Publication Date
CN110889256A CN110889256A (zh) 2020-03-17
CN110889256B true CN110889256B (zh) 2023-12-22

Family

ID=69750364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911227995.4A Active CN110889256B (zh) 2019-12-04 2019-12-04 一种中低空气球飞行航迹预测方法

Country Status (1)

Country Link
CN (1) CN110889256B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114818539B (zh) * 2022-04-29 2022-12-23 山东大学 基于指数函数的水下结构物粘滞拖曳阻力预测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108241769A (zh) * 2016-12-27 2018-07-03 海口未来技术研究院 高空气球航迹的预测方法及装置
CN108357660A (zh) * 2018-03-02 2018-08-03 北京航空航天大学 一种平流层飞艇定点安全回收方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108241769A (zh) * 2016-12-27 2018-07-03 海口未来技术研究院 高空气球航迹的预测方法及装置
WO2018120736A1 (zh) * 2016-12-27 2018-07-05 海口未来技术研究院 高空气球航迹的预测方法及装置
CN108357660A (zh) * 2018-03-02 2018-08-03 北京航空航天大学 一种平流层飞艇定点安全回收方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
刘强 ; 武哲 ; 祝明 ; 徐伟强 ; .平流层气球热动力学仿真.北京航空航天大学学报.2013,(12),第1578-1583页. *
吕明云 ; 巫资春 ; .高空气球热力学模型与上升过程仿真分析.北京航空航天大学学报.2011,(05),全文. *
姚伟 ; 李勇 ; 王文隽 ; 郑威 ; .平流层飞艇热力学模型和上升过程仿真分析.宇航学报.2007,(03),全文. *
平流层飞艇的控制模式对其定点特性的影响;施红;宋保银;周雷;姚秋萍;;航空学报(05);全文 *
戴秋敏 ; 方贤德 ; 王昊 ; 李小建 ; .大气模型对高空气球运动特性和热特性的影响.计算机仿真.2013,(09),全文. *
放飞过程中平流层飞艇运动与受力分析;张泰华;姜鲁华;周江华;;北京航空航天大学学报(04);全文 *
李辉 ; 何敬宇 ; 孙娜 ; .平流层飞艇驻空过程中热力学特性及影响因素研究.西安航空学院学报.2016,(01),全文. *
马文良 ; .基于解析法的平流层飞艇上升段热力学特性分析.兵器装备工程学报.2016,(07),全文. *

Also Published As

Publication number Publication date
CN110889256A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
Reuder et al. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research
US10319241B2 (en) Managing flight paths of a soaring aircraft with crowd sourcing
Watkins et al. The Effect of Turbulence on the Aerodynamics of Low Reynolds Number Wings.
ES2921201T3 (es) Aeronave y procedimiento de estabilización de una aeronave
CN105388763B (zh) 一种对流层间歇滑翔飞行控制方法
Watkins et al. An overview of experiments on the dynamic sensitivity of MAVs to turbulence
Jones et al. Preliminary flight test correlations of the X-HALE aeroelastic experiment
CN110889256B (zh) 一种中低空气球飞行航迹预测方法
Siddhardha Autonomous reduced-gravity enabling quadrotor test-bed: Design, modelling and flight test analysis
Jiang et al. A method of 3-D region controlling for scientific balloon long-endurance flight in the real wind
Reuder et al. First results of turbulence measurements in a wind park with the Small Unmanned Meteorological Observer SUMO
DE102012213261B4 (de) Verfahren zum Betreiben einer Luftfahrzeugeinrichtung und zur Durchführung von Messungen sowie Luftfahrzeugeinrichtung, Basisstation und Anordnung zur Durchführung eines derartigen Verfahrens
CN115981376B (zh) 一种基于气流模型的无人机长滞空飞行规划方法和装置
Nugroho Comparison of classical and modern landing control system for a small unmanned aerial vehicle
Gavrilović et al. Bioinspired energy harvesting from atmospheric phenomena for small unmanned aerial vehicles
Azeta et al. Performance evaluation of developed mathematical models of hot air balloon for drone application
CN106681337B (zh) 基于奇次滑模的平流层飞艇定高飞行控制方法
Song et al. A rotor-aerodynamics-based wind estimation method using a quadrotor
CN105938370B (zh) 变体飞行器协同飞行的控制系统及其建模仿真方法
Schopferer et al. Evaluating the energy balance of high altitude platforms at early design stages
Gavrilovic et al. Performance improvement of small UAVs through energy-harvesting within atmospheric gusts
Walpen et al. Real-scale atmospheric wind and turbulence replication using a fan-array for environmental testing and UAV/AAM validation
Sóbester et al. Notes on meteorological balloon mission planning
CN109116348B (zh) 一种面向昆虫迁飞起飞与巡航的远距离轨迹模拟方法
Ayele et al. Uncovering the Aeroelastic Behavior of Light Aircraft Structures with SlenderWings under Extreme Flow Turbulence Intensity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant