CN110882673A - A chemical reaction method and device based on impingement flow - Google Patents
A chemical reaction method and device based on impingement flow Download PDFInfo
- Publication number
- CN110882673A CN110882673A CN201811042981.0A CN201811042981A CN110882673A CN 110882673 A CN110882673 A CN 110882673A CN 201811042981 A CN201811042981 A CN 201811042981A CN 110882673 A CN110882673 A CN 110882673A
- Authority
- CN
- China
- Prior art keywords
- raw material
- chemical reaction
- flow reactor
- pressure
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000002994 raw material Substances 0.000 claims abstract description 142
- 238000004146 energy storage Methods 0.000 claims description 25
- 239000007791 liquid phase Substances 0.000 claims description 18
- 239000012071 phase Substances 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 28
- 239000007788 liquid Substances 0.000 description 26
- 239000002808 molecular sieve Substances 0.000 description 18
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 15
- 239000000376 reactant Substances 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- -1 energy Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/004—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by means of a nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/08—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
- B01J8/085—Feeding reactive fluids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种基于撞击流的化学反应方法和装置,所述的化学反应方法是使高速运动的原料在撞击流反应器内高速相向撞击而发生化学反应。本发明创造性的使高速运动的原料在撞击流反应器内发生高速相向撞击,即可利用原料的动能使化学反应瞬间完成,从而显著提高了化学反应速率,不仅易于实现、操作简单、且无需高温、高浓度即可实现反应速率的显著提高,节约能耗,不影响反应的选择性。
The invention discloses a chemical reaction method and device based on impingement flow. The chemical reaction method is to make high-speed moving raw materials collide with each other at high speed in an impinging flow reactor to produce a chemical reaction. The invention creatively makes the high-speed moving raw materials collide with each other at high speed in the impinging flow reactor, so that the chemical reaction can be instantaneously completed by utilizing the kinetic energy of the raw materials, thereby significantly improving the chemical reaction rate, which is not only easy to realize, simple to operate, and does not require high temperature , high concentration can achieve a significant increase in the reaction rate, save energy, and do not affect the selectivity of the reaction.
Description
技术领域technical field
本发明是涉及一种化学反应方法和装置,具体说,是涉及一种基于撞击流的化学反应方法和装置,属于化学反应技术领域。The invention relates to a chemical reaction method and device, in particular to a chemical reaction method and device based on impingement flow, and belongs to the technical field of chemical reaction.
背景技术Background technique
化学反应是指分子破裂成原子,原子重新排列组合生成新物质的过程,通过化学反应能够制得各种各样的产品(如化学品,燃料,药物,高分子等)。化学反应几乎无所不在,例如:在化学、化工、能源、医药、环保、冶金等行业中都充满着各种不同的化学反应。Chemical reaction refers to the process in which molecules are broken into atoms, and atoms are rearranged and combined to form new substances. Various products (such as chemicals, fuels, drugs, polymers, etc.) can be produced through chemical reactions. Chemical reactions are almost ubiquitous. For example, chemical, chemical, energy, medicine, environmental protection, metallurgy and other industries are full of various chemical reactions.
对于大多数化学反应,我们通常希望在具有较高的选择性以提高原料的利用率的同时还具有较快的反应速率。目前反应速率的提高,主要是通过提高反应物浓度,提高反应温度和使用催化剂来实现。For most chemical reactions, we generally want to have high selectivity to improve the utilization of raw materials, but also have a fast reaction rate. At present, the improvement of the reaction rate is mainly achieved by increasing the concentration of reactants, increasing the reaction temperature and using catalysts.
提高反应物浓度法是提高反应速率的较为常用的方法,提高反应物的浓度能加大反应物分子之间的碰撞频率,根据化学反应碰撞理论,反应物分子的碰撞接触是发生化学反应的先决条件,欲使化学反应发生,必须使反应物分子之间发生接触和碰撞,因此提高反应物浓度有利于提高反应速率,但是对于化学反应而言,化学反应浓度通常要保持在一定的范围内才具备较好的选择性,如果反应物浓度过高,难免对化学反应的选择性造成不良影响。The method of increasing the concentration of reactants is a more common method to increase the reaction rate. Increasing the concentration of reactants can increase the collision frequency between reactant molecules. According to the collision theory of chemical reactions, the collision and contact of reactant molecules is the prerequisite for the occurrence of chemical reactions. For chemical reactions to occur, contact and collision between reactant molecules must occur. Therefore, increasing the concentration of reactants is conducive to increasing the reaction rate. However, for chemical reactions, the concentration of chemical reactions is usually maintained within a certain range. It has good selectivity. If the concentration of reactants is too high, it will inevitably cause adverse effects on the selectivity of chemical reactions.
提高反应温度法是目前提高反应速率的最直接方法,根据化学反应碰撞理论,反应物分子的碰撞接触是发生化学反应的先决条件,但并不是每一次碰撞都能导致反应发生,发生有效碰撞必须满足两个条件:(1)能量因素,即反应物分子的能量必须达到某一临界值;(2)空间因素,活化分子必须按照一定的方向相互碰撞反应才能发生;而反应物分子具有的能量,从宏观的角度而言即是指其温度,温度越高,其具有的能量就越高。并且从分子热运动的角度而言,分子热运动的平均速率计算公式如下:因此提高反应温度能显著提高反应物分子热运动速率,从而提高其具有的能量,进而促进反应速率的提高。但是,反应温度的提高也必然带来一些不利的结果,如能耗过高,可能会影响平衡转化率和选择性,可能会导致副反应(如原料的分解)等,对原料的热稳定性要求较高。The method of increasing the reaction temperature is the most direct method to increase the reaction rate at present. According to the collision theory of chemical reaction, the collision contact of reactant molecules is a prerequisite for a chemical reaction, but not every collision can lead to a reaction, and an effective collision must occur. Two conditions are met: (1) the energy factor, that is, the energy of the reactant molecules must reach a certain critical value; (2) the space factor, the activated molecules must collide with each other in a certain direction to react; and the energy of the reactant molecules , from a macroscopic point of view, it refers to its temperature. The higher the temperature, the higher the energy it has. And from the perspective of molecular thermal motion, the formula for calculating the average rate of molecular thermal motion is as follows: Therefore, increasing the reaction temperature can significantly increase the thermal motion rate of the reactant molecules, thereby increasing the energy it has, thereby promoting the increase of the reaction rate. However, the increase of the reaction temperature will inevitably bring some unfavorable results, such as excessive energy consumption, which may affect the equilibrium conversion rate and selectivity, and may lead to side reactions (such as the decomposition of raw materials), etc., which will affect the thermal stability of the raw materials. Higher requirements.
催化剂法,是指在化学反应过程中加入适量的催化剂以促进化学反应的进行。催化剂是一种通过改变活化能来改变反应速率的物质,且催化剂在反应过程中不会破坏或改变,可以重复作用。活化能是指反应启始或自然发生所需的最低能量,愈高的活化能表示反应愈难以启始,反应速率也因此愈慢,而催化剂的使用能降低反应活化能,因而可以提高反应速率。但是,很多化学反应所使用的催化剂不易获得,且价格昂贵,使得生产成本较高,并且催化剂种类万千,选择适宜的催化剂本身也需要耗费较多的工作。The catalyst method refers to adding an appropriate amount of catalyst during the chemical reaction to promote the chemical reaction. A catalyst is a substance that changes the reaction rate by changing the activation energy, and the catalyst will not be destroyed or changed during the reaction and can be repeated. Activation energy refers to the minimum energy required for the initiation or natural occurrence of a reaction. The higher the activation energy, the more difficult it is to initiate the reaction and the slower the reaction rate. The use of catalysts can reduce the activation energy of the reaction, thus increasing the reaction rate. . However, the catalysts used in many chemical reactions are not easy to obtain and are expensive, which makes the production cost relatively high, and there are thousands of types of catalysts, and it takes a lot of work to select a suitable catalyst itself.
综上所述,目前通过提高反应物浓度,提高反应温度和使用催化剂来提高反应速率都还存在不可避免的缺陷,因此,有必要开发出一种新的提高化学反应速率的方法。To sum up, there are unavoidable defects in increasing the concentration of reactants, increasing the reaction temperature and using catalysts to increase the reaction rate. Therefore, it is necessary to develop a new method to increase the chemical reaction rate.
撞击流是由Elperin首次提出的一种特殊的流动形态,它的概念是两股或多股流体(气-固、液-液或气-液)在充分加速后沿着同一轴线上相向流动并发生撞击,形成一个高度湍动的撞击区域,能有效降低传递过程中的外部阻力,强化热量和质量传递,促进混合。目前,撞击流技术以及基于撞击流原理而产生的撞击流设备(例如:撞击流反应器)已经广泛应用于吸收、混合、传热、萃取、干燥等化工过程。但是,目前的撞击流技术主要是实现原料的快速混合,对反应促进主要以改善传质为主。原料流动的速度较低(通常小于20米/秒),其具有的动能较低,还不足以直接影响化学反应的速率和选择性,而只能通过对传质/传热的影响来间接改变反应速率和选择性。Impingement flow is a special flow pattern first proposed by Elperin. Its concept is that two or more fluids (gas-solid, liquid-liquid or gas-liquid) flow toward each other along the same axis after sufficient acceleration. When the impact occurs, a highly turbulent impact area is formed, which can effectively reduce the external resistance during the transfer process, strengthen heat and mass transfer, and promote mixing. At present, impinging flow technology and impinging flow equipment based on impinging flow principle (eg, impinging flow reactor) have been widely used in chemical processes such as absorption, mixing, heat transfer, extraction, and drying. However, the current impingement flow technology is mainly to achieve rapid mixing of raw materials, and the promotion of the reaction is mainly to improve mass transfer. The velocity of the feedstock flow is low (usually less than 20 m/s), which has a low kinetic energy, which is not sufficient to directly affect the rate and selectivity of the chemical reaction, but can only be indirectly changed through the effect on mass/heat transfer Reaction rate and selectivity.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的上述问题,本发明的目的是提供一种基于撞击流的化学反应方法和装置。In view of the above problems existing in the prior art, the purpose of the present invention is to provide a chemical reaction method and device based on impingement flow.
为实现上述发明目的,本发明采用的技术方案如下:For realizing the above-mentioned purpose of the invention, the technical scheme adopted in the present invention is as follows:
一种基于撞击流的化学反应方法,是使高速运动的原料在撞击流反应器内高速相向撞击而发生化学反应。A chemical reaction method based on impingement flow is to make high-speed moving raw materials collide with each other at high speed in an impinging flow reactor to produce a chemical reaction.
所述原料包括催化剂。The feedstock includes a catalyst.
所述原料以连续进料或间歇进料的方式来撞击。The feedstock is impinged in a continuous or intermittent manner.
所述高速撞击是指撞击速度高于100米/秒,进一步的,接近或高于音速。The high-speed impact means that the impact speed is higher than 100 m/s, further, close to or higher than the speed of sound.
作为优选方案,所述的高速运动的原料具有的动能超过化学反应的活化能,从而能促进反应的发生。所述的高速运动是指速度高于50米/秒(进一步的,高于100米/秒;更进一步的,接近或高于音速),在此高速运动下,流体的动能超过反应活化能,从而能促进化学反应的发生。As a preferred solution, the kinetic energy of the high-speed moving raw material exceeds the activation energy of the chemical reaction, thereby promoting the occurrence of the reaction. The high-speed motion refers to a speed higher than 50 m/s (further, higher than 100 m/s; further, close to or higher than the speed of sound), under this high-speed motion, the kinetic energy of the fluid exceeds the reaction activation energy, This can promote the occurrence of chemical reactions.
所述的原料为气相或液相。The raw material is gas phase or liquid phase.
作为优选方案,所述原料通过先加压再减压的方式来获得高速。As a preferred solution, the high speed of the raw material is obtained by first pressurizing and then depressurizing.
作为进一步优选方案,原料为气相时,气相原料先被加压为高压气相原料,然后高压气相原料加压单元再进行减压以获得高速;原料为液相时,液相原料先被加压为高压液相原料,然后高压液相原料再进行减压以获得高速,或,直接以高压气体减压来推动液相原料获得高速。As a further preferred solution, when the raw material is a gas phase, the gas phase raw material is first pressurized into a high-pressure gas-phase raw material, and then the high-pressure gas-phase raw material pressurizing unit is decompressed to obtain a high speed; when the raw material is a liquid phase, the liquid-phase raw material is first pressurized to High-pressure liquid-phase raw materials, and then decompress the high-pressure liquid-phase raw materials to obtain high speed, or directly decompress the high-pressure gas to push the liquid-phase raw materials to obtain high speed.
一种基于撞击流的化学反应装置,包括撞击流反应器,所述撞击流反应器内至少设有一对喷嘴,每对喷嘴均相对设置在撞击流反应器的内侧壁上,还包括若干高压原料供给单元,所述高压原料供给单元包括原料存储容器和加压单元,所述加压单元通过管路与原料存储容器的出口和喷嘴的进口相连接。A chemical reaction device based on impinging flow, comprising an impinging flow reactor, at least a pair of nozzles are arranged in the impinging flow reactor, each pair of nozzles is relatively arranged on the inner side wall of the impinging flow reactor, and also includes a plurality of high-pressure raw materials A supply unit, the high-pressure raw material supply unit includes a raw material storage container and a pressurizing unit, and the pressurizing unit is connected with the outlet of the raw material storage container and the inlet of the nozzle through a pipeline.
作为优选方案,所述加压单元为加压装置或高压气体注入装置。As a preferred solution, the pressurizing unit is a pressurizing device or a high-pressure gas injection device.
作为进一步优选方案,所述加压装置包括但不限于加压泵、压力倍增器。As a further preferred solution, the pressurizing device includes, but is not limited to, a pressurizing pump and a pressure multiplier.
作为优选方案,所述高压原料供给单元包括储能装置和温控装置,所述储能装置通过管路与加压单元的出口和喷嘴的进口相连接,所述温控装置设于储能装置上或设于储能装置的入口端。As a preferred solution, the high-pressure raw material supply unit includes an energy storage device and a temperature control device, the energy storage device is connected to the outlet of the pressurizing unit and the inlet of the nozzle through a pipeline, and the temperature control device is provided in the energy storage device on or at the inlet end of the energy storage device.
作为进一步优选方案,所述温控装置包括换热器。As a further preferred solution, the temperature control device includes a heat exchanger.
作为优选方案,包括收集单元,所述收集单元与撞击流反应器的出口相连。As a preferred solution, a collection unit is included, and the collection unit is connected to the outlet of the impinging flow reactor.
作为优选方案,包括快开阀,所述快开阀设于高压原料供给单元的出口端与喷嘴的进口端之间的管道上。As a preferred solution, a quick-opening valve is included, and the quick-opening valve is provided on the pipeline between the outlet end of the high-pressure raw material supply unit and the inlet end of the nozzle.
作为优选方案,每对喷嘴之间的距离和角度可调节。As a preferred solution, the distance and angle between each pair of nozzles can be adjusted.
基于本发明上述的化学反应原理可用于多种化学反应,以合成多种化学物质,例如:可以用于NaA分子筛的制备,具体如下:Based on the above-mentioned chemical reaction principle of the present invention, it can be used in various chemical reactions to synthesize various chemical substances, such as: can be used for the preparation of NaA molecular sieves, as follows:
一种基于撞击流的NaA分子筛制备方法,包括如下步骤:A kind of preparation method of NaA molecular sieve based on impingement flow, comprises the steps:
a)将氢氧化钠和偏铝酸钠溶于水中,加入硅溶胶,搅拌混合均匀,得到摩尔比为(2.5~3.5)Na2O:1Al2O3:(1.5~2.5)SiO2:(120~130)H2O的原料液,备用;a) Dissolve sodium hydroxide and sodium metaaluminate in water, add silica sol, stir and mix evenly to obtain a molar ratio of (2.5~3.5)Na 2 O:1Al 2 O 3 :(1.5~2.5)SiO 2 :( 120~130) raw material liquid of H 2 O, standby;
b)将原料液预热到95~100℃,以高压气体推动原料液,原料液通过撞击流反应器内的喷嘴快速进入撞击流反应器内并发生高速相向撞击,使原料晶化;b) Preheating the raw material liquid to 95-100 °C, pushing the raw material liquid with high pressure gas, the raw material liquid enters the impinging flow reactor rapidly through the nozzle in the impinging flow reactor and collides with each other at a high speed to crystallize the raw material;
c)收集晶化产物,即得所述NaA分子筛。c) collecting the crystallized product to obtain the NaA molecular sieve.
与现有技术相比,本发明具有如下显著性有益效果:Compared with the prior art, the present invention has the following significant beneficial effects:
本发明创造性使高速运动的原料在撞击流反应器内发生高速相向撞击,即可利用原料的动能使化学反应瞬间完成,从而显著提高了化学反应速率,不仅易于实现、操作简单、且无需高温、高浓度即可实现反应速率的显著提高,节约能耗,不影响反应的选择性;另外,本发明的装置,结构简单、操作方便、成本低廉,使用广泛,实用性强,相对于现有技术具有显著性进步和突出的有益效果。The invention creatively makes the high-speed moving raw materials collide with each other at high speed in the impingement flow reactor, and the chemical reaction can be instantaneously completed by utilizing the kinetic energy of the raw materials, thereby significantly improving the chemical reaction rate. A high concentration can achieve a significant increase in the reaction rate, save energy, and do not affect the selectivity of the reaction; in addition, the device of the present invention is simple in structure, convenient in operation, low in cost, widely used, and strong in practicability, compared to the prior art. Has significant progress and outstanding beneficial effects.
附图说明Description of drawings
图1是本发明实施例提供的基于撞击流的化学反应装置的结构示意图;1 is a schematic structural diagram of a chemical reaction device based on impingement flow provided by an embodiment of the present invention;
图2是本发明实施例提供的具有储能装置和温控装置的基于撞击流的化学反应装置的结构示意图;2 is a schematic structural diagram of a chemical reaction device based on impingement flow provided with an energy storage device and a temperature control device according to an embodiment of the present invention;
图3是本发明实施例提供的具有另一种安装方式的储能装置和温控装置的基于撞击流的化学反应装置的结构示意图;3 is a schematic structural diagram of an impinging flow-based chemical reaction device with an energy storage device and a temperature control device provided in an embodiment of the present invention;
图4是本发明实施例中喷嘴的安装示意图;Fig. 4 is the installation schematic diagram of the nozzle in the embodiment of the present invention;
图5是本发明应用例步骤b)中原料液撞击前在98℃加热25~40分钟后的产物的XRD图谱;5 is the XRD pattern of the product after heating at 98° C. for 25 to 40 minutes before the impact of the raw material liquid in step b) of the application example of the present invention;
图6是本发明应用例步骤b)中原料液撞击前在98℃加热25~40分钟后的产物的SEM照片;6 is a SEM photo of the product after heating at 98° C. for 25 to 40 minutes before the impact of the raw material liquid in step b) of the application example of the present invention;
图7是本发明应用例中步骤b)中原料液在98℃加热30分钟后,再在不同压力气体推动下发生相向撞击后的产物的XRD图谱;Fig. 7 is the XRD pattern of the product after the raw material liquid is heated at 98 DEG C for 30 minutes in step b) in the application example of the present invention, and then the product after the opposite impact occurs under the impelling of different pressure gases;
图8是本发明应用例中步骤b)中原料液在98℃加热30分钟后,再在50bar压力气体推动下发生相向撞击后的产物的SEM照片;Fig. 8 is the SEM photograph of the product after the opposite impact occurs under the impelling of 50bar pressure gas after the raw material liquid is heated at 98 DEG C for 30 minutes in step b) in the application example of the present invention;
图中标号示意如下:1-撞击流反应器;2-喷嘴;3-高压原料供给单元;31-原料存储容器;32-加压单元;33-储能装置;34-温控装置;4-收集单元;5-快开阀。The symbols in the figure are as follows: 1-impinging flow reactor; 2-nozzle; 3-high pressure raw material supply unit; 31-raw material storage container; 32-pressurizing unit; 33-energy storage device; 34-temperature control device; 4- Collection unit; 5-Quick-open valve.
具体实施方式Detailed ways
以下结合实施例、附图和应用例对本发明的技术方案做进一步详细描述。The technical solutions of the present invention will be further described in detail below with reference to the embodiments, drawings and application examples.
实施例Example
本发明提供了一种基于撞击流的化学反应方法,是使高速运动的原料在撞击流反应器内高速相向撞击而发生化学反应。其中,所述的高速运动的原料具有的动能超过化学反应的活化能,从而能促进反应的发生。The invention provides a chemical reaction method based on impingement flow, which is to make high-speed moving raw materials collide with each other at high speed in an impinging flow reactor to produce a chemical reaction. Wherein, the kinetic energy of the high-speed moving raw material exceeds the activation energy of the chemical reaction, thereby promoting the occurrence of the reaction.
所述的原料为气相或液相。所述原料通过先加压再减压的方式来获得高速,具体的,原料为气相时,气相原料先通过加压装置加压,再通过喷嘴的减压以获得高速;原料为液相时,液相原料先通过加压装置加压,再通过喷嘴的减压以获得高速,或,直接向液相原料中注入高压气体给原料加压,然后以高压气体减压来推动液相原料获得高速。The raw material is gas phase or liquid phase. The high speed is obtained by first pressurizing and then decompressing the raw material. Specifically, when the raw material is a gas phase, the gas phase raw material is first pressurized by a pressurizing device, and then the high speed is obtained by decompressing the nozzle; when the raw material is a liquid phase, the high speed is obtained. The liquid-phase raw material is first pressurized by a pressurizing device, and then decompressed by a nozzle to obtain high speed, or directly inject high-pressure gas into the liquid-phase raw material to pressurize the raw material, and then use the high-pressure gas to decompress the liquid-phase raw material to obtain high-speed. .
为了实现上述化学反应方法,如图1至图4所示:本发明还提供了一种基于撞击流的化学反应装置,包括撞击流反应器1,所述撞击流反应器1内设有设有一对喷嘴2,每对喷嘴2均相对设置在撞击流反应器1的内侧壁上,还包括若干高压原料供给单元3,所述高压原料供给单元3包括原料存储容器31和加压单元32,所述加压单元32通过管路与原料存储容器31的出口和喷嘴2的进口相连接。In order to realize the above chemical reaction method, as shown in FIGS. 1 to 4 : the present invention also provides a chemical reaction device based on impingement flow, including an impingement flow reactor 1, and the impingement flow reactor 1 is provided with a For the
利用该装置进行化学反应时,原料从原料存储容器31流出并经过加压单元32加压,加压后的原料通过喷嘴2进行减压加速(喷嘴2内的压力远远低于加压后原料的压力,加压的原料通过喷嘴2的过程实际上相当于一个节流膨胀过程),使得通过喷嘴2的原料获得极高的速度(高于50米/秒;进一步的,高于100米/秒;更进一步的,接近或高于音速)和动能,高速运动的原料从喷嘴2中喷出并进入撞击流反应器1中发生高速撞击(撞击速度与原料的运动速度相关,通常高于100米/秒;进一步的,接近或高于音速),这样即可利用原料的动能来促使各原料组分之间快速发生化学反应,以获得需要的目标产物;When using this device for chemical reaction, the raw material flows out from the raw
在此过程中,为了保证原料的动能足以促进各原料组分之间快速发生化学反应,原料应具有较高的流速,使其具有的动能超过化学反应的活化能。In this process, in order to ensure that the kinetic energy of the raw material is sufficient to promote the rapid chemical reaction between the raw material components, the raw material should have a high flow rate, so that the kinetic energy of the raw material exceeds the activation energy of the chemical reaction.
上述反应过程中,从每个喷嘴2中喷出的原料可以相同也可以不同,即可以将相同的原料同时从不同的喷嘴2中喷出,使原料中的各组成部分发生化学反应,也可以将所需化学反应的几个原料分别从不同的喷嘴2中喷出后然后各个原料之间发生化学反应。In the above reaction process, the raw materials sprayed from each
本发明的核心点在于使原料具备极高的速度和动能,然后利用具有高动能的原料的高速撞击而促使各原料组分之间快速发生化学反应,原料可以为气相或液相,(原料为气相时,原料自身可以为气体;原料为液相时,原料自身可以为液体或固体,为液体时,可以为原料本身,也可以是用适宜的溶剂溶解配制的溶液;为固体时,可以用适宜溶剂溶解配制成溶液以便于原料进入撞击流反应器内发生撞击;原料可以包括反应物本身,也可以包括必要的催化剂),同时该反应方法相对于传统的反应方法而言,可以有效降低反应温度,节约能耗,避免副反应的发生,也使得原料不局限于热稳定性原料。The core point of the present invention is to make the raw material have extremely high speed and kinetic energy, and then use the high-speed impact of the raw material with high kinetic energy to promote the rapid chemical reaction between the raw material components, the raw material can be gas phase or liquid phase, (the raw material is In the gas phase, the raw material itself can be a gas; when the raw material is a liquid phase, the raw material itself can be a liquid or a solid; when it is a liquid, it can be the raw material itself, or a solution prepared by dissolving it with a suitable solvent; when it is a solid, it can be used A suitable solvent is dissolved and prepared into a solution so that the raw materials enter the impinging flow reactor for impact; the raw materials can include the reactants themselves, and can also include necessary catalysts), and this reaction method can effectively reduce the reaction rate compared to the traditional reaction method. temperature, saving energy consumption, avoiding the occurrence of side reactions, and making the raw materials not limited to thermally stable raw materials.
作为优选方案:As a preferred option:
所述加压单元32为加压装置或高压气体注入装置,所述加压装置可以采用市面通用的加压装置,包括但不限于加压泵、压力倍增器;加压单元32为加压装置时,原料可以为液相也可以为气相,原料直接被加压单元32加压为高压原料,再经喷嘴2减压,以使原料获得高速,此处的原料可以为液相也可以为气相;加压单元32为高压气体注入装置时,原料为液相原料,直接通过高压气体注入装置向液相原料中注入高压气体从而给原料加压,然后原料在高压气体的推动下从喷嘴2喷出并减压,以使原料获得高速。The pressurizing
如图2和图3所示,所述高压原料供给单元3包括储能装置33和温控装置34,所述储能装置33通过管路与加压单元32的出口和喷嘴2的进口相连接,原料从原料存储容器31释放后经过加压单元32,得到的高压原料进入储能装置33中,然后经过管道进入喷嘴2中,所述温控装置34设于储能装置33上(如图2所示)或设于储能装置33的入口端(如图3所示),设于储能装置33上时,加压后的高压原料进入储能装置33中并通过温控装置34调节至适宜温度,然后具有适宜温度的高压原料从储能装置33进入喷嘴2中;设于储能装置33的入口端时,加压后的高压原料通过温控装置34调节至适宜温度后储能装置33中,然后具有适宜温度的高压原料从储能装置33进入喷嘴2中。As shown in FIGS. 2 and 3 , the high-pressure raw
所述温控装置34包括换热器,通过换热器使原料具有适宜的温度。所述温控装置34还可以包括温度传感器和温度控制器(图中未显示),温度传感器与温度控制器电连接,以便对原料的温度实施智能监控,温度传感器可以安装于储能装置33上。The
所述化学反应装置包括收集单元4,所述收集单元4与撞击流反应器1的出口相连,以收集化学反应完成后的产物。The chemical reaction device includes a
所述化学反应装置包括快开阀5,所述快开阀5设于高压原料供给单元3的出口端与喷嘴2的进口端之间的管道上,具体的说,设于加压单元32与喷嘴2之间的管道上,以快速将高压原料释放入喷嘴2中。当所述高压原料供给单元3包括储能装置33时,快开阀35设于储能装置33与喷嘴2之间的管道上,以快速释放高压原料。快开阀5之间可以为并联连接,以便控制不同高压原料供给单元3中的原料同时进入不同的喷嘴2中。The chemical reaction device includes a quick-
所述高压原料供给单元3的数量至少为两个。The number of the high-pressure raw
每对喷嘴2之间的距离和角度可调节,具体的如图4所示,每对喷嘴2之间的间隔距离D,每对喷嘴2之间的角度θ均可根据实际需要自由调节。The distance and angle between each pair of
同时,本发明的原料存储容器31和储能装置33上均可以设有流量计或流量调节阀(未显示),以方便操作和对流量的调节。At the same time, both the raw
本发明的核心点在于使原料具备极高的速度和动能,然后利用具有高动能的原料的高速撞击而促使各原料组分之间快速发生化学反应,只要能使原料具备极高的速度和动能即可,可以为本发明实施例中所示通过压力的变化使原料具备极高的速度和动能,也可以采用其它手段或方法。The core point of the present invention is to make the raw materials have extremely high speed and kinetic energy, and then use the high-speed impact of the raw materials with high kinetic energy to promote the rapid chemical reaction between the raw material components, as long as the raw materials can have extremely high speed and kinetic energy. That is, as shown in the embodiment of the present invention, the raw material can be provided with extremely high speed and kinetic energy by the change of pressure, and other means or methods can also be used.
应用例Application example
a)将氢氧化钠和偏铝酸钠溶于水中,加入硅溶胶,搅拌混合均匀,得到摩尔比为3.165Na2O:1Al2O3:1.926SiO2:128H2O的原料液,备用;a) dissolving sodium hydroxide and sodium metaaluminate in water, adding silica sol, stirring and mixing uniformly to obtain a raw material solution with a molar ratio of 3.165Na 2 O:1Al 2 O 3 :1.926SiO 2 :128H 2 O, for subsequent use;
b)原料液加热至98℃并保温25~40分钟,接着用高压气体(压力为5~70bar)将加热后的原料液通过管道输入至安装于撞击流反应器1内的喷嘴2(喷嘴2之间的相对距离为15mm)中,由于喷嘴2是直接通大气,因此喷嘴2中的压力为常压,使得推动原料液的气体压差可控制在5~70bar,原料液在该压差的作用下获得极高的速度(50bar时,速度约为100米/秒)和动能,高速运动的原料液从喷嘴2中喷入撞击流反应器1内并发生高速相向撞击(撞击速度为液体出口速度的两倍,50bar时,约为200米/秒),使原料晶化;b) The raw material liquid is heated to 98°C and kept for 25 to 40 minutes, and then the heated raw material liquid is input into the nozzle 2 (nozzle 2) installed in the impinging flow reactor 1 through the pipeline with high pressure gas (pressure is 5 to 70 bar). The relative distance between them is 15mm), since the
c)收集晶化产物,即得NaA分子筛。c) Collect the crystallized product to obtain NaA molecular sieve.
本应用例中,从加热至撞击到晶化合成NaA分子筛,整个过程的时间不超过45分钟,而传统的NaA分子筛是通过水热法合成,通常将分子筛母液配制好后置于晶化釜中在100℃下反应4小时才能完成,由此可见,本发明显著提高了NaA分子筛的合成速率。In this application example, the whole process from heating to impact to crystallization and synthesizing NaA molecular sieve does not exceed 45 minutes, while the traditional NaA molecular sieve is synthesized by hydrothermal method, and the molecular sieve mother liquor is usually prepared and placed in a crystallization kettle The reaction can be completed in 4 hours at 100 DEG C. It can be seen that the present invention significantly improves the synthesis rate of NaA molecular sieve.
图5是本应用例中步骤b)中原料液撞击前在98℃加热25~40分钟后的产物的XRD图谱;从图5可见,撞击前原料液于98℃加热25~30分钟,基本无晶化反应,产物呈无定型状态,加热30和40分钟后,虽然有A型分子筛的特征峰出现,但结晶度不高,说明分子筛晶化反应尚不完全。Fig. 5 is the XRD pattern of the product after the raw material liquid is heated at 98° C. for 25 to 40 minutes before the impact in step b) in this application example; it can be seen from Fig. 5 that the raw material liquid is heated at 98° C. for 25 to 30 minutes before the impact. During the crystallization reaction, the product was in an amorphous state. After heating for 30 and 40 minutes, although the characteristic peak of the A-type molecular sieve appeared, the crystallinity was not high, indicating that the crystallization reaction of the molecular sieve was not complete.
图6是本应用例中步骤b)中原料液撞击前在98℃加热25~40分钟后的产物的SEM照片;其中,a、b是98℃加热30分钟后的产物的SEM照片,c、d是98℃加热35分钟后的产物的SEM照片;e、f是98℃加热40分钟后的产物的SEM照片;从图6可见,撞击前原料液于98℃加热30分钟,基本无晶化反应,产物呈无定型状态,没有观察到任何有规则形貌的分子筛晶体存在;加热35和40分钟后,SEM照片里出现了方形的分子筛晶体,直径约1微米,这是A型分子筛的典型形貌,但是分子筛晶体占比较小,说明分子筛晶化反应程度小。Fig. 6 is the SEM photograph of the product after heating at 98°C for 25 to 40 minutes before the impact of the raw material liquid in step b) in this application example; wherein, a and b are the SEM photographs of the product after being heated at 98°C for 30 minutes, c, d is the SEM photo of the product after heating at 98 °C for 35 minutes; e and f are the SEM photos of the product after heating at 98 °C for 40 minutes; it can be seen from Figure 6 that the raw material solution was heated at 98 °C for 30 minutes before the impact, and basically no crystallization After the reaction, the product was in an amorphous state, and no molecular sieve crystals with regular morphology were observed; after heating for 35 and 40 minutes, square molecular sieve crystals appeared in the SEM pictures, with a diameter of about 1 micron, which was typical of type A molecular sieves. However, the proportion of molecular sieve crystals is small, indicating that the degree of crystallization reaction of molecular sieve is small.
图7是本应用例中步骤b)中原料液在98℃加热30分钟后,再在不同压力气体推动下发生相向撞击后的产物的XRD图谱;图中的对照是指98℃加热30分钟、未撞击的XRD图谱,从图7可见,在加热时间固定为30分钟的前提下,随着推动气体压力的升高,液体在喷嘴出口处所获得的速度也越高,相对应的产物的XRD图谱峰高增强,A型分子筛的结晶度也随之提高,说明随着原料液撞击速度的提高,即原料具有的动能增加,对分子筛晶化的促进作用就越显著。Fig. 7 is the XRD pattern of the product after the raw material liquid is heated at 98°C for 30 minutes in step b) in this application example, and then collided with different pressure gases; the contrast in the figure refers to heating at 98°C for 30 minutes, The XRD pattern of the unimpacted XRD pattern can be seen from Figure 7. Under the premise that the heating time is fixed at 30 minutes, with the increase of the pushing gas pressure, the velocity obtained by the liquid at the nozzle outlet is also higher. The corresponding XRD pattern of the product The peak height increases, and the crystallinity of the A-type molecular sieve also increases, indicating that with the increase of the impact speed of the raw material liquid, that is, the increase of the kinetic energy of the raw material, the promotion of the crystallization of the molecular sieve is more significant.
图8是本应用例中步骤b)中原料液在98℃加热30分钟后,再在50bar压力气体推动下发生相向撞击后的产物的SEM照片;从图8可见,SEM照片中出现大量立方形的晶体,与A型分子筛的典型形貌一致,说明,原料液的相向高速撞击显著促进了晶化反应的进行。Fig. 8 is the SEM photograph of the product after the raw material liquid is heated at 98°C for 30 minutes in step b) in this application example, and then collided with each other under the pressure of 50 bar gas; it can be seen from Fig. 8 that a large number of cubes appear in the SEM photograph. The crystals are consistent with the typical morphology of A-type molecular sieves, indicating that the high-speed impact of the raw material liquid significantly promotes the crystallization reaction.
最后需要在此指出的是:以上仅是本发明的部分优选实施例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。Finally, it should be pointed out here that the above are only some preferred embodiments of the present invention, and should not be construed as limiting the protection scope of the present invention, and some non-essential improvements and adjustments made by those skilled in the art according to the above-mentioned content of the present invention All belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811042981.0A CN110882673A (en) | 2018-09-07 | 2018-09-07 | A chemical reaction method and device based on impingement flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811042981.0A CN110882673A (en) | 2018-09-07 | 2018-09-07 | A chemical reaction method and device based on impingement flow |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110882673A true CN110882673A (en) | 2020-03-17 |
Family
ID=69744530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811042981.0A Pending CN110882673A (en) | 2018-09-07 | 2018-09-07 | A chemical reaction method and device based on impingement flow |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110882673A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112403302A (en) * | 2020-12-01 | 2021-02-26 | 朱杨柱 | Impinging gas jet mechanism and impinging gas jet device |
CN115938494A (en) * | 2022-11-24 | 2023-04-07 | 中国科学院大气物理研究所 | DCU accelerated calculation method, equipment and storage medium of gas-phase chemical module |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1425493A (en) * | 2002-12-26 | 2003-06-25 | 华北工学院 | Impact flow-rotary filler bed device and using method |
CN2605048Y (en) * | 2003-02-20 | 2004-03-03 | 武汉化工学院 | impingement flow crystallizer |
KR20060018001A (en) * | 2004-08-23 | 2006-02-28 | 한국과학기술연구원 | Device to accelerate chemical reaction rate |
CN101235136A (en) * | 2008-02-28 | 2008-08-06 | 宁波万华聚氨酯有限公司 | Process for preparing polycarbonate |
CN103861544A (en) * | 2012-12-17 | 2014-06-18 | 中国石油化工股份有限公司 | Impinging stream reactor and application thereof |
CN107519827A (en) * | 2016-06-19 | 2017-12-29 | 中国石油化工股份有限公司 | A kind of energy-efficient dimethylbenzene separating technology |
CN207478546U (en) * | 2017-09-14 | 2018-06-12 | 微宏动力系统(湖州)有限公司 | A kind of impact flow reactor |
-
2018
- 2018-09-07 CN CN201811042981.0A patent/CN110882673A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1425493A (en) * | 2002-12-26 | 2003-06-25 | 华北工学院 | Impact flow-rotary filler bed device and using method |
CN2605048Y (en) * | 2003-02-20 | 2004-03-03 | 武汉化工学院 | impingement flow crystallizer |
KR20060018001A (en) * | 2004-08-23 | 2006-02-28 | 한국과학기술연구원 | Device to accelerate chemical reaction rate |
CN101235136A (en) * | 2008-02-28 | 2008-08-06 | 宁波万华聚氨酯有限公司 | Process for preparing polycarbonate |
CN103861544A (en) * | 2012-12-17 | 2014-06-18 | 中国石油化工股份有限公司 | Impinging stream reactor and application thereof |
CN107519827A (en) * | 2016-06-19 | 2017-12-29 | 中国石油化工股份有限公司 | A kind of energy-efficient dimethylbenzene separating technology |
CN207478546U (en) * | 2017-09-14 | 2018-06-12 | 微宏动力系统(湖州)有限公司 | A kind of impact flow reactor |
Non-Patent Citations (4)
Title |
---|
(以色列)A.TAMIR著: "《撞击流反应器 原理和应用》", 30 June 1996, 化学工业出版社 * |
刘有智著: "《超重力化工过程与技术》", 31 January 2009, 国防工业出版社 * |
常利峰等: "微乳液法制备无模板剂NaA分子筛", 《石油化工》 * |
梁成浩主编: "《现代腐蚀科学与防护技术》", 30 September 2007, 华东理工大学出版社 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112403302A (en) * | 2020-12-01 | 2021-02-26 | 朱杨柱 | Impinging gas jet mechanism and impinging gas jet device |
CN112403302B (en) * | 2020-12-01 | 2025-05-27 | 朱杨柱 | Impact gas jet mechanism and impact gas jet device |
CN115938494A (en) * | 2022-11-24 | 2023-04-07 | 中国科学院大气物理研究所 | DCU accelerated calculation method, equipment and storage medium of gas-phase chemical module |
CN115938494B (en) * | 2022-11-24 | 2024-01-09 | 中国科学院大气物理研究所 | DCU acceleration calculation method, equipment and storage medium of gas phase chemical module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4789910B2 (en) | Process for producing polymethylene-polyphenyl-polyamine | |
WO2021047392A1 (en) | Process method for preparing acetic acid by carbonylating methanol by means of reactor thermally coupled with rectifying tower | |
CN110882673A (en) | A chemical reaction method and device based on impingement flow | |
CN103611487B (en) | Impinging stream reactor | |
CN100425560C (en) | Continuous production method and apparatus for alpha semi-water gypsum | |
CN103935962A (en) | Supercritical hydrothermal synthesis preparation system of nano-metal oxide | |
CN217909786U (en) | Urea catalytic hydrolysis ammonia production system for thermal power plant flue gas denitration | |
CN110404492B (en) | Quick continuous preparation facilities of gas hydrate | |
CN112973612B (en) | System device and method for continuously synthesizing methyl tetrahydrophthalic anhydride | |
CN107961755B (en) | Azo dye coupling reaction continuous production device and production method | |
CN118236947A (en) | A continuous production process of methyl salicylate | |
CN103601638B (en) | Continuous production process and device of benzoic acid | |
CN221580577U (en) | DMF synthesizer | |
CN101912747A (en) | Vibration crushing granulation system and granulation method for metal oxide particles | |
CN203653465U (en) | Continuous production device for benzoic acid | |
CN202113846U (en) | Liquid vaporization equipment with heat tracing jackets | |
CN205575629U (en) | High -efficient apparatus for producing of dry hydrogen chloride preparation hydrochloric acid of water uptake | |
CN221693611U (en) | Energy recovery reactor for producing p-hydroxybenzoic acid | |
CN114315650A (en) | Method and system for continuous production of dimethylurea | |
CN208320751U (en) | The discharging device of penta chloropyridine | |
CN211328811U (en) | Urea low pressure pre-absorber | |
CN2605048Y (en) | impingement flow crystallizer | |
CN217613023U (en) | Crystallization device is used in bromine nitre alcohol production | |
CN207307868U (en) | A kind of device for fast reaction | |
CN206343180U (en) | A kind of multifunctional reaction still |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200317 |
|
RJ01 | Rejection of invention patent application after publication |