CN110871051A - 一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用 - Google Patents

一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN110871051A
CN110871051A CN201810999396.3A CN201810999396A CN110871051A CN 110871051 A CN110871051 A CN 110871051A CN 201810999396 A CN201810999396 A CN 201810999396A CN 110871051 A CN110871051 A CN 110871051A
Authority
CN
China
Prior art keywords
mos
nano
nano material
water body
superparamagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810999396.3A
Other languages
English (en)
Inventor
贺军辉
田华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201810999396.3A priority Critical patent/CN110871051A/zh
Publication of CN110871051A publication Critical patent/CN110871051A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用,所述纳米材料为MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米材料,其中,所述MoS2纳米片间距为0.7‑1.1nm,所述Fe3O4纳米颗粒的粒径为2‑15nm。其制备方法首次采用在MoS2纳米片表面原位生长Fe3O4纳米颗粒来制备MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米材料。本发明制得的纳米材料在吸附富集水体中汞离子方面的应用具有明显的优势,其特异性好、吸附时间短、吸附效率高、分离迅速、适用范围广、且操作简单、成本低廉。

Description

一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用
技术领域
本发明涉及纳米材料技术领域。更具体地,涉及一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和在吸附水体中汞离子方面的应用。
背景技术
汞是环境中典型的重金属污染物,且具有很强的毒性。它在一定条件下能转化成毒性更强的甲基汞,并通过食物链累积放大,给生态环境和人类健康带来极大危害。水体等介质中重金属污染物的分析与监测对生态环境评价和环境保护具有重要意义。另一方面,伴随着新型污染问题的出现,以及污染从高浓度环境向低剂量环境延伸,污染物分析检测的灵敏度和准确度也需要不断提高。多年来人们在分析仪器的研究上取得了极大的进展,研制出了以电感耦合等离子体质谱(ICP-MS)为代表的一批高灵敏度、高准确度的重金属离子分析设备。但这些分析手段通常都无法直接用于检测水样中汞的含量。水环境样品通常组分复杂,待测污染物浓度较低,无法直接检测。为了能测定水环境样品中汞的含量,需要经过有效的样品前处理过程,即将待测污染物从水环境样品中进行富集分离、浓缩等处理。样品前处理过程是整个环境分析检测过程中耗时最长、劳动强度最大的步骤,同时也是对分析精确度影响最大的步骤。对于水体中痕量、超痕量汞离子的分析检测尤其依赖快速高效和高选择性的样品前处理技术,其中,预富集分离材料的选择是分析技术的关键。
现有报道采用双硫腙、硫代氨基甲酸酯作为络合物,结合离子液体、有机溶剂等开发液相微萃取技术对水体中的痕量汞离子进行富集进而检测;另外也有合成固相吸附剂进行固相萃取结合原子荧光或HOLC进行检测的。近年来,纳米技术的开发和应用受到关注,基于巯基对汞离子有很强的结合能力,采用乙二硫醇或者半胱氨酸等开发的纳米固相吸附剂虽然具有很好的吸附效果,但是填柱吸附流速受到限制且操作繁琐。碳纳米对水体中的非金属离子、有机污染物和很多重金属离子都具有较好的吸附性能,但是也缺乏相应的吸附单一性,不利于吸附后的汞离子检测过程。因此需要提供一种对汞离子有单一吸附性能的材料,并且操作简单的汞离子吸附方法。
发明内容
本发明的第一个目的在于提供一种Fe3O4@MoS2超顺磁性纳米材料,该纳米材料与传统材料相比,其纳米结构复合方式和结构尺寸均存在不同。
本发明的第二个目的在于提供一种Fe3O4@MoS2超顺磁性纳米材料的制备方法。在本发明中,将MoS2纳米片与含铁化合物及其他物质相混合,经过水热反应,最终制得MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米材料。制备方法的不同,使得本发明提供的Fe3O4@MoS2超顺磁性纳米材料在结构复合方式及结构尺寸方面具有独特性。
本发明的另一个目的在于提供Fe3O4@MoS2超顺磁性纳米材料在吸附水体中汞离子中的应用。本发明提供的吸附汞离子方法具有吸附特异性好、时间短、效率高,吸附后分离速度快、程度高,操作简单和成本低的优点,且可用于各种水体中汞离子的快速吸附分离。
为实现本发明的第一个发明目的,本发明提供的Fe3O4@MoS2超顺磁性纳米材料具有以下特点:
所述纳米材料为MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米材料;其中,MoS2纳米片间距为0.7-1.1nm,Fe3O4纳米颗粒的粒径为2-15nm。
在本发明中,结合Fe3O4@MoS2超顺磁性纳米材料的制备过程,本领域技术人员可以发现本发明提供的MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米结构是由在MoS2纳米片表面原位生长Fe3O4纳米颗粒得到的。进一步地,本发明所述MoS2纳米片间距为0.7-1.1nm;包括但不限于例如0.7-1.1nm、0.75-1.05nm、0.8-1.0nm、0.85-0.95nm等;所述Fe3O4纳米颗粒的粒径为2-15nm,包括但不限于例如2-14nm、3-13nm、4-12nm、5-11nm、6-10nm等。
在传统的Fe3O4@MoS2超顺磁性纳米材料中,MoS2纳米片的间距为0.61-0.65nm,而本发明所提供Fe3O4@MoS2超顺磁性纳米材料与传统材料明显不同,MoS2纳米片间距增大,有利于更多的水中汞离子的羟基络合物进入MoS2纳米片层内部,增加MoS2纳米片对汞离子的吸附速度和吸附量,实现了汞离子的快速、高效富集。特别地,镶嵌的Fe3O4纳米粒子调控了MoS2纳米片的层间距,使得其纳米片层间适宜于汞离子的羟基络合物进入,而其他重金属的羟基络合物难以进入,提高了材料对汞离子的选择性,实现了特性性选择吸附富集汞离子的目的。
本发明是通过实施如下技术方案来实现本发明的第二个技术目的。一种Fe3O4@MoS2超顺磁纳米材料的制备方法:
将MoS2纳米片分散于去离子水中,分散10-60min后,在搅拌状态下加入FeCl3·6H2O、碳酸氢钠和抗坏血酸,继续搅拌0.5-2h,移入反应釜中,水热反应后,冷却至室温,清洗,冷冻干燥,即得Fe3O4@MoS2超顺磁性纳米材料;
其中,MoS2纳米片、FeCl3·6H2O、碳酸氢钠、抗坏血酸的质量比为:1:(3-5):(3.5-4.5):(0.2-0.8)。其中,优选方案是,MoS2纳米片、FeCl3·6H2O、碳酸氢钠、抗坏血酸的质量比为:1:4.4:4.1:0.55。
优选地,制备Fe3O4@MoS2超顺磁性纳米材料的水热反应温度为120-180℃,反应时间为6-24h。
本发明制备的Fe3O4@MoS2超顺磁性纳米材料,其MoS2纳米片间距为0.7-1.1nm。此外,本发明也提供了一种优选的制备该MoS2纳米片的方法:
优选地,将CH4N2S和(NH4)6Mo7O24·4H2O分散于去离子水溶液中,搅拌0.5-1h后,移入反应釜中,水热反应后,冷却至室温,清洗,冷冻干燥,得MoS2纳米片;
其中,CH4N2S和(NH4)6Mo7O24·4H2O的质量比为:(1.8-2.0):1。其中,优选方案是,CH4N2S和(NH4)6Mo7O24·4H2O的质量比为:1.85:1。
优选地,制备MoS2纳米片的水热反应温度为160-200℃,反应时间为12-36h。
本发明所述工艺步骤中加入的去离子水的含量并不限于一个严格的数值或范围,只要能够满足水热反应充分的进行均在本发明的保护范围内。
为实现本发明的第三个目的即提供Fe3O4@MoS2超顺磁性纳米材料在吸附水体中汞离子方面的应用,本发明提供了如下技术方案:
将所述Fe3O4@MoS2超顺磁性纳米材料分散于含汞离子的水体溶液中,吸附富集,磁分离。
优选地,所述吸附反应时间为1-10min。
优选地,所述磁分离时间为1-10min。
本发明提供的Fe3O4@MoS2超顺磁性纳米材料在吸附水体中汞离子过程中具有良好的特异性,且吸附富集迅速,所需时间极短,且富集率极高,10min之内的富集率接近100%。在外加磁场的情况下,在10min之内,纳米材料及其吸附的汞离子就可以完全与水体实现分离,且该方法成本低廉、操作简单。
优选地,在应用过程中,加入所述Fe3O4@MoS2超顺磁性纳米材料与所述水体中汞离子质量比为(2-5000:1)。
进一步地,加入所述Fe3O4@MoS2超顺磁性纳米材料与所述水体中汞离子质量比包括但不限于例如10:1、50:1、100:1、500:1、1000:1、1500:1、2000:1、3000:1。
优选地,在应用过程中,含汞离子水体的pH为2-10,其中,水体中汞离子的浓度为0.1-500mg/L。
进一步地,所述含汞离子水体的pH包括但不限于例如3-8、4-7、5-6等;水体中汞离子的浓度包括但不限于例如0.5-450mg/L、1-400mg/L、10-350mg/L、50-300mg/L、100-250mg/L、150-200mg/L等。
本发明的有益效果如下:
本发明提供了一种具有镶嵌复合结构的Fe3O4@MoS2超顺磁性纳米材料,其MoS2纳米片具有更宽的间距,Fe3O4纳米颗粒具有更小的粒径。且提供了该纳米材料的制备方法,该水热制备方法首次采用在MoS2纳米片表面原位生长Fe3O4纳米颗粒来制备MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米材料,全部合成过程在水溶液中进行,成本低且步骤更加简单。
此外,该纳米材料在吸附富集水体中汞离子方面的应用具有明显的优势,具体为:
吸附速率快,1min内富集率可达90%,2min内吸附率可达99%;
特异型好:在含有Pb2+、Cr3+、Cu2+、Cd2+等9种金属离子的水体中,汞离子吸附率可以达到99.9%,而对其他金属离子的吸附率较低或没有吸附;
适用范围广:用于pH=2-10的任何水样中汞离子的特异快速吸附分离,通过调节纳米材料的用量,可以对大体积环境水样品进行汞离子的快速吸附富集;
分离快,操作简单:仅需外加一个磁场,10min内吸附有汞离子的纳米材料就可以从水体中分离出来。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1.实施例1中MoS2纳米片和实施例2中Fe3O4@MoS2超顺磁性纳米材料的电镜表征图,其中:(A)实施例1中MoS2纳米片的扫描电镜图;(B)实施例2中Fe3O4@MoS2超顺磁性纳米材料的扫描电镜图;(C和D)实施例2中Fe3O4@MoS2超顺磁性纳米材料的透射电镜表征图片,箭头指的是Fe3O4纳米颗粒。
图2.实施例1中MoS2纳米片和实施例2中Fe3O4@MoS2超顺磁性纳米材料的X-射线衍射图谱。
图3.实施例2中Fe3O4@MoS2超顺磁性纳米材料的磁滞回线。
图4.实施例3中汞离子在Fe3O4@MoS2超顺磁性纳米材料上的吸附富集动力学过程,其中:(a)水体中汞离子浓度与吸附富集时间的关系曲线,(b)水体中汞离子吸附富集去除率与吸附富集时间的关系曲线。(a)中的插图为水体中Fe3O4@MoS2超顺磁性纳米材料的一个富集与磁分离过程。
图5.实施例4和5中,Fe3O4@MoS2超顺磁性纳米材料对水体中汞、铅、铬、铜、镉等9种金属离子的富集效率及选择性。
图6.实施例4和5中,MoS2纳米片对水体中汞、铅、铬、铜、镉等9种金属离子的吸附富集效率及选择性。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
本实施例提供了一种MoS2的制备方法,具体如下:
(1)将质量比为1.85:1的CH4N2S和(NH4)6Mo7O24·4H2O溶于75mL的去离子水中,搅拌0.5~1h后,移入带有聚四氟乙烯内衬的反应釜中,在160~200℃下水热反应12~36h;
(2)水热反应完成后,冷却至室温,经乙醇和水各洗涤3-5次,用冷冻干燥法进行干燥,得到MoS2纳米片。
所得MoS2纳米片的扫描电镜表征图见图1(A),X-射线衍射图谱见图2。
实施例2
Fe3O4@MoS2超顺磁性纳米材料的制备:
(1)将实施例1制得的MoS2纳米片分散于去离子水中,超声分散10~60min;
(2)在磁力搅拌下加入FeCl3·6H2O、NaHCO3和抗坏血酸,搅拌0.5~2h,将溶液移入带有聚四氟乙烯内衬的反应釜中,在120~180℃下,水热反应6~24h;其中MoS2纳米片、FeCl3·6H2O、NaHCO3和抗坏血酸的质量比为1:4.4:4.1:0.55。
(3)水热反应完成后,冷却至室温,经乙醇和水各洗涤3-5次,用冷冻干燥法进行干燥,得到Fe3O4@MoS2超顺磁性纳米材料。
所得Fe3O4@MoS2超顺磁性纳米材料的扫描电镜和透射电镜表征图见图1,X-射线衍射图谱见图2所示,磁滞回线分析结果见图3。从图1(C和D)中可以看出,Fe3O4纳米颗粒的粒径为2-15nm,平均粒径约5.8nm。从图1(D)中可以看到,Fe3O4@MoS2材料中MoS2的纳米片层间距约1.1nm。
实施例3
吸附动力学过程测试
将50mg实施例2制备所得Fe3O4@MoS2超顺磁性纳米材料超声分散于100mL的含有汞离子的水溶液中,其中汞离子浓度约15mg/L,水体的pH约4,吸附富集1min、2min、3min、5min和10min后,外加磁场,经过1min的磁分离过程,将吸附有汞离子的纳米材料与水体分离。经ICP或ICP-MS法分析检测剩余水体中剩余的汞离子浓度,进而得到汞离子的吸附富集率。经计算,吸附反应发生1min、2min、3min、5min和10min后,Fe3O4@MoS2超顺磁性纳米材料对水体中汞离子的吸附富集率分别为90.1%、99.1%、99.9%、99.9%和99.9%,如图4所示。由此可知,汞离子在Fe3O4@MoS2超顺磁性纳米材料上的吸附富集,2min内就可以达到吸附平衡,吸附富集率高于99%,且经1min的磁分离过程,富集材料可以从水中分离出。
实施例4
对汞离子的选择性吸附富集
将50mg实施例2制备的Fe3O4@MoS2超顺磁性纳米材料加入100mL含有9种金属离子的水溶液中,该水溶液pH为7,含有钠、钾、锰、镍、镉、铜、铬、铅和汞共9种金属离子,离子浓度为10mg/L。搅拌吸附富集2min后,外加磁场,经过1min的磁分离过程,将吸附有金属离子的纳米复合离子与水体分离。经ICP或ICP-MS分析法分析检测剩余水体中剩余的金属离子浓度,进而得到金属离子的吸附富集率。经分析计算,吸附反应发生2min后,Fe3O4@MoS2超顺磁性纳米材料对水体中金属离子的吸附富集率为:汞(99.9%)、铅(27.1%)、铜(23.5%)、铬(14.3%)、镉(0%)、镍(0%)、锰(0%)、钾(0%)、钠(0%),如图5所示。
将50mg实施例1制备的MoS2纳米片加入100mL含有9种金属离子的水溶液中,该水溶液PH为7,含有钠、钾、锰、镍、镉、铜、铬、铅和汞共9种金属离子,离子浓度为10mg/L。搅拌吸附富集2min后,用0.22μm的过滤器过滤分离,将吸附有金属离子的MoS2纳米片与水体分离。经ICP或ICP-MS分析法分析检测剩余水体中剩余的金属离子浓度,进而得到金属离子的吸附富集率。经分析计算,吸附反应发生2min后,MoS2纳米片对水体中金属离子的吸附富集率为:汞(100%)、铅(48.7%)、铜(57.2%)、铬(12.4%)、镉(0%)、镍(0%)、锰(0%)、钾(0%)、钠(0%),如图6所示。
这一结果说明在其他金属离子存在的情况下,镶嵌在MoS2纳米片上的Fe3O4纳米颗粒不仅赋予MoS2纳米片材料快速磁分离的性能,也提高了MoS2纳米片对汞离子的选择性。
实施例5
对汞离子的选择性吸附富集
将50mg实施例2制备的Fe3O4@MoS2超顺磁性纳米材料加入100mL含有9种金属离子的的水溶液中,该水溶液pH为7,含有钠、钾、锰、镍、镉、铜、铬、铅和汞共9种金属离子,离子浓度为10mg/L。搅拌吸附富集24h后,外加磁场,经过1min的磁分离过程,将吸附有金属离子的纳米复合离子与水体分离。经ICP或ICP-MS分析法分析检测剩余水体中剩余的金属离子浓度,进而得到金属离子的吸附富集率。经分析计算,吸附反应发生24h后,Fe3O4@MoS2超顺磁性纳米材料对水体中金属离子的吸附富集率为:汞(99.9%)、铅(46%)、铜(78.7%)、铬(11.1%)、镉(0%)、镍(0%)、锰(0%)、钾(0%)、钠(0%),如图5所示。
将50mg实施例1制备的MoS2纳米片加入100mL含有9种金属离子的水溶液中,该水溶液PH为7,含有钠、钾、锰、镍、镉、铜、铬、铅和汞共9种金属离子,离子浓度为10mg/L。搅拌吸附富集24h后,用高速离心机离心分离,将吸附有金属离子的MoS2纳米片与水体分离。经ICP或ICP-MS分析法分析检测剩余水体中剩余的金属离子浓度,进而得到金属离子的吸附富集率。经分析计算,吸附反应发生24h后,MoS2纳米片对水体中金属离子的吸附富集率为:汞(100%)、铅(97.6%)、铜(98.7%)、铬(14.7%)、镉(0%)、镍(0%)、锰(0%)、钾(0%)、钠(0%),如图6所示。
结合实施例4和5的结果可以发现,通过控制吸附富集时间,可以调控吸附剂对汞、铅等重金属离子的选择性。对于本发明中的Fe3O4@MoS2超顺磁性纳米材料和MoS2纳米片,延长吸附富集时间会降低其对汞、铅等重金属离子的选择性。
实施例6
将50mg实施例2制备所得Fe3O4@MoS2超顺磁性纳米材料超声分散于100mL的含有汞离子的水溶液中,水体的pH值用硝酸和氢氧化钠水溶液调控为2、4、6、7、8和10。水中汞离子浓度约为10mg/L。吸附富集后,外加磁场,经过1min的磁分离过程,将吸附有汞离子的纳米材料与水体分离。经ICP分析检测剩余水体中剩余的汞离子浓度,进而得到汞离子的吸附富集性能。经计算,吸附富集后,当水体pH值分别为2、4、6、7、8和10时,Fe3O4@MoS2超顺磁性纳米材料对水体中汞离子的吸附富集量分别为6.4mg g-1、7.2mg g-1、10.7mg g-1、15.8mg g-1、17.5mg g-1和17.8mg g-1
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种Fe3O4@MoS2超顺磁性纳米材料,其特征在于,所述纳米材料为MoS2纳米片表面镶嵌有Fe3O4纳米颗粒的纳米材料;其中,所述MoS2纳米片间距为0.7-1.1nm,所述Fe3O4纳米颗粒的粒径为2-15nm。
2.一种如权利要求1所述Fe3O4@MoS2超顺磁纳米材料的制备方法,其特征在于,所述制备方法包括:
将MoS2纳米片分散于去离子水中,分散10-60min后,在搅拌状态下加入FeCl3·6H2O、碳酸氢钠和抗坏血酸,继续搅拌0.5-2h,移入反应釜中,水热反应后,冷却至室温,清洗,冷冻干燥,得Fe3O4@MoS2超顺磁性纳米材料;
其中,MoS2纳米片、FeCl3·6H2O、碳酸氢钠、抗坏血酸的质量比为:1:(3-5):(3.5-4.5):(0.2-0.8)。
3.根据权利要求2所述的制备方法,其特征在于,水热反应温度为120-180℃,反应时间为6-24h。
4.根据权利要求2或3所述的制备方法,其特征在于,所述MoS2纳米片的制备包括如下步骤:
将CH4N2S和(NH4)6Mo7O24·4H2O分散于去离子水溶液中,搅拌0.5-1h后,移入反应釜中,水热反应后,冷却至室温,清洗,冷冻干燥,得MoS2纳米片;
其中,CH4N2S和(NH4)6Mo7O24·4H2O的质量比为:(1.8-2.0):1。
5.根据权利要求4所述的制备方法,其特征在于,水热反应温度为160-200℃,反应时间为12-36h。
6.如权利要求1所述Fe3O4@MoS2超顺磁性纳米材料在吸附水体中汞离子中的应用。
7.根据权利要求6所述的应用,其特征在于,将所述Fe3O4@MoS2超顺磁性纳米材料分散于含汞离子的水体中,吸附富集,磁分离。
8.根据权利要求6所述的应用,其特征在于,所述吸附富集时间为1-10min;所述磁分离时间为1-10min。
9.根据权利要求6所述的应用,其特征在于,加入所述Fe3O4@MoS2超顺磁性纳米材料与所述水体中汞离子质量比为(2-5000:1)。
10.根据权利要求6所述的应用,其特征在于,所述含汞离子水体的pH为2-10;水体中汞离子的浓度为0.1-500mg/L。
CN201810999396.3A 2018-08-30 2018-08-30 一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用 Pending CN110871051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810999396.3A CN110871051A (zh) 2018-08-30 2018-08-30 一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810999396.3A CN110871051A (zh) 2018-08-30 2018-08-30 一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110871051A true CN110871051A (zh) 2020-03-10

Family

ID=69714944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810999396.3A Pending CN110871051A (zh) 2018-08-30 2018-08-30 一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110871051A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912123A (zh) * 2021-09-23 2022-01-11 山东师范大学 基于磁性二硫化钼催化和光热效应的鼠伤寒沙门氏菌多模试纸条及其检测方法和应用
CN113926497A (zh) * 2021-10-08 2022-01-14 浙江工商大学 基于核酸适配体修饰的MoS2复合材料的微流控阵列质谱芯片及其制备方法与应用
CN115382499A (zh) * 2022-08-10 2022-11-25 中国科学院生态环境研究中心 一种核壳结构二硫化钼/四氧化三铁磁性纳米材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275998A (zh) * 2011-05-30 2011-12-14 北京理工大学 磁性Fe3O4纳米粒子的制备方法及其在吸附分离重金属离子中的应用
CN106356195A (zh) * 2016-08-31 2017-01-25 江苏大学 一种Fe3O4/WS2纳米复合材料及其制备方法
CN106799246A (zh) * 2017-02-26 2017-06-06 河南师范大学 一种磁性MoS2@Fe3O4复合可见光催化剂及其制备方法和应用
CN107055615A (zh) * 2017-06-02 2017-08-18 扬州大学 一种二维纳米结构MoS2纳米片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275998A (zh) * 2011-05-30 2011-12-14 北京理工大学 磁性Fe3O4纳米粒子的制备方法及其在吸附分离重金属离子中的应用
CN106356195A (zh) * 2016-08-31 2017-01-25 江苏大学 一种Fe3O4/WS2纳米复合材料及其制备方法
CN106799246A (zh) * 2017-02-26 2017-06-06 河南师范大学 一种磁性MoS2@Fe3O4复合可见光催化剂及其制备方法和应用
CN107055615A (zh) * 2017-06-02 2017-08-18 扬州大学 一种二维纳米结构MoS2纳米片的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KELONG AI等: "MoS2 Nanosheets with Widened Interlayer Spacing for High-Effi ciency Removal of Mercury in Aquatic Systems", 《ADV. FUNCT. MATER.》 *
YIHENG SONG等: "Decoration of defective MoS2 nanosheets with Fe3O4 nanoparticles as superior magnetic adsorbent for highly selective and efficient mercury ions (Hg2+) removal", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YU CHEN等: "Ultrasmall Fe3O4 Nanoparticle/MoS2 Nanosheet Composites with Superior Performances for Lithium Ion Batteries", 《SMALL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912123A (zh) * 2021-09-23 2022-01-11 山东师范大学 基于磁性二硫化钼催化和光热效应的鼠伤寒沙门氏菌多模试纸条及其检测方法和应用
CN113926497A (zh) * 2021-10-08 2022-01-14 浙江工商大学 基于核酸适配体修饰的MoS2复合材料的微流控阵列质谱芯片及其制备方法与应用
CN113926497B (zh) * 2021-10-08 2022-12-30 浙江工商大学 基于核酸适配体修饰的MoS2复合材料的微流控阵列质谱芯片及其制备方法与应用
CN115382499A (zh) * 2022-08-10 2022-11-25 中国科学院生态环境研究中心 一种核壳结构二硫化钼/四氧化三铁磁性纳米材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Sun et al. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples
Suo et al. Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry
Li et al. Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption
Han et al. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples
Chang et al. Application of graphene as a sorbent for preconcentration and determination of trace amounts of chromium (III) in water samples by flame atomic absorption spectrometry
Wang et al. Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC
Zhang et al. Preparation of thiol-modified Fe3O4@ SiO2 nanoparticles and their application for gold recovery from dilute solution
Dahaghin et al. Trace amounts of Cd (II), Cu (II) and Pb (II) ions monitoring using Fe3O4@ graphene oxide nanocomposite modified via 2-mercaptobenzothiazole as a novel and efficient nanosorbent
García-Mesa et al. Simultaneous determination of noble metals, Sb and Hg by magnetic solid phase extraction on line ICP OES based on a new functionalized magnetic graphene oxide
Guo et al. Multi-walled carbon nanotubes modified with iron oxide and manganese dioxide (MWCNTs-Fe3O4− MnO2) as a novel adsorbent for the determination of BPA
Suo et al. Functionalization of a SiO 2-coated magnetic graphene oxide composite with polyaniline–polypyrrole for magnetic solid phase extraction of ultra-trace Cr (III) and Pb (II) in water and food samples using a Box–Behnken design
Dimpe et al. Synthesis, modification, characterization and application of AC@ Fe2O3@ MnO2 composite for ultrasound assisted dispersive solid phase microextraction of refractory metals in environmental samples
CN110871051A (zh) 一种Fe3O4@MoS2超顺磁性纳米材料及其制备方法和应用
Li et al. Thiol-functionalized metal–organic frameworks embedded with chelator-modified magnetite for high-efficiency and recyclable mercury removal in aqueous solutions
Al-Kinani et al. Graphene oxide–tannic acid nanocomposite as an efficient adsorbent for the removal of malachite green from water samples
Baranik et al. Ceria nanoparticles deposited on graphene nanosheets for adsorption of copper (II) and lead (II) ions and of anionic species of arsenic and selenium
Liu et al. Three-dimensional graphene oxide/phytic acid composite for uranium (VI) sorption
Banazadeh et al. Facile synthesis of cysteine functionalized magnetic graphene oxide nanosheets: Application in solid phase extraction of cadmium from environmental sample
CN110193345A (zh) 一种磁性纳米复合材料的制备方法
Romero et al. In situ ultrasound-assisted synthesis of Fe 3 O 4 nanoparticles with simultaneous ion co-precipitation for multielemental analysis of natural waters by total reflection X-ray fluorescence spectrometry
Abdolmohammad-Zadeh et al. Preconcentration of Pb (II) by using Mg (II)-doped NiFe 2 O 4 nanoparticles as a magnetic solid phase extraction agent
Zeng et al. A functional rattle-type microsphere with a magnetic-carbon double-layered shell for enhanced extraction of organic targets
Sitko et al. Graphene oxide decorated with fullerenol nanoparticles for highly efficient removal of Pb (II) ions and ultrasensitive detection by total-reflection X-ray fluorescence spectrometry
Khayatian et al. Determination of trace amounts of cadmium, copper and nickel in environmental water and food samples using GO/MgO nanocomposite as a new sorbent
Asgharinezhad et al. Solid phase extraction of Pb (II) and Cd (II) ions based on murexide functionalized magnetic nanoparticles with the aid of experimental design methodology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination