CN110888798A - 一种基于图卷积神经网络对软件缺陷预测方法 - Google Patents

一种基于图卷积神经网络对软件缺陷预测方法 Download PDF

Info

Publication number
CN110888798A
CN110888798A CN201910973406.0A CN201910973406A CN110888798A CN 110888798 A CN110888798 A CN 110888798A CN 201910973406 A CN201910973406 A CN 201910973406A CN 110888798 A CN110888798 A CN 110888798A
Authority
CN
China
Prior art keywords
file
model
files
data
gcn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910973406.0A
Other languages
English (en)
Other versions
CN110888798B (zh
Inventor
孟海宁
石月开
朱磊
黑新宏
姚燕妮
冯锴
童新宇
董林靖
柴春蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201910973406.0A priority Critical patent/CN110888798B/zh
Publication of CN110888798A publication Critical patent/CN110888798A/zh
Application granted granted Critical
Publication of CN110888798B publication Critical patent/CN110888798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/362Software debugging
    • G06F11/366Software debugging using diagnostics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Debugging And Monitoring (AREA)

Abstract

本发明公开了一种基于图卷积神经网络的软件缺陷预测方法,利用GCN算法训练模型对输入的代码文件进行缺陷类型的预测。本发明通过Bert模型将软件的源代码文件进行特征提取,并通过构建抽象语法树实现了源代码中的文件之间的关联,然后使用关联算法Apriori将代码中可能具有缺陷传递的文件进行关联,最后将源文件的特征向量与特征向量之间的关联关系作为邻接矩阵作为输入,实现了对GCN模型的训练。当判断软件代码文件是否存在缺陷时,将代码文件自动转化为其对应的特征向量向量作为模型的输入,GCN模型输出代码文件可能存在缺陷,从而大大减少了测试人员的工作量。

Description

一种基于图卷积神经网络对软件缺陷预测方法
技术领域
本发明属于软件缺陷预测技术领域,具体涉及一种基于图卷积神经网络对软件缺陷预测方法。
背景技术
从计算机来到这个世界,随着软件工程的迅速发展,软件系统复杂度提高,软件中潜在的、未被发现的缺陷势必影响软件质量。尽早地发现缺陷并对其进行处理将对软件质量的保障具有重要的意义,因此为维护软件安全,更加全面、精准的软件缺陷检测方法的提出迫在眉睫。软件测试是常用、有效的软件质量保障手段,对于大规模程序而言,如果测试程序的所有模块则会消耗大量人力物力,因此软件缺陷预测是一种可行的解决方法,它能够在系统开发初期,及时准确地预测软件模块是否包含缺陷,合理分配测试资源,针对性地对缺陷模块进行分析提高产品质量。目前关于对软件缺陷预测的方法主要是通过分析历史程序源代码或开发活动提取出与缺陷相关的度量元创建源数据集,然后运用机器学习等方法构建预测模型,最后使用该模型对目标软件项目的缺陷情况进行预测。相比与软件度量元信息,程序语义能够更加准确地对软件缺陷特征进行描述。面对着大量新的应用软件产生,软件缺陷预测技术将迎来自己的黄金期。
发明内容
本发明的目的是提供一种基于图卷积神经网络对软件缺陷预测方法,利用Bert模型对软件代码源文件进行语义上的表示,通过构建抽象语法树将源代码中的各个文件进行关联,将表示文件的源代码的特征向量及特征向量之间的拓扑结构作为图卷积神经的网络输入,生成训练GCN网络模型,最后通过向GCN模型输入源代码文件实现对软件缺陷类型进行预测。
本发明所采用的技术方案是,一种基于图卷积神经网络的软件缺陷预测方法,具体操作步骤如下:
步骤1,将原始数据集复制为相同的两份,分别命名为data1、data2;
步骤2,将data1中的数据文件进行遍历读取,然后将文件中的数据进行格式化处理后保存到文件夹Pro-data1中;
步骤3,Pro-data1文件夹下的全部文件进行一次备份作为训练集;
步骤4,将步骤2中Pro-data1文件夹下的所有文件中的内容整合到文件total_data.txt中,形成Bert模型训练集数据;
步骤5,调用Embedding中流行的Bert模型,并初始化Bert模型权重参数;
步骤6,使用步骤4中total_data.txt中的数据优化步骤5中构建的Bert模型参数,生成最终的优化Bert模型;
步骤7,依次读取步骤3中训练集文件夹下的文件内容并输入到步骤6中构建的优化Bert模型中,然后对文件内容中每一词汇产生的特征向量进行相加,最后建立一张文件名、特征向量、缺陷标签的映射关系表table1;
步骤8,构建正则表达式对data2数据集中源文件内容进行提取,然后通过语法解析对data2项目源文件进行构建语法树,分析语法树中不同文件的调用关系,并将文件之间调用关系以邻接矩阵的方式存储为matrix1;
步骤9,依照步骤7中文件与特征向量的映射表与步骤8中形成的文件调用关系邻接矩阵分析特征向量之间的调用关系,并将调用关系存储为matrix2;
步骤10,对步骤7中产生的特征向量采用关联算法Apriori进行处理,通过关联算法判断特征向量之间是否存在因果关系,若存在因果关系,则在步骤9中特征向量关系矩阵matrix2中进行记录,不存在则不进行记录;
步骤11,构建GCN模型,并初始化模型中的参数;
步骤12,将步骤7中产生的特征向量和步骤9中的matrix2作为特征向量之间的拓扑信息输入到GCN模型中,然后训练GCN模型参数,得到训练好的GCN模型用于代码的缺陷预测;
步骤13,对软件具有缺陷的源文件进行读取,并采用步骤7中的方式形成表征测试集文件的特征向量,然后输入步骤12中训练好的GCN模型;GCN模型输出代码缺陷类型的预测结果。
本发明的特点还在于,
步骤13所述代码缺陷类型包括词法缺陷、语法缺陷、语义缺陷、可维护性缺陷四大类。
步骤6中采用基于Embedding的方法,将项目源文件用特征向量表示,具体步骤如下:
步骤6.1,下载安装python第三方库Spacy;
步骤6.2,使用Spacy,并调用Bert模型;
步骤6.3,初始化Bert模型权重参数,使其本身具有一定语义理解能力;
步骤6.4,向步骤6.3中的Bert模型中加载步骤4中total_data.txt数据文件,开始对Bert模型的权重参数进行微调;
步骤6.5,保存优化后的Bert模型;
步骤7中采用基于Bert的方法,将项目源文件用特征向量表示,具体步骤如下:
步骤7.1,依次读取步骤3中训练集文件夹下的文件,并将文件中的缺陷标签与文件名保存到table1的一行中,最后为table1建立一列空白列;
步骤7.2,将步骤7.1中的读取到的文件内容以空格符为间隔,依次输入步骤6中的Bert模型中,输出对应字符串的字符向量。
步骤7.3,将步骤7.2每一个文件中输出的字符向量进行相加,最后形成一个表示该文件的特征向量;
步骤7.4,将步骤7.3中形成的特征向量追加到步骤7.1形成的table1中与之文件名对应空白单元格中;
步骤8中采用基于抽象语法树的方式查看文件之间的调用关系,具体步骤如下:
步骤8.1,读取步骤7中构建的table1中的文件名;
步骤8.2,构建以步骤8.1中读取的文件名为行索引和列索引的邻接矩阵,将用其表示文件之间的调用关系,此时这个邻接矩阵为单位矩阵matrix1;
步骤8.3,设计正则表达式对源代码文件进行结构上的提取形成源代码的tokens;
步骤8.4,将数据集data2文件中的内容输入到步骤8.3中设计的正则表达式中并进行语法解析,输出data2中不同文件的调用关系;
步骤8.5,将步骤8.4中不同文件之间的调用关系进行记录,记录方式为在matrix1中有调用关系的文件名处的索引值改为1;
步骤8.6,通过步骤8.4中的调用关系不断的对步骤8.5中的matrix1的索引值进行修改,最终将这个邻接矩阵作为整个数据集中文件之间的拓扑结构。
步骤11中通过训练图卷积神经网络模型实现对代码缺陷的预测,具体步骤如下:
步骤11.1:使用python三方库Keras定义基本的图卷积类,构建GCN各层配置信息。
步骤11.2:随机初始化GCN模型各种权重偏置参数。
步骤11.3:将步骤7中的文件特征向量和步骤10中的matrix2作为输入,训练GCN模型。
本发明的有益效果是:本发明的目的是提供一种基于图卷积神经网络软件缺陷预测方法,根据优化Bert模型对数据集中源代码进行向量化表示,通过构建语法树将源代码表示成的特征向量进行关联,通过关联算法Apriori将可能存在缺陷的代码文件进行关联。最后将特征向量作为输入训练GCN模型。当有缺陷的源代码文件表示成的特征向量作为GCN模型输入时,模型将预测输出代码文件中缺陷类型,从而减少测试人员的工作量和软件开发的进度。
附图说明
图1为本发明一种基于图卷积神经网络软件缺陷预测方法的总流程图;
图2为本发明构建Bert模型识别程序语义的模型流程图;
图3为本发明构建抽象语法树的流程图;
图4为本发明训练GCN模型的流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的目的是提供一种基于图卷积神经网络对软件缺陷预测方法,利用优化后的Bert模型对软件代码源文件进行语义上的表示,通过构建抽象语法树将源代码中的各个文件进行关联,将表示文件的源代码的特征向量及特征向量之间的拓扑结构作为图卷积神经的网络输入,生成训练GCN网络模型,最后通过向GCN模型输入源代码文件实现对软件缺陷类型进行预测,包含以下步骤:
步骤1,将原始数据集复制为相同的两份,分别命名为data1、data2。
步骤2,将data1中的数据文件进行遍历读取,然后将文件中的数据进行格式化处理后保存到文件Pro-data1中。
将源代码文件a1转化为b1(数据格式化),如下所示。
Figure BDA0002232844700000071
步骤3,Pro-data1文件下的全部文件进行一次备份作为训练集(train);
步骤4,将步骤2中Pro-data1文件下的所有文件中的内容整合到文件total_data.txt中,形成Bert模型训练集数据;
步骤5,调用Embedding中流行的Bert模型,并初始化模型权重参数;
步骤6,使用步骤4中total_data.txt中的数据训练步骤5中构建的Bert模型,生成优化后的Bert模型(如图2所示)。
步骤7,依次读取步骤3中训练集文件夹下的文件内容并输入到步骤6中构建的Bert模型中,然后对文件内容中每一词汇产生的特征向量进行相加,最后建立一张文件名、特征向量、缺陷标签的映射关系表table1;
例如:在文件file1中只存在“print(‘hello word’)”,则产生最后的特征向量计算步骤如下:
“Print”经过Skip-gram产生的向量v1为:[0.1,0.1,0.1,0.1,0.1];
“(”经过Skip-gram产生的向量v2为:[0.2,0.2,0.2,0.2,0.2];
“‘hello word’”经过Skip-gram产生的向量v3为:[0.3,0.3,0.3,0.3,0.3];
“(”经过Skip-gram产生的向量v4为:[0.4,0.4,0.4,0.4,0.4];
则最后表示该文件的特征向量表示为:v1+v2+v3+v4+v5=[1,1,1,1,1];
在table1中的表达为:
Figure BDA0002232844700000081
步骤8,构建正则表达式对源代码文件内容进行提取,然后通过语法解析对步骤1中data2项目源文件进行构建抽象语法树(如图3所示),分析不同文件的调用关系,并将文件之间调用关系以邻接矩阵的方式存储为matrix1;
步骤9,依照步骤7中文件与特征向量的映射表与步骤8中形成的文件调用关系邻接矩阵分析特征向量之间的调用关系,并将调用关系存储为matrix2;
步骤10,对步骤7中产生的特征向量采用关联算法Apriori进行处理,通过关联算法判断特征向量之间是否存在因果关系,若存在因果关系,则在步骤9中特征向量关系矩阵matrix2中进行记录,不存在则不进行记录;
步骤11,构建GCN模型,并初始化模型中的参数;
步骤12,将步骤7中产生的特征向量作为节点特征和步骤9中的matrix2作为节点之间的拓扑信息输入到GCN模型中,然后训练GCN模型参数,得到训练好的GCN模型用于代码的缺陷预测(如图4所示);
步骤13,对软件具有缺陷的源文件进行读取,并采用步骤7中的方式形成表征测试集文件的特征向量,然后输入步骤12中训练好的GCN模型,GCN模型将对代码缺陷结果进行类型预测,可分为:词法缺陷、语法缺陷、语义缺陷、可维护性缺陷四大类。
步骤2,将data1中的数据文件进行遍历读取,然后将文件中的数据进行格式化处理后保存到文件Pro-data1中,其中
步骤2伪代码如下:
Figure BDA0002232844700000091
步骤6中采用基于Embedding的方法,将项目源文件用特征向量表示,具体步骤如下:
步骤6.1,下载安装python第三方库Spacy;
步骤6.2,使用Spacy,并调用Bert模型(Bert模型是基于多层双向转换解码,其能够通过双向获取句子某个词的前后信息,并通过注意力机制获取到句子中的重要信息,是目前强大的一种特征提取器,本方法将其用作为文本到数据的转化器);
步骤6.3,初始化Bert模型权重参数,使其本身具有一定语义理解能力;
步骤6.4,向步骤6.3中的模型中加载步骤4中total_data.txt数据文件,开始对Bert模型的权重参数进行微调;
步骤6.5,保存训练完成的Bert模型;
步骤6伪代码如下:
Figure BDA0002232844700000101
步骤7中采用基于Bert的方法,将项目源文件用特征向量表示,具体步骤如下:
步骤7.1,依次读取步骤3中训练集文件夹下的文件,并将文件中的缺陷标签与文件名保存到table1的一行中,最后为table1建立一列空白列;
步骤7.2,将步骤7.1中的读取到的文件内容以空格符为间隔,依次输入步骤6中的Bert模型中,输出对应字符串的字符向量。
步骤7.3,将步骤7.2每一个文件中输出的字符向量进行相加,最后形成一个表示该文件的特征向量;
步骤7.4,将步骤7.3中形成的特征向量追加到步骤7.1形成的table1中与之文件名对应空白单元格中;
步骤8中采用基于抽象语法树的方式查看文件之间的调用关系,具体操作步骤如下:
步骤8.1,读取步骤7中构建的table1中的文件名;
步骤8.2,构建以步骤8.1中读取的文件名为行索引和列索引的邻接矩阵,将用其表示文件之间的调用关系,此时这个邻接矩阵为单位矩阵matrix1;
步骤8.3,设计正则表达式对源代码文件进行结构上的提取形成源代码的tokens;
步骤8.4,将数据集data2文件中的内容输入到步骤8.3中设计正则表达式中并进行语法解析,输出data2中不同文件的调用关系;
步骤8.5,将步骤8.4中不同文件之间的调用关系进行记录,记录方式为在matrix1中有调用关系的文件名处的索引值改为1;
步骤8.6,通过步骤8.4中的调用关系不断的对步骤8.5中的matrix1的索引值进行修改,最终将这个邻接矩阵作为整个数据集中文件之间的拓扑结构。
步骤10,对步骤7中产生的特征向量采用关联算法Apriori进行处理,使具有缺陷因果关系的特征向量进行关联,然后修改步骤9中的特征向量关系矩阵matrix2,使具有因果关系的特征向量进行连接;
步骤10伪代码如下:
Figure BDA0002232844700000121
Figure BDA0002232844700000131
步骤11中通过训练卷积神经网络模型实现对代码缺陷的预测,具体步骤如下:
步骤11.1:使用python三方库Keras定义基本的图卷积类,构建GCN各层配置信息。
步骤11.2:随机初始化GCN模型各种权重偏置参数。
步骤11.3:将步骤7中的文件特征向量和步骤10中的matrix2作为输入,训练GCN模型。
步骤11伪代码如下:
Figure BDA0002232844700000132
Figure BDA0002232844700000141

Claims (6)

1.一种基于图卷积神经网络软件缺陷预测方法,其特征在于,具体操作步骤如下:
步骤1,将原始数据集复制为相同的两份,分别命名为data1、data2;
步骤2,将data1中的数据文件进行遍历读取,然后将文件中的数据进行格式化处理后保存到文件夹Pro-data1中;
步骤3,Pro-data1文件夹下的全部文件进行一次备份作为训练集;
步骤4,将步骤2中Pro-data1文件夹下的所有文件中的内容整合到文件total_data.txt中,形成Bert模型训练集数据;
步骤5,调用Embedding中流行的Bert模型,并初始化Bert模型权重参数;
步骤6,使用步骤4中total_data.txt中的数据优化步骤5中构建的Bert模型参数,生成最终的优化Bert模型;
步骤7,依次读取步骤3中训练集文件夹下的文件内容并输入到步骤6中构建的优化Bert模型中,然后对文件内容中每一词汇产生的特征向量进行相加,最后建立一张文件名、特征向量、缺陷标签的映射关系表table1;
步骤8,构建正则表达式对data2数据集中源文件内容进行提取,然后通过语法解析对data2项目源文件进行构建语法树,分析语法树中不同文件的调用关系,并将文件之间调用关系以邻接矩阵的方式存储为matrix1;
步骤9,依照步骤7中文件与特征向量的映射表与步骤8中形成的文件调用关系邻接矩阵分析特征向量之间的调用关系,并将调用关系存储为matrix2;
步骤10,对步骤7中产生的特征向量采用关联算法Apriori进行处理,通过关联算法判断特征向量之间是否存在因果关系,若存在因果关系,则在步骤9中特征向量关系矩阵matrix2中进行记录,不存在则不进行记录;
步骤11,构建GCN模型,并初始化模型中的参数;
步骤12,将步骤7中产生的特征向量和步骤9中的matrix2作为特征向量之间的拓扑信息输入到GCN模型中,然后训练GCN模型参数,得到训练好的GCN模型用于代码的缺陷预测;
步骤13,对软件具有缺陷的源文件进行读取,并采用步骤7中的方式形成表征测试集文件的特征向量,然后输入步骤12中训练好的GCN模型;GCN模型输出代码缺陷类型的预测结果。
2.根据权利要求1所述的基于图卷积神经网络的软件缺陷预测方法,其特征在于,步骤13所述代码缺陷类型包括词法缺陷、语法缺陷、语义缺陷、可维护性缺陷四大类。
3.根据权利要求1所述的基于图卷积神经网络的软件缺陷预测方法,其特征在于,步骤6中采用基于Embedding的方法,将项目源文件用特征向量表示,具体步骤如下:
步骤6.1,下载安装python第三方库Spacy;
步骤6.2,使用Spacy,并调用Bert模型;
步骤6.3,初始化Bert模型权重参数,使其本身具有一定语义理解能力;
步骤6.4,向步骤6.3中的Bert模型中加载步骤4中total_data.txt数据文件,开始对Bert模型的权重参数进行微调;
步骤6.5,保存训练完成的Bert模型。
4.根据权利要求1所述的基于图卷积神经网络的软件缺陷预测方法,其特征在于,步骤7中采用基于Bert的方法,将项目源文件用特征向量表示,具体步骤如下:
步骤7.1,依次读取步骤3中训练集文件夹下的文件,并将文件中的缺陷标签与文件名保存到table1的一行中,最后为table1建立一列空白列;
步骤7.2,将步骤7.1中的读取到的文件内容以空格符为间隔,依次输入步骤6中的Bert模型中,输出对应字符串的字符向量;
步骤7.3,将步骤7.2每一个文件中输出的字符向量进行相加,最后形成一个表示该文件的特征向量;
步骤7.4,将步骤7.3中形成的特征向量追加到步骤7.1形成的table1中与之文件名对应空白单元格中。
5.根据权利要求1所述的基于图卷积神经网络的软件缺陷预测方法,其特征在于,步骤8中采用基于抽象语法树的方式查看文件之间的调用关系,具体步骤如下:
步骤8.1,读取步骤7中构建的table1中的文件名;
步骤8.2,构建以步骤8.1中读取的文件名为行索引和列索引的邻接矩阵,将用其表示文件之间的调用关系,此时这个邻接矩阵为单位矩阵matrix1;
步骤8.3,设计正则表达式对源代码文件进行结构上的提取形成源代码的tokens;
步骤8.4,将数据集data2文件中的内容输入到步骤8.3中设计的正则表达式中并进行语法解析,输出data2中不同文件的调用关系;
步骤8.5,将步骤8.4中不同文件之间的调用关系进行记录,记录方式为在matrix1中有调用关系的文件名处的索引值改为1;
步骤8.6,通过步骤8.4中的调用关系不断的对步骤8.5中的matrix1的索引值进行修改,最终将这个修改后的邻接矩阵作为整个数据集中文件之间的拓扑结构。
6.根据权利要求1所述的基于图卷积神经网络的软件缺陷预测方法,其特征在于,步骤11中通过训练图卷积神经网络模型实现对代码缺陷的预测,具体步骤如下:
步骤11.1:使用python三方库Keras定义基本的图卷积类,构建GCN各层配置信息;
步骤11.2:随机初始化GCN模型各种权重偏置参数;
步骤11.3:将步骤7中的文件特征向量和步骤10中的matrix2作为输入,训练GCN模型。
CN201910973406.0A 2019-10-14 2019-10-14 一种基于图卷积神经网络对软件缺陷预测方法 Active CN110888798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910973406.0A CN110888798B (zh) 2019-10-14 2019-10-14 一种基于图卷积神经网络对软件缺陷预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910973406.0A CN110888798B (zh) 2019-10-14 2019-10-14 一种基于图卷积神经网络对软件缺陷预测方法

Publications (2)

Publication Number Publication Date
CN110888798A true CN110888798A (zh) 2020-03-17
CN110888798B CN110888798B (zh) 2022-11-04

Family

ID=69746146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910973406.0A Active CN110888798B (zh) 2019-10-14 2019-10-14 一种基于图卷积神经网络对软件缺陷预测方法

Country Status (1)

Country Link
CN (1) CN110888798B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111488807A (zh) * 2020-03-29 2020-08-04 复旦大学 基于图卷积网络的视频描述生成系统
CN112463970A (zh) * 2020-12-16 2021-03-09 吉林大学 一种基于时间关系对文本包含的因果关系进行抽取的方法
CN112597038A (zh) * 2020-12-28 2021-04-02 中国航天系统科学与工程研究院 软件缺陷预测方法及系统
CN113608747A (zh) * 2021-08-18 2021-11-05 南京航空航天大学 一种基于图卷积神经网络的软件缺陷预测方法及终端
CN113722218A (zh) * 2021-08-23 2021-11-30 南京审计大学 一种基于编译器中间表示的软件缺陷预测模型构建方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167286A (ja) * 1986-12-27 1988-07-11 Tokyo Keiki Co Ltd 接岸支援システムのノイズ評価方式
US20030065409A1 (en) * 2001-09-28 2003-04-03 Raeth Peter G. Adaptively detecting an event of interest
CN103294601A (zh) * 2013-07-03 2013-09-11 中国石油大学(华东) 一种基于选择性动态权重神经网络集成的软件可靠性预测方法
WO2014131262A1 (zh) * 2013-02-28 2014-09-04 华为技术有限公司 一种缺陷预测方法及装置
CN104484474A (zh) * 2014-12-31 2015-04-01 南京盾垒网络科技有限公司 数据库安全审计方法
US20150100940A1 (en) * 2013-10-04 2015-04-09 Avaya Inc. System and method for prioritizing and remediating defect risk in source code
CN105637540A (zh) * 2013-10-08 2016-06-01 谷歌公司 用于强化学习的方法和设备
CN107239846A (zh) * 2016-03-29 2017-10-10 中兴通讯股份有限公司 停车场泊位预测处理方法及装置
CN108648449A (zh) * 2018-05-11 2018-10-12 杭州电子科技大学 基于卡尔曼滤波和nar神经网络组合的车位预测方法
CN109992782A (zh) * 2019-04-02 2019-07-09 深圳市华云中盛科技有限公司 法律文书命名实体识别方法、装置及计算机设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167286A (ja) * 1986-12-27 1988-07-11 Tokyo Keiki Co Ltd 接岸支援システムのノイズ評価方式
US20030065409A1 (en) * 2001-09-28 2003-04-03 Raeth Peter G. Adaptively detecting an event of interest
WO2014131262A1 (zh) * 2013-02-28 2014-09-04 华为技术有限公司 一种缺陷预测方法及装置
CN103294601A (zh) * 2013-07-03 2013-09-11 中国石油大学(华东) 一种基于选择性动态权重神经网络集成的软件可靠性预测方法
US20150100940A1 (en) * 2013-10-04 2015-04-09 Avaya Inc. System and method for prioritizing and remediating defect risk in source code
CN105637540A (zh) * 2013-10-08 2016-06-01 谷歌公司 用于强化学习的方法和设备
CN104484474A (zh) * 2014-12-31 2015-04-01 南京盾垒网络科技有限公司 数据库安全审计方法
CN107239846A (zh) * 2016-03-29 2017-10-10 中兴通讯股份有限公司 停车场泊位预测处理方法及装置
CN108648449A (zh) * 2018-05-11 2018-10-12 杭州电子科技大学 基于卡尔曼滤波和nar神经网络组合的车位预测方法
CN109992782A (zh) * 2019-04-02 2019-07-09 深圳市华云中盛科技有限公司 法律文书命名实体识别方法、装置及计算机设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAINING MENG: "A Rejuvenation Model for Software System under Normal Attack", 《2015 IEEE TRUSTCOM/BIGDATASE/ISPA》 *
徐舜: "基于IMF能量矩和SVM的电力线路故障定位", 《电测与仪表》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111488807A (zh) * 2020-03-29 2020-08-04 复旦大学 基于图卷积网络的视频描述生成系统
CN111488807B (zh) * 2020-03-29 2023-10-10 复旦大学 基于图卷积网络的视频描述生成系统
CN112463970A (zh) * 2020-12-16 2021-03-09 吉林大学 一种基于时间关系对文本包含的因果关系进行抽取的方法
CN112597038A (zh) * 2020-12-28 2021-04-02 中国航天系统科学与工程研究院 软件缺陷预测方法及系统
CN112597038B (zh) * 2020-12-28 2023-12-08 中国航天系统科学与工程研究院 软件缺陷预测方法及系统
CN113608747A (zh) * 2021-08-18 2021-11-05 南京航空航天大学 一种基于图卷积神经网络的软件缺陷预测方法及终端
CN113608747B (zh) * 2021-08-18 2024-04-02 南京航空航天大学 一种基于图卷积神经网络的软件缺陷预测方法及终端
CN113722218A (zh) * 2021-08-23 2021-11-30 南京审计大学 一种基于编译器中间表示的软件缺陷预测模型构建方法

Also Published As

Publication number Publication date
CN110888798B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN110888798B (zh) 一种基于图卷积神经网络对软件缺陷预测方法
Guo et al. Graphcodebert: Pre-training code representations with data flow
Zheng et al. Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching network
US11221832B2 (en) Pruning engine
CN108446540B (zh) 基于源代码多标签图神经网络的程序代码抄袭类型检测方法与系统
CN111459799B (zh) 一种基于Github的软件缺陷检测模型建立、检测方法及系统
CN111651198B (zh) 代码摘要自动化生成方法及装置
CN112100401B (zh) 面向科技服务的知识图谱构建方法、装置、设备及存储介质
CN112163420A (zh) 一种基于nlp技术的rpa流程自动生成方法
Onan SRL-ACO: A text augmentation framework based on semantic role labeling and ant colony optimization
CN112364125B (zh) 一种联合阅读课程学习机制的文本信息抽取系统及方法
Del Carpio et al. Trends in software engineering processes using deep learning: a systematic literature review
Althar et al. Software systems security vulnerabilities management by exploring the capabilities of language models using NLP
CN114528398A (zh) 一种基于交互双重图卷积网络的情感预测方法及系统
Fischbach et al. Cira: A tool for the automatic detection of causal relationships in requirements artifacts
CN114492380A (zh) 文本关系抽取方法及装置、计算机存储介质、电子设备
Xingguang et al. Building a question answering system for the manufacturing domain
Xu et al. DivLog: Log Parsing with Prompt Enhanced In-Context Learning
CN115687651A (zh) 知识图谱构建方法、装置、电子设备及存储介质
CN115545038A (zh) 一种优化网格标签的方面情感分析方法
Wang et al. A Token‐based Compilation Error Categorization and Its Applications
CN114491209A (zh) 基于互联网信息抓取的企业业务标签挖掘的方法和系统
CN114398905A (zh) 一种面向群智的问题及解决方案自动提取方法及相应存储介质与电子装置
Zhang et al. LogPrompt: A Log-based Anomaly Detection Framework Using Prompts
Wu A Computational Neural Network Model for College English Grammar Correction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant