CN110880192A - Image DCT Coefficient Distribution Fitting Method Based on Probability Density Function Dictionary - Google Patents
Image DCT Coefficient Distribution Fitting Method Based on Probability Density Function Dictionary Download PDFInfo
- Publication number
- CN110880192A CN110880192A CN201911069046.8A CN201911069046A CN110880192A CN 110880192 A CN110880192 A CN 110880192A CN 201911069046 A CN201911069046 A CN 201911069046A CN 110880192 A CN110880192 A CN 110880192A
- Authority
- CN
- China
- Prior art keywords
- probability density
- formula
- distribution
- density function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000007476 Maximum Likelihood Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 10
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 abstract 2
- 238000005070 sampling Methods 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- NAPPWIFDUAHTRY-XYDRQXHOSA-N (8r,9s,10r,13s,14s,17r)-17-ethynyl-17-hydroxy-13-methyl-1,2,6,7,8,9,10,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-3-one;(8r,9s,13s,14s,17r)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 NAPPWIFDUAHTRY-XYDRQXHOSA-N 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/007—Transform coding, e.g. discrete cosine transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/28—Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Discrete Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
- Complex Calculations (AREA)
Abstract
Description
技术领域technical field
本发明涉及数字图像处理领域,尤其是一种稳定高效、自适应性强及拟合精度高的基于概率密度函数字典的图像DCT系数分布拟合方法。The invention relates to the field of digital image processing, in particular to an image DCT coefficient distribution fitting method based on a probability density function dictionary, which is stable, efficient, strong in adaptability and high in fitting accuracy.
背景技术Background technique
图像是人类对客观世界的一种描述或写真,是人类社会活动中最常用的信息载体之一。有研究指出,在人类获取的信息中,大约有75~80%都来自视觉。因此,图像分析、识别和理解是数字图像处理领域的核心问题,对多媒体时代的信息获取具有重要的理论和现实意义。然而,随着图像采集技术和设备的飞速发展,数字图像的种类愈来愈多样化,既有反映可见光信息的自然图像、计算机合成图像(亦称为“屏幕内容图像”),又出现了刻画不可见光信息的雷达图像、声纳图像、X光图像、超声图像、遥感图像、高光谱图像等。这些数字图像在光源、采集手段、拍摄对象等方面各有不同,其像素和稀疏系数分布规律往往存在显著区别。在这种情况下,图像统计学便应运而生。图像统计学是图像去噪、分割、压缩、内容分类、纹理分析、质量评价等各类处理的研究基础之一,它对于加深人们对图像本质的宏观认知程度、提高数字图像和视频处理的效率具有重要的理论和应用价值,已经得到越来越多研究人员的关注和重视。Image is a description or portrait of the objective world by human beings, and it is one of the most commonly used information carriers in human social activities. Some studies have pointed out that about 75-80% of the information obtained by humans comes from vision. Therefore, image analysis, recognition and understanding are the core issues in the field of digital image processing, and have important theoretical and practical significance for information acquisition in the multimedia age. However, with the rapid development of image acquisition technology and equipment, the types of digital images are becoming more and more diverse, including natural images reflecting visible light information, computer-synthesized images (also known as "screen content images"), and characterizations. Radar images, sonar images, X-ray images, ultrasound images, remote sensing images, hyperspectral images, etc. of invisible light information. These digital images are different in terms of light sources, acquisition methods, and shooting objects, and there are often significant differences in the distribution laws of pixels and sparse coefficients. In this case, image statistics came into being. Image statistics is one of the research bases for various processing such as image denoising, segmentation, compression, content classification, texture analysis, and quality evaluation. Efficiency has important theoretical and applied value, and has been paid more and more attention by researchers.
关于图像统计学的研究最早可追溯至上世纪50年代中期,目前为止,研究人员总结出了数字图像主要具备两种典型的分布规律,包括尺度不变性和非高斯性。其中,前者是指图像的功率谱在空间域服从幂律分布,后者则是指图像在空间域和变换域均呈现出“高尖峰、厚拖尾”的特点。Ruderman等人在研究了森林图像的分布规律后发现,其局部统计量(如对比度、对比度梯度、局部方差等)表现出高斯分布所不具有的尺度不变性和尾部指数性;进一步地,他们指出自然图像由一系列统计独立的小区域所组成,并为图像的幂律分布提供了理论依据。同时,Luo等人借助贝叶斯估计框架和Gibbs随机场对小波变换系数的空间分布和强度分布进行了统一建模。后来,随着人们对图像随机结构研究的不断深入,马尔可夫随机场(Markov Random Field,MRF)被广泛应用于图像建模领域。通过扩展传统的MRF模型,Roth和Black建立了一个可用来学习图像先验的专家域(Fields of Experts,FOE)模型;Yousefi等人引入了一种双边马尔可夫网格随机场模型,能够克服经典MRF模型的难解性及其所导致的模型非对称性;Zhai等人提出了一种基于最小描述长度原理的图像上下文模型,在无损预测编码和图像去噪方面表现出较大的应用潜力;通过融合协方差结构、对比度变化和复杂纹理等成分,Zoran和Weiss的工作则进一步揭示了混合高斯模型(GaussianMixture Model,GMM)在图像统计建模方面的优势。The research on image statistics can be traced back to the mid-1950s. So far, researchers have concluded that digital images have two typical distribution laws, including scale invariance and non-Gaussian. Among them, the former means that the power spectrum of the image obeys a power-law distribution in the spatial domain, and the latter means that the image exhibits the characteristics of "high peaks and thick tails" in both the spatial and transform domains. After studying the distribution law of forest images, Ruderman et al. found that their local statistics (such as contrast, contrast gradient, local variance, etc.) showed scale invariance and tail exponential that Gaussian distribution did not have; further, they pointed out Natural images consist of a series of statistically independent small regions and provide a theoretical basis for the power-law distribution of images. Meanwhile, Luo et al. uniformly modeled the spatial distribution and intensity distribution of wavelet transform coefficients with the help of Bayesian estimation framework and Gibbs random field. Later, with the deepening of the research on the random structure of images, the Markov Random Field (MRF) was widely used in the field of image modeling. By extending the traditional MRF model, Roth and Black established a Fields of Experts (FOE) model that can be used to learn image priors; Yousefi et al. introduced a bilateral Markov grid random field model that can overcome The intractability of the classical MRF model and the resulting model asymmetry; Zhai et al. proposed an image context model based on the principle of minimum description length, which showed great application potential in lossless predictive coding and image denoising The work of Zoran and Weiss further reveals the advantages of Gaussian Mixture Model (GMM) in image statistical modeling by fusing components such as covariance structure, contrast variation, and complex texture.
考虑到图像在空间域存在大量数据冗余,而离散余弦变换(Discrete CosineTransform,DCT)等正交稀疏变换能够为图像提供优良的非线性逼近,有效去除像素间的局部相关,并将图像表示成独立同分布的不相关系数的集合,更加有利于人们对图像统计特性的分析。故此,正交稀疏变换被广泛应用于图像和视频处理领域中。于是,研究人员对数字图像的DCT变换系数分布亦展开了深入研究。Pratt认为图像的交流DCT系数服从高斯分布;Reininger等人采用Kolmogorov-Smirnov拟合优度检验方法验证了图像的交流DCT系数服从拉普拉斯分布,Lam等人也将其刻画为拉普拉斯分布并获得广泛认可;Muller等人通过广义高斯分布对图像的DCT变换系数进行建模,Joshi等人同样认为图像的DCT交流系数服从零均值的广义高斯分布,并采用极大似然估计方法,得出该分布的形状参数集中在1~2之间的结论,这说明DCT交流系数既不服从高斯分布,也不遵守拉普拉斯分布,而是介于高斯分布和拉普拉斯分布之间;而Kang则进一步将图像的DCT系数分布建模为混合柯西分布。虽然上述工作均有效验证了图像的DCT系数具有“高尖峰、厚拖尾”的非高斯性,可是Zoran和Weiss却证明边缘滤波器(DCT基)响应分布峰度的尺度不变性,并提出了图像中存在的噪声会通过尺度改变峰度的结论,这说明由于图像获取过程的复杂性和图像种类的多样性,无论是拉普拉斯分布、广义高斯分布等单一分布,抑或某两个固定分布所组成的混合分布,对图像DCT系数的统计建模均存在一定局限性,其拟合精度仍有待进一步提高。Considering that there is a lot of data redundancy in the image in the spatial domain, orthogonal sparse transforms such as Discrete Cosine Transform (DCT) can provide an excellent nonlinear approximation for the image, effectively remove the local correlation between pixels, and represent the image as The set of independent and identically distributed uncorrelated coefficients is more conducive to people's analysis of the statistical characteristics of images. Therefore, orthogonal sparse transform is widely used in image and video processing fields. Therefore, researchers have also carried out in-depth research on the distribution of DCT transform coefficients of digital images. Pratt believed that the AC DCT coefficient of the image obeyed the Gaussian distribution; Reininger et al. used the Kolmogorov-Smirnov goodness-of-fit test method to verify that the AC DCT coefficient of the image obeyed the Laplace distribution, and Lam et al. also characterized it as Laplace distribution and has been widely recognized; Muller et al. modeled the DCT transform coefficient of the image through the generalized Gaussian distribution, and Joshi et al. also believed that the DCT communication coefficient of the image obeyed the generalized Gaussian distribution with zero mean, and used the maximum likelihood estimation method. It is concluded that the shape parameters of the distribution are concentrated between 1 and 2, which means that the DCT AC coefficient does not obey the Gaussian distribution nor the Laplace distribution, but is between the Gaussian distribution and the Laplace distribution. while Kang further models the DCT coefficient distribution of the image as a mixed Cauchy distribution. Although the above works have effectively verified that the DCT coefficients of the image are non-Gaussian with "high peaks and thick tails", Zoran and Weiss proved the scale invariance of the kurtosis of the response distribution of the edge filter (DCT basis), and proposed a The conclusion that the noise existing in the image will change the kurtosis through the scale shows that due to the complexity of the image acquisition process and the diversity of image types, whether it is a single distribution such as Laplace distribution, generalized Gaussian distribution, or two fixed distributions. The mixed distribution composed of distributions has certain limitations in the statistical modeling of image DCT coefficients, and its fitting accuracy still needs to be further improved.
发明内容SUMMARY OF THE INVENTION
本发明是为了解决现有技术所存在的上述技术问题,提供一种稳定高效、自适应性强、拟合精度高的基于概率密度函数字典的图像DCT系数分布拟合方法。The present invention aims to solve the above-mentioned technical problems existing in the prior art, and provides a method for fitting the distribution of image DCT coefficients based on a probability density function dictionary, which is stable and efficient, has strong adaptability and high fitting accuracy.
本发明的技术解决方案是:一种基于概率密度函数字典的图像DCT系数分布拟合方法,其特征在于按照如下步骤进行:The technical solution of the present invention is: an image DCT coefficient distribution fitting method based on a probability density function dictionary, which is characterized in that it is performed according to the following steps:
步骤1.输入一幅图像I,将其划分成一系列大小为B×B且不重叠的像素块并进行分块DCT变换,得到DCT变换系数集合;
步骤2.采用核密度估计方法统计图像DCT变换系数的分布,得到图像I的DCT变换系数的真实概率密度pdfI;
步骤3.建立一个由5种概率密度函数组成的概率密度函数字典D(pdfCauchy,pdfLaplacian,pdfLogistic,pdfGaussian,pdfextreme),所述pdfCauchy表示柯西概率密度函数,pdfLaplacian表示拉普拉斯概率密度函数,pdfLogistic表示逻辑斯谛概率密度函数,pdfGaussian表示高斯概率密度函数,pdfExtreme表示极值概率密度函数;
步骤3.1根据公式(1)的定义,建立参数为θC、λC的柯西概率密度函数:Step 3.1 According to the definition of formula (1), establish the Cauchy probability density function with parameters θ C and λ C :
步骤3.2根据公式(2)的定义,建立参数为αL、βL的拉普拉斯概率密度函数:Step 3.2 According to the definition of formula (2), establish the Laplace probability density function with parameters α L and β L :
步骤3.3根据公式(3)的定义,建立参数为αO、βO的逻辑斯谛概率密度函数:Step 3.3 According to the definition of formula (3), establish a logistic probability density function with parameters α O and β O :
步骤3.4根据公式(4)的定义,建立参数为αE、βE的极值概率密度函数:Step 3.4 According to the definition of formula (4), establish the extreme value probability density function with parameters α E , β E :
步骤3.5根据公式(5)的定义,建立参数为μ、σ的高斯概率密度函数:Step 3.5 According to the definition of formula (5), establish a Gaussian probability density function with parameters μ and σ:
步骤4.使用概率密度函数字典中的每个分布分别拟合输入图像I的DCT变换系数的真实概率密度pdfI;Step 4. Use each distribution in the probability density function dictionary to fit the true probability density pdf I of the DCT transform coefficients of the input image I respectively;
步骤4.1利用柯西概率密度函数pdfCauchy拟合图像DCT系数分布,并采用极大似然估计方法计算pdfCauchy的参数θC、λC;Step 4.1 Use the Cauchy probability density function pdf Cauchy to fit the image DCT coefficient distribution, and use the maximum likelihood estimation method to calculate the parameters θ C and λ C of the pdf Cauchy ;
(a)根据公式(6)的定义,建立柯西概率密度函数的似然函数:(a) According to the definition of formula (6), establish the likelihood function of the Cauchy probability density function:
所述xi表示真实概率密度pdfI的第i个区间(bin)的值;The xi represents the value of the ith interval (bin) of the true probability density pdf I ;
(b)将公式(7)分别对参数θC和λC求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(7)给出:(b) Calculate the partial derivatives of the parameters θ C and λ C by formula (7) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (7):
(c)求解公式(7)给出的方程组,得到pdfCauchy的最优拟合参数以及相应的单一柯西分布拟合结果 (c) Solve the system of equations given by equation (7) to obtain the optimal fitting parameters of pdf Cauchy and the corresponding fitting results of a single Cauchy distribution
步骤4.2利用拉普拉斯概率密度函数pdfLaplacian拟合图像DCT系数分布,并采用极大似然估计方法计算pdfLaplacian的参数αL、βL;Step 4.2 uses the Laplacian probability density function pdf Laplacian to fit the image DCT coefficient distribution, and adopts the maximum likelihood estimation method to calculate the parameters α L and β L of the pdf Laplacian ;
(a)根据公式(8)的定义,建立拉普拉斯概率密度函数的似然函数:(a) According to the definition of formula (8), establish the likelihood function of the Laplace probability density function:
(b)根据公式(9)的定义,建立拉普拉斯概率密度函数的对数似然函数:(b) According to the definition of formula (9), establish the log-likelihood function of the Laplace probability density function:
(c)将公式(9)分别对参数αL和βL求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(10)给出:(c) Calculate the partial derivatives of the parameters α L and β L by formula (9) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (10):
(d)求解公式(10)给出的方程组,得到pdfLaplacian的最优拟合参数以及相应的单一拉普拉斯分布拟合结果 (d) Solve the system of equations given by equation (10) to obtain the optimal fitting parameters of pdf Laplacian and the corresponding fitting results of a single Laplace distribution
步骤4.3利用逻辑斯谛概率密度函数pdfLogistic拟合图像DCT系数分布,并采用极大似然估计方法计算pdfLogistic的参数αO、βO;Step 4.3 utilizes the logistic probability density function pdf Logistic to fit the image DCT coefficient distribution, and adopts the maximum likelihood estimation method to calculate the parameters α O and β O of pdf Logistic ;
(a)根据公式(11)的定义,建立逻辑斯谛概率密度函数的似然函数:(a) According to the definition of formula (11), establish the likelihood function of the logistic probability density function:
(b)将公式(11)分别对参数αO和βO求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(12)给出:(b) Calculate the partial derivatives of the parameters α O and β O by formula (11) respectively, and set their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (12):
(c)求解公式(12)给出的方程组,得到pdfLogistic的最优拟合参数以及相应的单一逻辑斯谛分布拟合结果 (c) Solve the equation system given by formula (12) to obtain the optimal fitting parameters of pdf Logistic and the corresponding fitting result of a single logistic distribution
步骤4.4利用极值概率密度函数pdfExtreme拟合图像DCT系数分布,并采用极大似然估计方法计算pdfExtreme的参数αE、βE;Step 4.4 utilizes extreme value probability density function pdf Extreme to fit the image DCT coefficient distribution, and adopts the maximum likelihood estimation method to calculate the parameters α E and β E of pdf Extreme ;
(a)根据公式(13)的定义,建立极值概率密度函数的似然函数:(a) According to the definition of formula (13), establish the likelihood function of extreme value probability density function:
(b)根据公式(14)的定义,建立极值概率密度函数的对数似然函数:(b) According to the definition of formula (14), establish the log-likelihood function of the extreme probability density function:
(c)将公式(14)分别对参数αE和βE求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(15)给出:(c) Calculate the partial derivatives of the parameters α E and β E by formula (14) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (15):
(d)求解公式(15)给出的方程组,得到pdfExtreme的最优拟合参数以及相应的单一极值分布拟合结果 (d) Solve the system of equations given by equation (15) to obtain the optimal fitting parameters of pdf Extreme and the corresponding single extreme value distribution fitting results
步骤4.5利用高斯概率密度函数pdfGaussian拟合图像DCT系数分布,并采用极大似然估计方法计算pdfGaussian的参数μ、σ;Step 4.5 Use the Gaussian probability density function pdf Gaussian to fit the image DCT coefficient distribution, and use the maximum likelihood estimation method to calculate the parameters μ and σ of the pdf Gaussian ;
(a)根据公式(16)的定义,建立高斯概率密度函数的似然函数:(a) According to the definition of formula (16), establish the likelihood function of the Gaussian probability density function:
(b)根据公式(17)的定义,建立高斯概率密度函数的对数似然函数:(b) According to the definition of formula (17), establish the log-likelihood function of the Gaussian probability density function:
(c)将公式(17)分别对参数μ和σ求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(18)给出:(c) Calculate the partial derivatives of the parameters μ and σ by formula (17) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (18):
(d)求解公式(18)给出的方程组,得到pdfGaussian的最优拟合参数μopt、σopt以及相应的单一高斯分布拟合结果pdfGaussian(x;μopt,σopt);(d) Solving the equation system given by formula (18) to obtain the optimal fitting parameters μ opt , σ opt of pdf Gaussian and the corresponding fitting result of single Gaussian distribution pdf Gaussian (x; μ opt ,σ opt );
步骤5.根据公式(19)和公式(20)的定义,利用Kullback-Leibler测度(KLD)分别计算概率密度函数 和pdfGaussian(x;μopt,σopt)与待拟合图像I的DCT变换系数真实概率密度pdfI的距离:Step 5. According to the definition of formula (19) and formula (20), use the Kullback-Leibler measure (KLD) to calculate the probability density function respectively and the distance between pdf Gaussian (x; μ opt, σ opt ) and the true probability density pdf I of the DCT transform coefficients of the image I to be fitted:
所述p1(x)和p2(x)表示两个给定的概率密度函数;The p 1 (x) and p 2 (x) represent two given probability density functions;
步骤5.1令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一柯西分布拟合pdfI的距离dCauchy;Step 5.1 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Cauchy fitting pdf I with a single Cauchy distribution;
步骤5.2令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一拉普拉斯分布拟合pdfI的距离dLaplacian;Step 5.2 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Laplacian fitting pdf I with a single Laplace distribution;
步骤5.3令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一逻辑斯谛分布拟合pdfI的距离dLogistic;Step 5.3 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Logistic fitting pdf I with a single logistic distribution;
步骤5.4令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一极值分布拟合pdfI的距离dExtreme;Step 5.4 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Extreme that fits pdf I with a single extreme value distribution;
步骤5.5令p1(x)=pdfGaussian(x;μopt,σopt),p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一高斯分布拟合pdfI的距离dGaussian;Step 5.5 Let p 1 (x)=pdf Gaussian (x; μ opt ,σ opt ), p 2 (x)=pdf I , and substitute p 1 (x) and p 2 (x) into equation (19) and equation (20), calculate the distance d Gaussian that utilizes a single Gaussian distribution to fit pdf I ;
步骤6.在5个单一分布的拟合距离dCauchy、dLaplacian、dLogistic、dExtreme和dGaussian中,选出2个最小的距离,并令这2个最小的距离所对应的单一分布分别为F1和F2;Step 6. Among the fitting distances d Cauchy , d Laplacian , d Logistic , d Extreme and d Gaussian of the five single distributions, select the two smallest distances, and make the single distribution corresponding to the two smallest distances respectively. are F 1 and F 2 ;
步骤7.由F1和F2组成混合分布F,其概率密度函数的定义由公式(21)给出:Step 7. The mixture distribution F is composed of F 1 and F 2 , and the definition of its probability density function is given by formula (21):
F(x)=AF1(x)+BF2(x) (21)F(x)=AF 1 (x)+BF 2 (x) (21)
所述A、B表示待定的自适应权重,再将真实概率密度pdfI的每个区间的值xi(i∈{1,2,3,…,n})及其对应的概率密度pdfI(xi)代入公式(21),得到一个线性超定方程组,其定义由公式(22)给出:The A and B represent the undetermined adaptive weights, and then the value x i (i∈{1,2,3,...,n}) of each interval of the true probability density pdf I and its corresponding probability density pdf I (x i ) is substituted into equation (21) to obtain a linear overdetermined system of equations whose definition is given by equation (22):
步骤8.根据公式(23)的定义,将公式(22)转换成矩阵形式:Step 8. According to the definition of formula (23), convert formula (22) into matrix form:
并利用左除法求解线性超定方程组的最小二乘解,得到混合分布F的自适应权重A、B,其定义由公式(24)给出:And use the left division method to solve the least squares solution of the linear overdetermined equation system, and obtain the adaptive weights A and B of the mixture distribution F, whose definition is given by formula (24):
所述“/”表示左除运算符;The "/" represents the left division operator;
步骤9.将A、B代入公式(21),得到混合分布F的概率密度函数,将其作为输入图像I的DCT变换系数分布的拟合结果;Step 9. Substitute A and B into formula (21), obtain the probability density function of mixed distribution F, and use it as the fitting result of the DCT transform coefficient distribution of input image I;
步骤10.输出混合分布F的概率密度函数。
与现有的技术相比,本发明从三个方面保证图像DCT变换系数的拟合精度:首先,针对图像DCT变换系数分布的非高斯特性、图像获取过程的复杂性和图像种类的多样性,利用5种“厚尾”分布构建了一个概率密度函数字典,有利于突破传统方法采用单一分布或某两个固定分布对图像DCT系数分布进行统计建模时所存在的局限性,提高分布拟合的精度;其次,将Kullback-Leibler测度作为评价拟合精度的标准,能够克服传统的Kolmogorov-Smirnov拟合优度检验方法无法有效评价拉普拉斯分布的拟合精度的不足;第三,利用Kullback-Leibler测度在概率密度函数字典中自适应地选出最符合输入图像DCT系数分布特性的两个单一分布,并通过求解线性超定方程组的最小二乘解来确定这两个单一分布的自适应权重,进而组成自适应的混合“厚尾”分布,在理论上能够得到更加丰富的“厚尾”分布及其概率密度函数形式,从而突破现有“厚尾”分布的种类限制,可为DCT变换系数拟合提供更大的灵活性和更多的自由度。因此,本发明具有稳定高效、自适应性强、拟合精度高的优点。Compared with the prior art, the present invention guarantees the fitting accuracy of the image DCT transform coefficients from three aspects: first, for the non-Gaussian characteristic of the image DCT transform coefficient distribution, the complexity of the image acquisition process and the diversity of image types, A probability density function dictionary is constructed by using five "thick-tailed" distributions, which is beneficial to break through the limitations of traditional methods in statistical modeling of image DCT coefficient distributions by using a single distribution or two fixed distributions, and improve distribution fitting. Second, using the Kullback-Leibler measure as the standard for evaluating the fitting accuracy can overcome the inability of the traditional Kolmogorov-Smirnov goodness-of-fit test method to effectively evaluate the fitting accuracy of the Laplace distribution; third, using The Kullback-Leibler measure adaptively selects two single distributions in the probability density function dictionary that best match the distribution characteristics of the DCT coefficients of the input image, and determines the difference between the two single distributions by solving the least squares solution of the linear overdetermined equation system. Adaptive weights, and then form an adaptive hybrid "thick-tailed" distribution, in theory, a richer "thick-tailed" distribution and its probability density function form can be obtained, so as to break through the existing "thick-tailed" distribution type limitations, can be Provides greater flexibility and more degrees of freedom for DCT transform coefficient fitting. Therefore, the present invention has the advantages of stability and efficiency, strong adaptability and high fitting precision.
附图说明Description of drawings
图1是采用本发明和单一分布分别拟合图像DCT系数的对比结果。Fig. 1 is the comparison result of fitting the DCT coefficients of the images using the present invention and a single distribution respectively.
表1是采用本发明和单一分布分别拟合图像DCT系数的距离对比结果。Table 1 shows the distance comparison results of the DCT coefficients of images fitted by the present invention and a single distribution respectively.
具体实施方式Detailed ways
一种基于概率密度函数字典的图像DCT系数分布拟合方法,其特征在于按照如下步骤进行:A method for fitting an image DCT coefficient distribution based on a probability density function dictionary, characterized in that it is performed according to the following steps:
步骤1.输入一幅图像I,将其划分成一系列大小为B×B且不重叠的像素块并进行分块DCT变换,得到DCT变换系数集合,本实施例中,令B=16;
步骤2.采用核密度估计方法统计图像DCT变换系数的分布,得到图像I的DCT变换系数的真实概率密度pdfI;
步骤3.建立一个由5种概率密度函数组成的概率密度函数字典D(pdfCauchy,pdfLaplacian,pdfLogistic,pdfGaussian,pdfextreme),所述pdfCauchy表示柯西概率密度函数,pdfLaplacian表示拉普拉斯概率密度函数,pdfLogistic表示逻辑斯谛概率密度函数,pdfGaussian表示高斯概率密度函数,pdfExtreme表示极值概率密度函数;
步骤3.1根据公式(1)的定义,建立参数为θC、λC的柯西概率密度函数:Step 3.1 According to the definition of formula (1), establish the Cauchy probability density function with parameters θ C and λ C :
步骤3.2根据公式(2)的定义,建立参数为αL、βL的拉普拉斯概率密度函数:Step 3.2 According to the definition of formula (2), establish the Laplace probability density function with parameters α L and β L :
步骤3.3根据公式(3)的定义,建立参数为αO、βO的逻辑斯谛概率密度函数:Step 3.3 According to the definition of formula (3), establish a logistic probability density function with parameters α O and β O :
步骤3.4根据公式(4)的定义,建立参数为αE、βE的极值概率密度函数:Step 3.4 According to the definition of formula (4), establish the extreme value probability density function with parameters α E , β E :
步骤3.5根据公式(5)的定义,建立参数为μ、σ的高斯概率密度函数:Step 3.5 According to the definition of formula (5), establish a Gaussian probability density function with parameters μ and σ:
步骤4.使用概率密度函数字典中的每个分布分别拟合输入图像I的DCT变换系数的真实概率密度pdfI;Step 4. Use each distribution in the probability density function dictionary to fit the true probability density pdf I of the DCT transform coefficients of the input image I respectively;
步骤4.1利用柯西概率密度函数pdfCauchy拟合图像DCT系数分布,并采用极大似然估计方法计算pdfCauchy的参数θC、λC;Step 4.1 Use the Cauchy probability density function pdf Cauchy to fit the image DCT coefficient distribution, and use the maximum likelihood estimation method to calculate the parameters θ C and λ C of the pdf Cauchy ;
(a)根据公式(6)的定义,建立柯西概率密度函数的似然函数:(a) According to the definition of formula (6), establish the likelihood function of the Cauchy probability density function:
所述xi表示真实概率密度pdfI的第i个区间(bin)的值;The xi represents the value of the ith interval (bin) of the true probability density pdf I ;
(b)将公式(7)分别对参数θC和λC求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(7)给出:(b) Calculate the partial derivatives of the parameters θ C and λ C by formula (7) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (7):
(c)求解公式(7)给出的方程组,得到pdfCauchy的最优拟合参数以及相应的单一柯西分布拟合结果 (c) Solve the system of equations given by equation (7) to obtain the optimal fitting parameters of pdf Cauchy and the corresponding fitting results of a single Cauchy distribution
步骤4.2利用拉普拉斯概率密度函数pdfLaplacian拟合图像DCT系数分布,并采用极大似然估计方法计算pdfLaplacian的参数αL、βL;Step 4.2 uses the Laplacian probability density function pdf Laplacian to fit the image DCT coefficient distribution, and adopts the maximum likelihood estimation method to calculate the parameters α L and β L of the pdf Laplacian ;
(a)根据公式(8)的定义,建立拉普拉斯概率密度函数的似然函数:(a) According to the definition of formula (8), establish the likelihood function of the Laplace probability density function:
(b)根据公式(9)的定义,建立拉普拉斯概率密度函数的对数似然函数:(b) According to the definition of formula (9), establish the log-likelihood function of the Laplace probability density function:
(c)将公式(9)分别对参数αL和βL求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(10)给出:(c) Calculate the partial derivatives of the parameters α L and β L by formula (9) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (10):
(d)求解公式(10)给出的方程组,得到pdfLaplacian的最优拟合参数以及相应的单一拉普拉斯分布拟合结果 (d) Solve the system of equations given by equation (10) to obtain the optimal fitting parameters of pdf Laplacian and the corresponding fitting results of a single Laplace distribution
步骤4.3利用逻辑斯谛概率密度函数pdfLogistic拟合图像DCT系数分布,并采用极大似然估计方法计算pdfLogistic的参数αO、βO;Step 4.3 utilizes the logistic probability density function pdf Logistic to fit the image DCT coefficient distribution, and adopts the maximum likelihood estimation method to calculate the parameters α O and β O of pdf Logistic ;
(a)根据公式(11)的定义,建立逻辑斯谛概率密度函数的似然函数:(a) According to the definition of formula (11), establish the likelihood function of the logistic probability density function:
(b)将公式(11)分别对参数αO和βO求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(12)给出:(b) Calculate the partial derivatives of the parameters α O and β O by formula (11) respectively, and set their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (12):
(c)求解公式(12)给出的方程组,得到pdfLogistic的最优拟合参数以及相应的单一逻辑斯谛分布拟合结果 (c) Solve the equation system given by formula (12) to obtain the optimal fitting parameters of pdf Logistic and the corresponding fitting result of a single logistic distribution
步骤4.4利用极值概率密度函数pdfExtreme拟合图像DCT系数分布,并采用极大似然估计方法计算pdfExtreme的参数αE、βE;Step 4.4 utilizes extreme value probability density function pdf Extreme to fit the image DCT coefficient distribution, and adopts the maximum likelihood estimation method to calculate the parameters α E and β E of pdf Extreme ;
(a)根据公式(13)的定义,建立极值概率密度函数的似然函数:(a) According to the definition of formula (13), establish the likelihood function of extreme value probability density function:
(b)根据公式(14)的定义,建立极值概率密度函数的对数似然函数:(b) According to the definition of formula (14), establish the log-likelihood function of the extreme probability density function:
(c)将公式(14)分别对参数αE和βE求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(15)给出:(c) Calculate the partial derivatives of the parameters α E and β E by formula (14) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (15):
(d)求解公式(15)给出的方程组,得到pdfExtreme的最优拟合参数以及相应的单一极值分布拟合结果 (d) Solve the system of equations given by equation (15) to obtain the optimal fitting parameters of pdf Extreme and the corresponding single extreme value distribution fitting results
步骤4.5利用高斯概率密度函数pdfGaussian拟合图像DCT系数分布,并采用极大似然估计方法计算pdfGaussian的参数μ、σ;Step 4.5 Use the Gaussian probability density function pdf Gaussian to fit the image DCT coefficient distribution, and use the maximum likelihood estimation method to calculate the parameters μ and σ of the pdf Gaussian ;
(a)根据公式(16)的定义,建立高斯概率密度函数的似然函数:(a) According to the definition of formula (16), establish the likelihood function of the Gaussian probability density function:
(b)根据公式(17)的定义,建立高斯概率密度函数的对数似然函数:(b) According to the definition of formula (17), establish the log-likelihood function of the Gaussian probability density function:
(c)将公式(17)分别对参数μ和σ求偏导,并令其偏导数等于0,进而将所得等式联立成方程组,其定义由公式(18)给出:(c) Calculate the partial derivatives of the parameters μ and σ by formula (17) respectively, and make their partial derivatives equal to 0, and then combine the obtained equations into a system of equations, the definition of which is given by formula (18):
(d)求解公式(18)给出的方程组,得到pdfGaussian的最优拟合参数μopt、σopt以及相应的单一高斯分布拟合结果pdfGaussian(x;μopt,σopt);(d) Solving the equation system given by formula (18) to obtain the optimal fitting parameters μ opt , σ opt of pdf Gaussian and the corresponding fitting result of single Gaussian distribution pdf Gaussian (x; μ opt ,σ opt );
步骤5.根据公式(19)和公式(20)的定义,利用Kullback-Leibler测度(KLD)分别计算概率密度函数 和pdfGaussian(x;μopt,σopt)与待拟合图像I的DCT变换系数真实概率密度pdfI的距离:Step 5. According to the definition of formula (19) and formula (20), use the Kullback-Leibler measure (KLD) to calculate the probability density function respectively and the distance between pdf Gaussian (x; μ opt ,σ opt ) and the true probability density pdf I of the DCT transform coefficients of the image I to be fitted:
所述p1(x)和p2(x)表示两个给定的概率密度函数;The p 1 (x) and p 2 (x) represent two given probability density functions;
步骤5.1令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一柯西分布拟合pdfI的距离dCauchy;Step 5.1 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Cauchy fitting pdf I with a single Cauchy distribution;
步骤5.2令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一拉普拉斯分布拟合pdfI的距离dLaplacian;Step 5.2 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Laplacian fitting pdf I with a single Laplace distribution;
步骤5.3令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一逻辑斯谛分布拟合pdfI的距离dLogistic;Step 5.3 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Logistic fitting pdf I with a single logistic distribution;
步骤5.4令p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一极值分布拟合pdfI的距离dExtreme;Step 5.4 Order p 2 (x)=pdf I , and substituting p 1 (x) and p 2 (x) into formula (19) and formula (20), calculate the distance d Extreme that fits pdf I with a single extreme value distribution;
步骤5.5令p1(x)=pdfGaussian(x;μopt,σopt),p2(x)=pdfI,并将p1(x)和p2(x)代入公式(19)和公式(20),计算利用单一高斯分布拟合pdfI的距离dGaussian;Step 5.5 Let p 1 (x)=pdf Gaussian (x; μ opt ,σ opt ), p 2 (x)=pdf I , and substitute p 1 (x) and p 2 (x) into equation (19) and equation (20), calculate the distance d Gaussian of fitting pdf I using a single Gaussian distribution;
步骤6.在5个单一分布的拟合距离dCauchy、dLaplacian、dLogistic、dExtreme和dGaussian中,选出2个最小的距离,并令这2个最小的距离所对应的单一分布分别为F1和F2;Step 6. Among the fitting distances d Cauchy , d Laplacian , d Logistic , d Extreme and d Gaussian of the five single distributions, select the two smallest distances, and make the single distribution corresponding to the two smallest distances respectively. are F 1 and F 2 ;
步骤7.由F1和F2组成混合分布F,其概率密度函数的定义由公式(21)给出:Step 7. The mixture distribution F is composed of F 1 and F 2 , and the definition of its probability density function is given by formula (21):
F(x)=AF1(x)+BF2(x) (21)F(x)=AF 1 (x)+BF 2 (x) (21)
所述A、B表示待定的自适应权重,再将真实概率密度pdfI的每个区间的值xi(i∈{1,2,3,…,n})及其对应的概率密度pdfI(xi)代入公式(21),得到一个线性超定方程组,其定义由公式(22)给出:The A and B represent the undetermined adaptive weights, and then the value x i (i∈{1,2,3,...,n}) of each interval of the true probability density pdf I and its corresponding probability density pdf I (x i ) is substituted into equation (21) to obtain a linear overdetermined system of equations whose definition is given by equation (22):
步骤8.根据公式(23)的定义,将公式(22)转换成矩阵形式:Step 8. According to the definition of formula (23), convert formula (22) into matrix form:
并利用左除法求解线性超定方程组的最小二乘解,得到混合分布F的自适应权重A、B,其定义由公式(24)给出:And use the left division method to solve the least squares solution of the linear overdetermined equation system, and obtain the adaptive weights A and B of the mixture distribution F, whose definition is given by formula (24):
所述“/”表示左除运算符;The "/" represents the left division operator;
步骤9.将A、B代入公式(21),得到混合分布F的概率密度函数,将其作为输入图像I的DCT变换系数分布的拟合结果;Step 9. Substitute A and B into formula (21), obtain the probability density function of mixed distribution F, and use it as the fitting result of the DCT transform coefficient distribution of input image I;
步骤10.输出混合分布F的概率密度函数。
采用本发明与单一分布分别拟合图像DCT系数的对比如图1所示。其中,(a)为原始图像;(b)为原始图像DCT系数的真实概率密度;(c)为使用单一柯西分布拟合图像DCT系数的概率密度分布时,在尖峰部分的局部放大结果;(d)为使用单一拉普拉斯分布拟合图像DCT系数的概率密度分布时,在尾部的局部放大结果;(e)为使用单一逻辑斯谛分布拟合图像DCT系数的概率密度分布的结果;(f)为使用单一极值分布拟合图像DCT系数的概率密度分布的结果;(g)为使用单一高斯分布拟合图像DCT系数的概率密度分布的结果;(h)为使用本发明拟合图像DCT系数的概率密度分布的结果。由图1可见,原始图像的DCT系数基本呈现出“高尖峰,长拖尾”的分布特点(如图(b)),体现了图像DCT系数分布的非高斯特性;图(c)的单一柯西分布不能很好地拟合图像DCT系数概率密度分布的尖峰部分,其峰值显著高于原始图像的真实分布;图(d)的单一拉普拉斯分布不能准确拟合图像DCT系数概率密度分布的尾部;图(e)的单一逻辑斯谛分布,无论是在尖峰部分,还是在尾部,其拟合精度均不够理想;图(f)的单一极值分布和图(g)的单一高斯分布的拟合精度则更低;相比之下,图(h)的拟合结果最接近原始图像DCT系数的真实概率密度分布。Figure 1 shows a comparison of the DCT coefficients of the images fitted with the present invention and a single distribution respectively. Among them, (a) is the original image; (b) is the true probability density of the DCT coefficients of the original image; (c) is the local amplification result of the peak part when using a single Cauchy distribution to fit the probability density distribution of the image DCT coefficients; (d) is the partially enlarged result at the tail when using a single Laplace distribution to fit the probability density distribution of the image DCT coefficients; (e) is the result of using a single logistic distribution to fit the probability density distribution of the image DCT coefficients (f) is the result of using a single extreme value distribution to fit the probability density distribution of the image DCT coefficients; (g) is the result of using a single Gaussian distribution to fit the probability density distribution of the image DCT coefficients; The result of the probability density distribution of the combined image DCT coefficients. It can be seen from Figure 1 that the DCT coefficients of the original image basically show the distribution characteristics of "high peaks and long tails" (Figure (b)), which reflects the non-Gaussian distribution of the DCT coefficients of the image; The western distribution cannot well fit the peak part of the DCT coefficient probability density distribution of the image, and its peak value is significantly higher than the true distribution of the original image; the single Laplace distribution of Figure (d) cannot accurately fit the image DCT coefficient probability density distribution. The tail of ; the single logistic distribution of Figure (e), whether in the peak part or the tail, its fitting accuracy is not ideal; the single extreme value distribution of Figure (f) and the single Gaussian distribution of Figure (g) The fitting accuracy is lower; in contrast, the fitting result of Figure (h) is closest to the true probability density distribution of the DCT coefficients of the original image.
采用本发明和单一分布分别拟合图像DCT系数的距离对比下表所示。The following table shows the distance comparison of the DCT coefficients of the images fitted by the present invention and the single distribution respectively.
从图1和表1可见,采用本发明拟合图像DCT系数的主观质量和客观质量均高于单一分布的拟合精度。It can be seen from FIG. 1 and Table 1 that the subjective quality and objective quality of the DCT coefficients of the fitted image using the present invention are both higher than the fitting accuracy of a single distribution.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910687780 | 2019-07-29 | ||
CN2019106877804 | 2019-07-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110880192A true CN110880192A (en) | 2020-03-13 |
CN110880192B CN110880192B (en) | 2023-07-14 |
Family
ID=69729002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911069046.8A Expired - Fee Related CN110880192B (en) | 2019-07-29 | 2019-11-05 | Image DCT Coefficient Distribution Fitting Method Based on Probability Density Function Dictionary |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110880192B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111783848A (en) * | 2020-06-15 | 2020-10-16 | 辽宁师范大学 | Image Classification Method Based on Probability Density Distribution Dictionary and Markov Transfer Features |
CN113570555A (en) * | 2021-07-07 | 2021-10-29 | 温州大学 | Two-dimensional segmentation method of multi-threshold medical image based on improved grasshopper algorithm |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080105190A (en) * | 2007-05-30 | 2008-12-04 | 이현성 | Image transmission method |
CN102509263A (en) * | 2011-10-19 | 2012-06-20 | 西安电子科技大学 | K-SVD (K-means singular value decomposition) speckle inhibiting method based on SAR (synthetic aperture radar) image local statistic characteristic |
US20140079297A1 (en) * | 2012-09-17 | 2014-03-20 | Saied Tadayon | Application of Z-Webs and Z-factors to Analytics, Search Engine, Learning, Recognition, Natural Language, and Other Utilities |
CN104239892A (en) * | 2014-08-25 | 2014-12-24 | 西安电子科技大学 | SAR image mixed model fitting method based on KSVD training dictionary |
-
2019
- 2019-11-05 CN CN201911069046.8A patent/CN110880192B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080105190A (en) * | 2007-05-30 | 2008-12-04 | 이현성 | Image transmission method |
CN102509263A (en) * | 2011-10-19 | 2012-06-20 | 西安电子科技大学 | K-SVD (K-means singular value decomposition) speckle inhibiting method based on SAR (synthetic aperture radar) image local statistic characteristic |
US20140079297A1 (en) * | 2012-09-17 | 2014-03-20 | Saied Tadayon | Application of Z-Webs and Z-factors to Analytics, Search Engine, Learning, Recognition, Natural Language, and Other Utilities |
CN104239892A (en) * | 2014-08-25 | 2014-12-24 | 西安电子科技大学 | SAR image mixed model fitting method based on KSVD training dictionary |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111783848A (en) * | 2020-06-15 | 2020-10-16 | 辽宁师范大学 | Image Classification Method Based on Probability Density Distribution Dictionary and Markov Transfer Features |
CN111783848B (en) * | 2020-06-15 | 2023-05-23 | 辽宁师范大学 | Image Classification Method Based on Probability Density Distribution Dictionary and Markovian Transfer Feature |
CN113570555A (en) * | 2021-07-07 | 2021-10-29 | 温州大学 | Two-dimensional segmentation method of multi-threshold medical image based on improved grasshopper algorithm |
CN113570555B (en) * | 2021-07-07 | 2024-02-09 | 温州大学 | Two-dimensional segmentation method of multi-threshold medical image based on improved grasshopper algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN110880192B (en) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Hf-neus: Improved surface reconstruction using high-frequency details | |
Yu et al. | Hybrid dual-tree complex wavelet transform and support vector machine for digital multi-focus image fusion | |
CN107292852B (en) | Image denoising algorithm based on low-rank theory | |
CN110879982B (en) | A crowd counting system and method | |
CN111861939B (en) | Single image defogging method based on unsupervised learning | |
CN103077506B (en) | In conjunction with local and non-local adaptive denoising method | |
CN109684922A (en) | A kind of recognition methods based on the multi-model of convolutional neural networks to finished product dish | |
CN103049892A (en) | Non-local image denoising method based on similar block matrix rank minimization | |
CN114387195A (en) | Infrared image and visible light image fusion method based on non-global pre-enhancement | |
CN113033602B (en) | Image clustering method based on tensor low-rank sparse representation | |
CN104657951A (en) | Multiplicative noise removal method for image | |
CN109584303A (en) | A kind of method for detecting infrared puniness target based on Lp norm and nuclear norm | |
CN105894469A (en) | De-noising method based on external block autoencoding learning and internal block clustering | |
CN110880192B (en) | Image DCT Coefficient Distribution Fitting Method Based on Probability Density Function Dictionary | |
Zhou et al. | MSAR‐DefogNet: Lightweight cloud removal network for high resolution remote sensing images based on multi scale convolution | |
Kollem et al. | Image denoising by using modified SGHP algorithm | |
CN113313179A (en) | Noise image classification method based on l2p norm robust least square method | |
CN116167947A (en) | An Image Noise Reduction Method Based on Noise Level Estimation | |
Lu et al. | Image-specific prior adaptation for denoising | |
Li et al. | Learning spatially collaged fourier bases for implicit neural representation | |
CN113421279B (en) | Infrared weak and small target detection method based on weighted nuclear norm minimization | |
CN106203368A (en) | A kind of traffic video frequency vehicle recognition methods based on SRC and SVM assembled classifier | |
CN118968546A (en) | A domain generalization method for human pose estimation based on silhouette information | |
CN114066786A (en) | A Fusion Method of Infrared and Visible Light Images Based on Sparse and Filter | |
CN110210562B (en) | Image classification method based on deep network and sparse Fisher vector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230714 |
|
CF01 | Termination of patent right due to non-payment of annual fee |