CN110880779A - Mmc网压不平衡状态下直流侧功率振荡抑制方法 - Google Patents

Mmc网压不平衡状态下直流侧功率振荡抑制方法 Download PDF

Info

Publication number
CN110880779A
CN110880779A CN201911068353.4A CN201911068353A CN110880779A CN 110880779 A CN110880779 A CN 110880779A CN 201911068353 A CN201911068353 A CN 201911068353A CN 110880779 A CN110880779 A CN 110880779A
Authority
CN
China
Prior art keywords
mmc
reference value
oscillation
current side
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911068353.4A
Other languages
English (en)
Inventor
夏向阳
石超
刘奕炫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201911068353.4A priority Critical patent/CN110880779A/zh
Publication of CN110880779A publication Critical patent/CN110880779A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种MMC网压不平衡状态下直流侧功率振荡抑制方法,提出了一个基于拉格朗日乘数法的约束优化问题,在减少环流和上下桥臂能量之和的振荡前提下,直接在abc坐标系下导出MMC的最优环流参考值,而且不需要进行复杂的数学变换,并根据计算最优环流参考值的解析表达式,设计了用于消除直流侧功率振荡的控制策略,由于约束优化的结果,该控制策略可以有效利用MMC内部能量缓冲能力提供的自由度,从而有效地将交流电网与直流线路解耦,防止了交流侧不平衡时,交流侧的功率振荡传播到直流系统中。

Description

MMC网压不平衡状态下直流侧功率振荡抑制方法
技术领域
本发明涉及柔性直流输电(MMC-HVDC)系统交流侧故障下直流侧功率传输,特指一种MMC交流侧不平衡状态下直流侧功率振荡抑制新方法,属于电力技术领域。
背景技术
基于模块化多电平换流器(Modular Multilevel Converter,MMC)的高压柔性直流输电技术是以电压源换流器为核心的新一代直流输电技术,是当今世界上电力电子技术应用的制高点。相比传统直流输电技术,柔性直流输电技术不存在换相失败问题,可增加系统动态无功储备,改善电能质量,解决非线性负荷、冲击性负荷对系统的影响,具有更强的可控性和灵活性,在大规模清洁能源并网、海岛供电、交流电网同步/异步互联、构建直流电网等方面具有广泛的应用。
对于柔性直流输电系统,尤其是对于未来的多终端系统而言,重要的是要避免交流侧故障时来自交流电网的功率振荡传播到直流系统,但目前对于MMC交流侧故障控制的研究主要集中在传统VSC-HVDC控制策略的基础上进行改进,控制结构愈发复杂,主要有如下几种:瞬时有功–无功控制,对称正序控制,正负序控制,平均有功–无功控制,灵活正序和负序控制。这些控制方法大多基于经典控制理论进行设计,需要进行复杂的数学变换,多采用PI控制器,其结构虽然简单,但控制过程调节时间过长,且控制器参数依赖于精确的系统模型而不易整定,不利于系统长期运行使用,所以在一定程度上限制了其应用,如何把效果较好的控制方法合理地应用于MMC-HVDC系统中仍然值得深入讨论。
发明内容
本发明的创新之处在于,提出了一个基于拉格朗日乘数法的约束优化问题,直接在abc坐标系下得到MMC的最优环流参考值,以此可以调节上下桥臂能量的分布,实现功率区间的优化,且不需要进行复杂的数学变换,并根据计算最优环流参考值的解析表达式,设计了用于消除直流侧功率振荡的控制策略,该控制策略可以有效利用MMC内部能量缓冲能力提供的自由度,从而有效地将交流电网与直流线路解耦,实现了交流侧不平衡状态下功率的稳定传输。
本发明提供了一种MMC交流侧不平衡状态下直流侧功率振荡抑制新方法,包括:
步骤S1:根据MMC的数学模型,计算得到上下桥臂能量之和,之差的表达式;
步骤S2:根据拉格朗日乘数法的要求,确定要优化的目标即减少能量振荡和约束条件,构建目标函数表达式,并求解;
步骤S3:考虑多目标优化,引入加权系数,重新得到MMC环流的参考值;
步骤S4:考虑直流侧功率的振荡,加入新的约束条件,从而能够减少直流侧功率振荡的环流参考值,并以此设计控制结构。
有益效果
本发明直接在abc坐标系下得到MMC的最优环流参考值,以此可以合理的调节上下桥臂能量的分布,实现功率区间的优化,且不需要进行复杂的数学变换,能够将交流电网与直流线路解耦,使MMC在不平衡故障期间充当“功率振荡防火墙”或“能量缓冲器”,防止了交流侧不平衡时,交流侧的功率振荡传播到直流系统中。
附图说明
图1是本发明提供的MMC等效电路图;
图2是本发明所提供的控制框图;
具体实施方式
根据图1所示的等效电路图,我们可以得到j相环流的表达式:
Figure BDA0002263416400000021
其中j=a,b,c,这里我们定义上下桥臂的差模电压为udiffj,上下桥臂的共模电压ucomj,即
Figure BDA0002263416400000022
Figure BDA0002263416400000023
这里桥臂阻抗Z由电阻R0和电感L0串联组成,则桥臂环流在桥臂阻抗上的压降可以表示为:
Figure BDA0002263416400000024
根据已有文献,我们可知上下桥臂能量之和W∑k和能量之差WΔk
Figure BDA0002263416400000031
Figure BDA0002263416400000032
观察得到,可以通过控制桥臂环流idiffj来控制能量的波动,为了方便对直流侧的功率进行控制,考虑到通常情况下,直流电压vdc通常为常量,我们可以通过控制vdcidiffj来控制能量的波动。
因为环流分量不是一个常量,这里我们可以选取其一个周期的平均值,即
Figure BDA0002263416400000033
通过减少
Figure BDA0002263416400000034
则可以使能量的振荡越少。
为了得到所需的目标函数,这里引入2个边界条件:
Figure BDA0002263416400000035
Figure BDA0002263416400000036
这里我们采用PI控制,可以得到如下表达式:
Figure BDA0002263416400000037
Figure BDA0002263416400000038
这样根据拉格朗日乘数法,可以得到所需的目标函数如下:
Figure BDA0002263416400000039
根据▽(idiffjΣΔ)L(idiffjΣΔ)=0,可以解得
Figure BDA00022634164000000310
为了优化功率区间,同样我们也需要减少子模块电压的振荡,即减少上下桥臂子模块电容能量之和的振荡,即减少
Figure BDA00022634164000000311
约束条件同上,这样我们又可以得到一个新的目标函数:
Figure BDA0002263416400000041
同样可以解得
Figure BDA0002263416400000042
由此我们可以看出这是一个多目标优化的问题,为了更好的解决可能存在的目标优化间的冲突问题,引入一个加权因子α,其中α∈[0,1],这样就可以转化为减少
Figure BDA0002263416400000043
这样同样考虑以上约束条件我们可以得到新的环流参考值
Figure BDA0002263416400000044
为了确保直流侧功率的稳定传输,需要在上述的基础之上,引入一个新的边界条件,
Figure BDA0002263416400000045
从而得到一个新的目标函数:
Figure BDA0002263416400000046
求解得:
Figure BDA0002263416400000047
由此我们根据式(11)得到的最优环流解析式,设计了如图2所示的的直流侧振荡的控制策略。
以上所述仅为本发明的实施例而已,并不用以限制本发明,凡在本发明精神和原则之内,所作任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种MMC网压不平衡状态下直流侧功率振荡抑制方法,其特征在于,该方法包括以下步骤:
步骤S1:根据MMC的数学模型,计算得到上下桥臂能量之和,之差的表达式;
步骤S2:根据拉格朗日乘数法的要求,确定要优化的目标即减少能量振荡和约束条件,构建目标函数表达式,并求解;
步骤S3:考虑多目标优化,引入加权系数,重新得到MMC环流的参考值;
步骤S4:考虑直流侧功率的振荡,加入新的约束条件,从而能够减少直流侧功率振荡的环流参考值,并以此设计控制结构。
2.根据权利要求1所述的方法,其特征在于直接在abc坐标系下得到MMC的最优环流参考值,以此可以调节上下桥臂能量的分布,实现功率区间的优化,且不需要进行复杂的数学变换,并能根据计算最优环流参考值的解析表达式,可以设计用于消除直流侧功率振荡的控制策略。
CN201911068353.4A 2019-11-07 2019-11-07 Mmc网压不平衡状态下直流侧功率振荡抑制方法 Withdrawn CN110880779A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911068353.4A CN110880779A (zh) 2019-11-07 2019-11-07 Mmc网压不平衡状态下直流侧功率振荡抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911068353.4A CN110880779A (zh) 2019-11-07 2019-11-07 Mmc网压不平衡状态下直流侧功率振荡抑制方法

Publications (1)

Publication Number Publication Date
CN110880779A true CN110880779A (zh) 2020-03-13

Family

ID=69728663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911068353.4A Withdrawn CN110880779A (zh) 2019-11-07 2019-11-07 Mmc网压不平衡状态下直流侧功率振荡抑制方法

Country Status (1)

Country Link
CN (1) CN110880779A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336686A (zh) * 2022-01-10 2022-04-12 武汉大学 一种基于自适应预测控制系统的电网区域振荡抑制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336686A (zh) * 2022-01-10 2022-04-12 武汉大学 一种基于自适应预测控制系统的电网区域振荡抑制方法
CN114336686B (zh) * 2022-01-10 2023-11-07 武汉大学 一种基于自适应预测控制系统的电网区域振荡抑制方法

Similar Documents

Publication Publication Date Title
Wang et al. Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid
CN107317352B (zh) 具有三相不平衡治理功能的微型光伏逆变器控制方法
CN107248756B (zh) 一种提高微电网中多逆变器并联功率分配精度的控制方法
Kececioglu et al. Power quality improvement using hybrid passive filter configuration for wind energy systems
Karagiannopoulos et al. A centralised control method for tackling unbalances in active distribution grids
CN110350571B (zh) 一种提升柔性直流输电交流侧故障穿越能力的控制方法
Woźniak et al. Heuristic optimization of multipulse rectifier for reduced energy consumption
Brandao et al. Coordinated control of three-and single-phase inverters coexisting in low-voltage microgrids
CN110535147A (zh) 一种交直流混合微网h∞频率控制方法
CN109888829A (zh) 基于改进感性下垂控制的光伏微网系统离并网无缝切换系统
CN104979836A (zh) 一种电网无功补偿方法及系统
Mohanraj et al. A unified power quality conditioner for power quality improvement in distributed generation network using adaptive distributed power balanced control (ADPBC)
Tan et al. Droop controlled microgrid with DSTATCOM for reactive power compensation and power quality improvement
CN110880779A (zh) Mmc网压不平衡状态下直流侧功率振荡抑制方法
CN117353379A (zh) 基于虚拟双机并联技术的高阶并网变流器控制方法及系统
Vigneysh et al. Grid interconnection of renewable energy sources using unified power quality conditioner: A fuzzy logic-based approach
Wang et al. Using inverter-based renewable generators to improve the grid power quality—A review
Neelima et al. OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH.
Ahmadi et al. Supervisory control of bipolar DC microgrids equipped with three-port multidirectional DC–DC converter for efficiency and system damping optimization
CN116365584A (zh) 多逆变器接入的配网系统中逆变器控制模式切换方法
Vinothkumar et al. Power quality improvement by PV integrated UPQC using multi-level inverter with resilient back propagation neural network approach
Du et al. Power management strategy of AC-DC hybrid microgrid in island mode
CN115663780A (zh) 一种光伏直流微电网的改进自适应分段下垂控制方法
CN106026102B (zh) 双回线路统一潮流控制器及断面潮流控制方法
CN112039119B (zh) 一种含光伏接入的配电网电压控制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200313