CN110868172B - 薄膜体声谐振器和半导体器件 - Google Patents

薄膜体声谐振器和半导体器件 Download PDF

Info

Publication number
CN110868172B
CN110868172B CN201910328542.4A CN201910328542A CN110868172B CN 110868172 B CN110868172 B CN 110868172B CN 201910328542 A CN201910328542 A CN 201910328542A CN 110868172 B CN110868172 B CN 110868172B
Authority
CN
China
Prior art keywords
substrate
bulk acoustic
film bulk
acoustic resonator
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910328542.4A
Other languages
English (en)
Other versions
CN110868172A (zh
Inventor
李亮
吕鑫
梁东升
刘青林
马杰
高渊
丁现朋
冯利东
商庆杰
钱丽勋
李丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN201910328542.4A priority Critical patent/CN110868172B/zh
Publication of CN110868172A publication Critical patent/CN110868172A/zh
Application granted granted Critical
Publication of CN110868172B publication Critical patent/CN110868172B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0421Modification of the thickness of an element
    • H03H2003/0428Modification of the thickness of an element of an electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及半导体技术领域,公开了一种薄膜体声谐振器和半导体器件。该薄膜体声谐振器包括衬底;多层结构,形成于所述衬底上,所述多层结构由下至上依次包括下电极层、压电层、上电极层和多个横向特征,所述多个横向特征包括多个台阶结构,所述多个台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;其中,在所述衬底和所述多层结构之间形成有腔体,所述腔体包括位于所述衬底上表面之下的下半腔体和超出所述衬底上表面并向所述多层结构突出的上半腔体。上述薄膜体声谐振器通过设置具有下半腔体和上半腔体的腔体,且下半腔体整体位于衬底上表面之下,上半腔体整体位于衬底上表面之上,从而形成一种新型的谐振器结构,且具有较好的性能。

Description

薄膜体声谐振器和半导体器件
技术领域
本发明涉及半导体技术领域,特别是涉及薄膜体声谐振器和半导体器件。
背景技术
谐振器可以用于各种电子应用中实施信号处理功能,例如,一些蜂窝式电话及其它通信装置使用谐振器来实施用于所发射和/或所接收信号的滤波器。可根据不同应用而使用数种不同类型的谐振器,例如薄膜体声谐振器(FBAR)、耦合式谐振器滤波器(SBAR)、堆叠式体声谐振器(SBAR)、双重体声谐振器(DBAR)及固态安装式谐振器(SMR)。
典型的声谐振器包括上电极、下电极、位于上下电极之间的压电材料、位于下电极下面的声反射结构以及位于声反射结构下面的衬底。通常将上电极、压电层、下电极三层材料在厚度方向上重叠的区域定义为谐振器的有效区域。当在电极之间施加一定频率的电压信号时,由于压电材料所具有的逆压电效应,有效区域内的上下电极之间会产生垂直方向传播的声波,声波在上电极与空气的交界面和下电极下的声反射结构之间来回反射并在一定频率下产生谐振。
为了增加FBAR的效率,需要更好的声能约束以及由于更好的声能约束而产生的FBAR Q因数的进一步改善。
发明内容
基于上述问题,本发明提供一种新型结构的薄膜体声谐振器和半导体器件。
本发明实施例的第一方面提供一种薄膜体声谐振器,包括:
衬底;
多层结构,形成于所述衬底上,所述多层结构由下至上依次包括下电极层、压电层、上电极层和多个横向特征,所述多个横向特征包括多个台阶结构,所述多个台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;
其中,在所述衬底和所述多层结构之间形成有腔体,所述腔体包括位于所述衬底上表面之下的下半腔体和超出所述衬底上表面并向所述多层结构突出的上半腔体。
本发明实施例的第二方面提供一种薄膜体声谐振器,包括:
衬底;
多层结构,形成于所述衬底上,所述多层结构由下至上依次包括下电极层、压电层和上电极层;
在所述上电极层的外部区域处、所述上电极层的表面上的外部多界面架构样式,所述外部多界面架构样式包括多个第一台阶结构,所述多个第一台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;
在所述上电极层的中心区域处、所述上电极层的所述表面上的内部多界面架构样式,所述内部多界面架构样式中包括多个第二台阶结构,所述多个第二台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;
其中,在所述衬底和所述多层结构之间形成有腔体,所述腔体包括位于所述衬底上表面之下的下半腔体和超出所述衬底上表面并向所述多层结构突出的上半腔体。
本发明实施例的第三方面提供一种半导体器件,包括本发明实施例第一方面中任一种薄膜体声谐振器或本发明实施例第二方面中任一种薄膜体声谐振器。
采用上述技术方案所产生的有益效果在于:本发明实施例,通过设置具有下半腔体和上半腔体的腔体,且下半腔体整体位于衬底上表面之下,上半腔体整体位于衬底上表面之上,从而形成一种新型的谐振器结构,且具有较好的性能。
附图说明
图1是本发明一实施例提供的薄膜体声谐振器的结构示意图;
图2是图1中的上电极层和外部多界面架构样式的结构示意图;
图3是本发明另一实施例提供的薄膜体声谐振器的结构示意图;
图4是图3中的上电极层和内部多界面架构样式的结构示意图;
图5是图1中A的放大示意图;
图6是本发明又一实施例提供的薄膜体声谐振器的结构示意图;
图7是本发明一实施例提供的薄膜体声谐振器的一种制作方法流程图;
图8是本发明一实施例提供的薄膜体声谐振器的又一种制作方法流程图;
图9是本发明一实施例提供的薄膜体声谐振器的制作过程示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
参见图1,本发明一实施例提供了一种薄膜体声谐振器,包括衬底100和多层结构200。多层结构200形成于衬底100上,多层结构200由下至上依次包括下电极层203、压电层202、上电极层201和多个横向特征,多个横向特征包括多个台阶结构,多个台阶结构具有不同的宽度且连续地堆叠在上电极层201上。其中,在衬底100和多层结构200之间形成有腔体300,腔体300包括位于衬底100上表面之下的下半腔体301和超出衬底100上表面并向多层结构200突出的上半腔体302。
可选地,可以在衬底100中设置包括高声阻抗和低声阻抗的交替层的已知声反射器(例如,布拉格反射镜),以提供声隔离。
下电极层203布置在衬底100上,并且部分在上半腔体302上。平面化层也可以设置在衬底100上,图中并未标出。平面化层可以包括非蚀刻的高硼硅玻璃。通常,由于平面化层增加了总处理成本,所以平面化层不需要存在于结构中,但当平面化层存在时,可以提高后面的层的生长质量并且简化它们的处理。压电层202布置在下电极层203上,并且上电极层201布置在压电层202上。
下电极层203和上电极层201可以由钨、钼或铜等导电材料形成,压电层202可以由氧化锌、氮化铝或锆钛酸铅等压电材料的薄膜形成,压电层202、下电极层203和上电极层201也可以由其它可实现的材料形成,对此不作限制。下电极层203和上电极层201可以由相同的材料形成,也可以由不同的材料形成。下电极层203和上电极层201的厚度可以相同,也可以不同。下电极层203、上电极层201和压电层202的各自的厚度可以根据实际需求进行设置。
参见图1,一个实施例中,多个横向特征包括位于上电极层201的外部区域的外部多界面架构样式204,外部多界面架构样式204包括多个台阶结构2041-2043。
其中,台阶结构可以指具有不同宽度、形成相应的竖直界面的相邻的层,例如,台阶结构2041和2042,和/或台阶结构2042和2043。
薄膜体声谐振器可以包括外部多界面架构样式204,外部多界面架构样式204形成在上电极层201的顶表面上或者另外从上电极层201的顶表面延伸。上电极层201的外部区域通常包括上电极层201的处于和/或靠近上电极层201的外周边的区域。外部区域可以根据各种实施方式的应用具体设计需求,以各种量朝向(但不包括)各种薄膜体声谐振器的中心区域延伸。中心区域通常包括上电极层201的结合薄膜体声谐振器的活性区域(下电极层203、压电层202和上电极层201重叠的区域)的中心的部分。
在一个实施例中,外部多界面架构样式204被配置为反射在薄膜体声谐振器中激发的厚度延伸(TE)传播模式的至少一部分,增加薄膜体声谐振器的并联电阻。
在一个实施例中,多个台阶结构的至少一个台阶结构由介电材料形成。
在一个实施例中,多个台阶结构的至少一个台阶结构具有与多个台阶结构中的至少一个其他台阶结构的边缘不平行的边缘。
在一个实施例中,外部多界面架构样式204沿着上电极层201的一个边缘包括与沿着上电极层201的不同边缘相比数目不同的台阶结构。
在一个实施例中,台阶结构2041堆叠在上电极层201的顶表面上,台阶结构2042堆叠在台阶结构2041的顶表面上,并且台阶结构2043堆叠在台阶结构2042的顶表面上,形成从外部多界面架构样式204的内边缘向外边缘延伸的阶梯样式。外部多界面架构样式204可以包括从2到N阶的任何数目的台阶结构,其中,N为大于2的正整数。
参见图2,上电极层201沿y轴方向具有高度H0,台阶结构2041具有高度H1,台阶结构2042具有高度H2,台阶结构2043具有高度H3,H1、H2和H3可以相同,也可以不同。台阶结构2041-2043的各个的高度在到/>的范围内。沿x轴方向,台阶结构2041具有宽度W1,台阶结构2042具有宽度W2,台阶结构2043具有宽度W3。外部多界面架构样式204的总宽度与台阶结构2041的宽度W1相同,为了维持阶梯样式,可以使W1>W2>W3
在一个实施例中,在外部多界面架构样式204中的台阶结构2041-2043的相对尺寸可以不同,使得外部多界面架构样式204不一定形成上升的阶梯样式。例如,参考图2,台阶结构2042和台阶结构2043的左边缘可以放置在台阶结构2041的左边缘处,从而在远离薄膜体声谐振器的活性区域的中心时形成下降的阶梯样式;台阶结构2042可以放置在台阶结构2041的中间,并且台阶结构2043可以放置在台阶结构2042的中间,从而在远离薄膜体声谐振器的中心时形成上升/下降的台阶样式,等等。
在一个实施例中,台阶结构的各个的宽度是在薄膜体声谐振器的谐振频率处激发的传播本征模式的四分之一波长的奇整数倍。
在本实施例中,W1-W3是在与具体应用最相关的频率下(例如,在并联谐振频率Fp下)被激发的主要TE传播模式的四分之一波长(QWL)的奇数倍。值得注意的是,由于主要TE传播模式的色散特性(即,频率随波长而变化的特性)的陡度,对于便于电激发的TE传播模式的有利约束和抑制的、在串联谐振频率Fs与Fp之间的整个频率范围,存在明确定义的QWL宽度。同时,沿着朝向设备的边缘的方向逐步增加外部多界面架构样式204的厚度,允许电激发的TE消散模式的更平滑且更快的衰减。该更快的衰减通过抑制在外部多界面架构样式204和上电极层201的边缘处的TE消散模式的散射,促进更高的Rp(并联电阻)。注意,上电极层201的边缘对于电激发的活塞模式的传播和消散组分存在较大的声阻抗不连续型。有利的是,该不连续性对声波的影响可以通过抑制传播组分和通过多台阶构架(例如,台阶结构2041-2043)使活塞模式的消散组分指数地衰减,来最小化。
通常,在薄膜体声谐振器的串联谐振频率Fs下,电能转换为声能,并且反之亦然。虽然电场(并且因此电能密度)被约束到上电极层201下的活性区域,但声场(并且因此声能密度)可以被约束到上电极层201下的区域(以连续模式的形式)或者可以传播出去(以传播本征模式的形式)。由于通常下电极层203延伸超过(在所描述的坐标系统中的x-z平面中)上电极层201,因此电场分布由上电极层201的横向形状确定。在数学上,电场在活性区域中的横向形状可以表示为,相对于薄膜体声谐振器中的压电层202的顶部界面或底部界面以不同角度传播的平面波的傅里叶叠加。应该强调的是,由于没有物理电场波(除了与经由压电效应的声波相关联的)在结构中传播,因此这纯粹是数学概念。换句话说,电场的空间频谱由电场分布的傅里叶变换给出。电场的各个空间频谱组分激发相对于压电层202的顶部界面或底部界面以相同角度传播的声平面。与由于上电极层201和下电极层203的存在而被限制为竖直方向的电场不同,被激发的生成可以通过薄膜体声谐振器的全部层竖直地传播。然而,通常,由于根据来自由结构的层和结构本身(即,叠层的上下边界)限定的界面的反射的声平面波的破坏性干扰,被电激发的声平面波不能自由地传播到薄膜体声谐振器的活性区域之外。这些非传播波形成一组所谓的连续模式。连续模式沿着远离激发区域的方向呈指数衰减。在这种情况下,激发区域通过上电极层201和下电极层203的重叠来限定,增强了压电层202中的电场。然而,对于电场的某些空间频谱组分,被激发的声波在构造上干扰来自包括薄膜体声谐振器层堆叠的界面的反射。这些声平面波可以沿远离活性区域的横向方向(x-z平面)自由地传播,并且因此被叫做薄膜体声谐振器的传播本征模式。这样,如果这些传播模式没有被约束到活性区域或者没有被抑制,则会导致有害的能量损耗。该能量损耗例如随着薄膜体声谐振器中减小的Q因数而明显。
在上电极层201下被激发的平面波的傅里叶叠加可以在数学上表示为来自与给定层堆叠的传播和消散本征模式对应的复极(complex pole)的贡献的叠加。消散本征模式通常不能在层堆叠中传播,并且从激发点开始呈指数衰减。可以对任何力系进行这样的分解,其中强迫作用(forcing)或者通过电激发(类似于在上电极层201下)或者通过机械激发而发生。机械激发例如发生在两个区域之间的界面处(例如,在由薄膜体声谐振器的上电极层201的外边缘限定的竖直界面处),其中一个区域呈现已知的强迫运动(forcing motion),而另一个区域是被动的,并且两个区域在它们之间的界面处通过应力和粒子速度的连续性而耦合。在外部多界面架构样式204存在的情况下,传播和消散本征模式的电激发被最小化,这是因为通常这样的激发与给定区域中(例如,在外部多界面架构样式204区域中)的激励频率和串联共振频率(或者,在仅考虑机械激励的情况下,是截止频率)之间的平方差成反比。由于与薄膜体声谐振器的中心区域相比,外部多界面架构样式204呈现出明显的质量负荷。在该区域中的串联谐振频率下移,导致对两种模式的电激发的明显抑制。
在薄膜体声谐振器中,活性区域的运动被电激发,而外部多界面架构样式204中的运动主要是机械激发,并且源于在薄膜体声谐振器的中心区域与外部多界面架构样式204之间的竖直界面处的边界条件。在与台阶结构2041的界面处,电激发的传播本征模式被反射并且还部分地散射到其他不需要的模式(例如,剪切和弯曲模式)中。然而,该模式中的能量的一部分将转换为由台阶结构2041支撑的相似厚度延伸传播模式和消散模式。同时,电激发的消散模式将在台阶结构2041的界面处散射,但它也将转换为由台阶结构2041支撑的相似(analogous)厚度延伸消散和传播模式。该过程将在由台阶结构2042的边缘限定的竖直界面处重复,且然后在由台阶结构2043的边缘限定的竖直界面处重复。值得注意的是,在连续的竖直界面处的散射过程可以通过考虑消散模式的指数衰减量和传播模式的幅度的抑制来单独地最优化高度H1-H3而减小到最少。
传播和消散本征模式之间沿横向方向(图2所示的坐标系中的x方向)的模式分布存在显著差别。模式分布定义为质点位移的复振幅,以横向(x方向)和竖直方向(y方向)的函数给出。传播模式在薄膜体声谐振器的中心区域和外部多界面架构样式204内部两者中均具有空间周期性函数的形式。与之相比,消散模式在薄膜体声谐振器的中心区域中具有恒定的分布(即,位移幅度不依赖于x方向),并且沿着远离薄膜体声谐振器的中心区域和台阶结构2041的界面的方向呈指数衰减。
而且,对于典型的电激发,与约束在其他较高阶消散本征模式和传播本征模式中的能量相比,最低阶的消散本征模式包含弹性能量的基本部分(例如,~50%)。然而,该各种本征模式之间的能量分割依赖于激发频率以及在薄膜体声谐振器的层中使用的厚度和材料。根据特定的说明性实施例,外部多界面架构样式204的总宽度被选定为等于或大于在薄膜体声谐振器的中心区域中最低阶厚度延伸消散本征模式的衰减常数(1/k)的倒数(其与在包括外部多界面架构样式204的台阶结构中的相似模式的衰减常数的倒数几乎相同)。这样,在上电极层201的界面处的声阻抗中断处,最低阶消散模式将充分衰减以防止由于在该界面处的散射而造成的能量损耗。
台阶结构的外部多界面架构样式204的传播本征模式在薄膜体声谐振器的中心区域与台阶结构2041的竖直界面处,主要是机械激发。台阶结构2041-2043有效地提供三个(堆叠的)界面,该三个界面反射来自薄膜体声谐振器中活性区域的中心的入射本征模式传播的一部分。这些入射的传播本征模式被在上电极层201下的所有点处的电场激发。在来自台阶结构2041-2043的各个界面的反射之后,经过反射的本征模式沿着与入射本征模式相反的方向传播,并且与该本征模式相长(当两个本征模式的振幅相加时)或相消(当两个本征模式的振幅相减时)地干涉。通常,当台阶结构2041-2043的界面以与入射本征模式的四分之一波长的奇数倍(1,3,5...)相等的距离分隔时,入射波和反射波在各个界面处相消地干涉。该相消干涉导致当传播本征模式沿着远离薄膜体声谐振器的中心的方向行进时其总振幅呈指数衰减。换句话说,本征模式不能有效地传播通过这样的结构,并且因此被反射回到薄膜体声谐振器的主要部分。
例如,台阶结构2041-2043可以反射具有振幅Ein的入射本征模式,产生具有振幅Ereflect的经过反射的本征模式,如图2的箭头所示。入射本征模式振幅Ein与传播本征模式的总振幅(是入射和经过反射的振幅的和Etotal=Ein+Ereflect)之间的关系,表明本征模式的抑制(当Etotal<Ein时)或增强(当Etotal>Ein时)水平。在理想配置中,本征模式将被完全抑制(Ereflect=-Ein,因此Etotal≈0)。因此,当针对最大本征模式抑制适当地设计时,台阶结构2041-2043改善薄膜体声谐振器内部的能量约束,这通过增加薄膜体声谐振器的Rp和Q因数来显现。同样,如上所述,逐渐增加台阶结构2041-2043中的膜的厚度,允许TE消散模式更快地衰减,其中TE消散模式在薄膜体声谐振器中也是电激发的。在外部多界面架构样式204外边缘处的TE消散模式的最小化振幅,使得在该边缘处TE消散模式最小化,产生Rp和Q因数的额外增加。值得注意的是,台阶结构2041-2043可用于针对大于Fs的激发频率增大Q因数。
注意,上面的描述是近似于传播本征模式激发问题的完整情况的单个激发点(例如,在薄膜体声谐振器的中心区域和台阶结构2041的竖直界面处),并且上述描述仅用于帮助理解在这里所考虑的情况下、波的性质所产生的效果。如上面所注意的,传播本征模式在整个活性区域中被连续地激发,并且因此在外部多界面架构样式204中形成衍射图案。而且,该衍射图案由于上电极层201的边缘处的较大声阻抗不连续的存在而进一步复杂化。需要数值分析来计算和分析在包括外部多界面架构样式204的薄膜体声谐振器中形成的衍射图案。可以对宽度W1到W3和/或高度H1到H3进行实验优化,以确保薄膜体声谐振器在操作频率范围内的期望性能。
在一个实施例中,上电极层201的高度与台阶结构2041-2043各个的高度之间的比可以在约30:1到约3:1之间,但也可以是其他比例。此外,台阶结构2041的宽度W1可以在上电极层201的长度L的约百分之一到约百分之十之间,而宽度W2和W3分别是小于宽度W1的QWL的某奇数倍(如上所讨论的)。例如,当上电极层201具有约的高度H0和约100μm的长度时,台阶结构2041-2043的高度H1到H3各个可以在约/>到约/>的范围内,并且台阶结构2041的宽度W1可以在约1μm到约10μm的范围内。
通常,台阶结构2041-2043相对于上电极层201越厚,薄膜体声谐振器的Rp由于TE传播模式的约束和抑制的改善而增加得越大。然而,值得注意的是,结构204将增强在Fs以下激发的TE传播模式,导致不期望的Rs的增加和质量因数QSW的减小。此外,随着台阶结构2041-2043做得越厚,台阶结构2041-2043的厚度W1至W3变得对制作过程中的对准误差变得越敏感,使得生产更加困难。因此,台阶结构2041-2043的高度H1到H3通常选择为,相对于不期望的Rs增加和QSW减小平衡期望的Rp增加,且相对于制作工艺平衡不期望的厚度W1至W3的敏感度增加。此外,高度H1到H3对于较高的谐振频率通常更薄,这通常是因为上电极层201对于较高的谐振频率也更薄。
例如,薄膜体声谐振器可以是变迹或不规则形状,并且外部多界面架构样式204可以基本上遵循上电极层201的外周形状。当然,薄膜体声谐振器可以形成为替换的形状,诸如圆形、正方形、矩形、梯形等。此外,在各种实施例中,外部多界面架构样式204可以成形为与上电极层201的形状不同的形状,和/或外部多界面架构样式204也可以不沿着上电极层201的所有边缘布置。类似地,图1和图2通常示出了其中外部多界面架构样式204具有与沿上电极层201的所有边缘布置的台阶结构(台阶结构2041-2043)相同的数目。然而,在各种替换实施例中,台阶结构的数目可以随着上电极层201边缘的一个或多个而不同。例如,沿上电极层201的最右边缘的外部多界面架构样式204可以具有三个台阶结构,而沿上电极层201的最左边缘的外部多界面架构样式204可以仅具有两个台阶结构。此外,虽然如图1和图2所示,台阶结构2041-2043各自的边缘相互平行,但可以理解,在替换实施例中,台阶结构2041-2043的一个或多个可以相对于相同台阶结构的其他边缘和/或相对于其他台阶结构中的一个或多个具有不平行的边缘。
外部多界面架构样式204的台阶结构2041-2043,例如可以由诸如W、Mo或Cu等导电材料形成,并且可以与上电极层201具有相同的材料。或者,台阶结构2041-2043中的一个或多个可以由与上电极层201不同的材料和/或由彼此不同的材料形成。此外,台阶结构2041-2043中的一个或两个,例如可以由诸如氧化硅(SiO2)、氮化硅(SiN)、碳化硅(SiC)、A1N、ZnO或PZT等介电材料形成。
参照图3,一个实施例中,多个横向特征包括位于上电极层201的中心区域的内部多界面架构样式205,内部多界面架构样式205包括多个台阶结构2051-2053。
在一个实施例中,多个台阶结构的至少一个台阶结构由介电材料形成。
在一个实施例中,多个台阶结构的至少一个台阶结构具有与多个台阶结构中的至少一个其他台阶结构的边缘不平行的边缘。
在一个实施例中,台阶结构2051-2053的各个的高度在到/>的范围内。
在一个实施例中,内部多界面架构样式205被配置成抑制厚度延伸传播横向声模式的至少一部分,减小薄膜体声谐振器的串联电阻。
薄膜体声谐振器也包括形成在上电极层201的顶部表面上的内部多界面架构样式205。内部多界面架构样式205形成在上电极层201的中心区域,并且包括多个台阶结构2051-2053。中心区域指的是上电极层201结合薄膜体声谐振器的活性区域的中心的部分。如上所讨论的,例如,中心区域可以根据各种实施方式的应用具体设计需求,朝向(但不包括)薄膜体声谐振器的所谓外部区域向外延伸各种量。在一个实施例中,台阶结构2051堆叠在上电极层201的顶表面上,台阶结构2052堆叠在台阶结构2051的顶表面上,并且台阶结构2053堆叠在台阶结构2052的顶表面上,形成堆叠在上电极层201的中心区域中的外周阶梯样式,其中阶梯样式沿着内部多界面架构样式205的全部外边缘(或外周)设置。在各种替换配置中,内部多界面架构样式205可以包括从2到N阶的任意数目的台阶结构。
参照图4,上电极层201具有沿y轴方向的高度H0(台阶厚度),并且台阶结构2051-2053分别具有对应的高度H1至H3。在所描述的代表性实施例中,高度H1=高度H2=高度H3,但高度可以不同,以针对任何特定的情形提供独特的益处或者满足各种实施方式的应用具体设计需求。例如,在替换配置中,台阶结构2051-2053的各个可以具有不同的高度,例如,高度H1>高度H2>第三高度H3,或者高度H1<高度H2<高度H3。例如,高度H1至H3的各个可以在约到约/>的范围内。类似地,台阶结构2051-2053分别具有沿x轴方向的宽度W1至W3。为了维持外周阶梯样式,宽度W1>宽度W2>宽度W3。在各种实施例中,宽度W1至W3的各个是本征模式QWL的奇数倍,其中期望本征模式可以在给定频率处(或者针对频率范围)被抑制。内部多界面架构样式205的总宽度与底部台阶结构2051的宽度W1相同。
此外,在各种实施例中,上电极层201的高度与台阶结构2051-2053各个的高度的比可以在约100:1到约10:1之间,但可以应用其他比例。此外,台阶结构2051的宽度W1可以在上电极层201的长度的约99%到约80%之间,而宽度W2和W3各个是小于宽度W1的QWL的某奇数倍(如上面所讨论的)。例如,当上电极层201具有约的高度H0和约100μm的长度时,台阶结构2051-2053的高度H1到H3各个可以在约/>到约/>的范围内,并且台阶结构2051的宽度W1可以在约99μm到约80μm的范围内。
通常,台阶结构2051-2053相对于上电极层201越厚,薄膜体声谐振器的Rs的有益减小越多。然而,虽然内部多界面架构样式205可以抑制Fs以下激发的主要传播模式,产生较低的Rs但其也可以增强在Fs以上激发的传播模式,从而在电频谱的该部分中产生较低的Rp和Q因数。然而,随着台阶结构2051-2053做得越厚,结构2051-2053的厚度W1至W3变得对制作过程中的对准误差变得越敏感,使得生产更加困难。除了过程问题以外,台阶结构2051-2053中层的厚度增加,也可能由于在内部多界面架构样式205和薄膜体声谐振器的膜的主要部分中激发的活塞模式的电耦合、在稍高于Fs的频率处造成薄膜体声谐振器的通频带的劣化。因此,台阶结构2051-2053的高度H1到H3通常选择为,针对制作过程相对于不期望的宽度W1至W3的敏感度增加、平衡期望的Rs减小,以及平衡不利的Rp减小和Fs以上可能的通频带劣化。此外,高度H1到H3对于较高的谐振频率通常更薄,这通常是因为上电极层201对于较高的谐振频率也更薄。
台阶结构2051-2053有效地提供了三个(堆叠的)界面,其一直从薄膜体声谐振器中的活性区域的中心传播的横向声波的一部分。来自多台阶内部多界面架构样式205的多次反射可以有利地抑制针对低于Fs的激发频率范围的主要电激发的TE本征模式。因此,台阶结构2051-2053减小薄膜体声谐振器的Rs,并且针对薄膜体声谐振器的Fs以下的频率使薄膜体声谐振器的电响应中的杂散声音的存在减小到最少。
例如,薄膜体声谐振器可以是变迹或不规则形状,内部多界面架构样式205的外周可以基本上对应于上电极层201的外周形状。当然,薄膜体声谐振器可以形成为替换的形状,诸如圆形、正方形、矩形、梯形等。此外,在各种实施例中,内部多界面架构样式205可以成形为与上电极层201的形状不同的形状。此外,虽然如图3和图4所示,台阶结构2051-2053各自的边缘相互平行,但可以理解,在替换实施例中,台阶结构2051-2053的一个或多个可以相对于相同台阶结构的其他边缘和/或相对于其他台阶结构中的一个或多个具有不平行的边缘。
内部多界面架构样式205的台阶结构2051-2053可以由诸如W、Mo或Cu等导电材料形成,并且可以与上电极层201具有相同的材料。或者,台阶结构2051-2053中的一个或多个可以由与上电极层201不同的材料和/或由相互不同的材料形成。此外,台阶结构2051-2053中的一个或两个例如可以由诸如SiO2、SiN、SiC、AlN、ZnO或PZT等介电材料形成。
参见图1,一个实施例中,下半腔体301由底壁101和第一侧壁102围成,底壁101整体与衬底100的表面平行,第一侧壁102为由底壁101的边缘延伸至衬底100上表面的第一圆滑曲面。
其中,底壁101和第一侧壁102均为衬底100的表面壁。而第一侧壁102为第一圆滑曲面能够保证谐振器腔体的性能,不发生突变。
参见图5,一个实施例中,所述第一圆滑曲面可以包括圆滑过渡连接的第一曲面1021和第二曲面1022。其中,圆滑过渡连接的第一曲面1021和第二曲面1022是指第一曲面1021和第二曲面1022之间连接处无突变,且第一曲面1021和第二曲面1022两者也为无突变的曲面,从而能够保证谐振器腔体的性能。其中,衬底100是由很多个晶体(例如硅晶体)组成的,无突变是指第一圆滑曲面处的各个晶体之间的间隙不应过大以影响谐振器的性能。
例如,第一曲面1021的竖截面可以呈倒抛物线状,且位于底壁101所在的平面之上;第二曲面1022的竖截面可以呈抛物线状,且位于衬底100上表面所在的平面之下。第一曲面1021和第二曲面1022圆滑连接。当然,第一曲面1021和第二曲面1022还可以为其他形状的曲面,能够达到第一圆滑曲面处的各个晶体之间的间隙不影响谐振器的性能即可。
一个实施例中,对于第一圆滑曲面整体是平滑的,可以为第一圆滑曲面各点的曲率小于第一预设值。对于第一预设值可以根据实际情况设定,以达到第一圆滑曲面处的各个晶体之间的间隙不影响谐振器的性能的目的。为了保证多层结构力学特性和电学特性,过渡区域圆滑曲面的曲率要尽可能小,在牺牲层厚度一定的情况下,尽可能小的曲率要求过渡区长度增加,会增加当个谐振器的面积,因此要优化过渡区的曲率和过渡区长度。优选的,腔体300的厚度可以为1μm,过渡区长度控制在3μm至5μm,在该过渡区生长的多层结构能够满足谐振器要求。过渡区长度为第一侧壁102在图1所示的虚线方向上的长度。
参见图1,一个实施例中,上半腔体302可以由多层结构200的下侧面围成,所述多层结构200的下侧面与上半腔体302对应的部分包括顶壁210和第二侧壁220,第二侧壁220为由顶壁210边缘延伸至衬底100上表面的第二圆滑曲面。
其中,顶壁210和第二侧壁220均为多层结构200的下侧面壁。而第二侧壁220为第二圆滑曲面能够保证谐振器腔体的性能,不发生突变。
参见图5,一个实施例中,第二圆滑曲面可以包括圆滑过渡连接的第三曲面2021和第四曲面2022。其中,圆滑过渡连接的第三曲面2021和第四曲面2022是指第三曲面2021和第四曲面2022之间连接处无突变,且第三曲面2021和第四曲面2022两者也为无突变的曲面,从而能够保证谐振器腔体的性能。其中,从晶体的角度讲,衬底100是由很多个晶体(例如硅晶体)组成的,无突变是指第二圆滑曲面处的各个晶体之间的间隙不应过大以影响谐振器的性能。
例如,第三曲面2021的竖截面可以呈抛物线状,且位于顶壁210所在的平面之下;第四曲面2022的竖截面呈倒抛物线状,且位于衬底100上表面所在的平面之上。当然,第三曲面2021和第四曲面2022还可以为其他形状,能够达到第一圆滑曲面处的各个晶体之间的间隙不影响谐振器的性能即可。
一个实施例中,第二圆滑曲面各点的曲率小于第二预设值。对于第二预设值可以根据实际情况设定,以达到第二圆滑曲面处的各个晶体之间的间隙不影响谐振器的性能的目的。
进一步的,顶壁210也无突变部分。此处所述的突变与前述突变一致,从晶体的角度讲,多层结构200也是由很多个晶体组成的,无突变是指顶壁210处的各个晶体之间的间隙不应过大以影响谐振器的性能。
以上实施例中,衬底100可以由与半导体工艺兼容的材料形成,例如,硅、砷化镓、磷化铟、玻璃、蓝宝石、氧化铝或其他材质等,对此不予限制。
参照图6,在一个实施例中,薄膜体声谐振器可以包括:衬底100;多层结构200,形成于衬底100上,多层结构200由下至上依次包括下电极层203、压电层202和上电极层201;在上电极层201的外部区域处、上电极层201的表面上的外部多界面架构样式204,外部多界面架构样式204包括多个第一台阶结构2041-2043,多个第一台阶结构2041-2043具有不同的宽度且连续地堆叠在上电极层上;在上电极层201的中心区域处、上电极层201的表面上的内部多界面架构样式205,内部多界面架构样式205中包括多个第二台阶结构2051-2053,多个第二台阶结构2051-2053具有不同的宽度且连续地堆叠在上电极层上;其中,在衬底100和多层结构200之间形成有腔体300,腔体300包括位于衬底100上表面之下的下半腔体301和超出衬底100上表面并向多层结构200突出的上半腔体302。
在一个实施例中,第一台阶结构的数目与第二台阶结构的数目相同。
在一个实施例中,第一台阶结构各自的厚度大于对应的第二台阶结构的各自的厚度。
在一个实施例中,第一台阶结构的数目与第二台阶结构的数目不同。
在一个实施例中,下电极层203堆叠在形成于所述衬底100中的腔体300上方,并且
其中,薄膜体声谐振器的并联电阻随着第一台阶结构的厚度的增加而增加,并且薄膜体声谐振器的串联电阻随着第二台阶结构的厚度的增加而减小。
在一个实施例中,下电极层203堆叠在形成于衬底100中的声反射器上方,并且
其中,薄膜体声谐振器的并联电阻随着第二台阶结构的厚度的增加而增加,并且薄膜体声谐振器的串联电阻随着第一台阶结构的厚度的增加而减小。
在一个实施例中,下半腔体301由底壁101和第一侧壁102围成,底壁101整体与衬底100的表面平行,第一侧壁102为由底壁101的边缘延伸至衬底100上表面的第一圆滑曲面。
在一个实施例中,上半腔体302由多层结构200的下侧面围成,多层结构200与上半腔体302对应的部分包括顶壁210和第二侧壁220围成,第二侧壁220为由顶壁210边缘延伸至衬底100上表面的第二圆滑曲面。
虽然外部多界面架构样式204和内部多界面架构样式205被描绘为各个具有三个台阶结构,但在各种替换实施例中,外部多界面架构样式204和内部多界面架构样式205的各个可以包括从2到N阶任意数目的台阶结构。此外,外部多界面架构样式204和内部多界面架构样式205可以具有相同或不同数目的台阶结构。第一台阶结构2041-2043和第二台阶结构2051-2053的高度和宽度、以及对并联电阻Rp和串联电阻Rs以及Q因数的影响基本上相同(如上所讨论的)。
上述薄膜体声谐振器,通过设置具有下半腔体301和上半腔体302的腔体300,且下半腔体301整体位于衬底100上表面之下,上半腔体302整体位于衬底100上表面之上,从而形成一种新型的谐振器结构,且具有较好的性能。
参见图7,本发明一实施例中公开一种薄膜体声谐振器的制作方法,包括以下步骤:
步骤701,对衬底进行预处理,改变衬底预设区域部分的预设反应速率,使得预设区域部分对应的预设反应速率大于非预设区域部分对应的预设反应速率。
本步骤中,通过对衬底预设区域部分进行预处理,使得衬底预设区域部分的预设反应速率,达到预设区域部分对应的预设反应速率大于非预设区域部分对应的预设反应速率的效果,从而在后续步骤702中对衬底进行预设反应时,能够使得预设区域部分的反应速率和非预设区域部分的反应速率不同,以生成预设形状的牺牲材料部分。
步骤702,对所述衬底进行所述预设反应,生成牺牲材料部分;所述牺牲材料部分包括位于所述衬底上表面之上的上半部分和位于所述衬底下表面之下的下半部分。
其中,所述下半部分由底面和第一侧面围成;所述底面整体与所述衬底表面平行,所述第一侧面为由所述底壁边缘延伸至所述衬底上表面的第一圆滑曲面。所述上半部分由所述多层结构的下侧面围成,所述多层结构与所述上半部分对应的部分包括顶面和第二侧面,所述第二侧面为由所述顶面边缘延伸至所述衬底上表面的第二圆滑曲面。
可选的,所述第一圆滑曲面包括圆滑过渡连接的第一曲面和第二曲面;所述第一曲面的竖截面呈倒抛物线状,且位于所述底面所在的平面之上;所述第二曲面的竖截面呈抛物线状,且位于所述衬底上表面所在的平面之下。
可选的,所述第二圆滑曲面包括圆滑过渡连接的第三曲面和第四曲面;所述第三曲面的竖截面呈抛物线状,且位于所述顶面所在的平面之下;所述第四曲面的竖截面呈倒抛物线状,且位于所述衬底上表面所在的平面之上。
一个实施例中,所述第一圆滑曲面的曲率小于第一预设值;所述第二圆滑曲面的曲率小于第二预设值。
可以理解的,由于预设区域部分对应的预设反应速率大于非预设区域部分对应的预设反应速率,因此在对衬底进行预设反应时,预设区域部分反应快和非预设区域部分的反应慢,从而能够生成预设形状的牺牲材料部分。
一个实施例中,步骤702具体实现过程可以包括:将所述衬底置于氧化气氛中进行氧化处理,得到牺牲材料部分。对应的,在步骤701中对衬底的预处理为能够提高衬底预设区域部分的氧化反应速率的手段。该手段可以为在预设区域进行离子注入以提高衬底预设区域部分的氧化反应速率,也可以为在衬底上形成一层预设图案的屏蔽层来提高衬底预设区域部分的氧化反应速率。
当然,在其他实施例中,步骤701中的预处理还可以为氧化处理之外的手段,同样该手段可以为在预设区域进行离子注入以提高衬底预设区域部分的氧化反应速率,也可以为在衬底上形成一层预设图案的屏蔽层来提高衬底预设区域部分的氧化反应速率。
步骤703,在所述牺牲材料层上形成多层结构;所述多层结构由下至上依次包括下电极层、压电层、上电极层和多个横向特征,多个横向特征包括多个台阶结构,多个台阶结构具有不同的宽度且连续地堆叠在上电极层上。
其中,多个横向特征可以包括外部多界面架构样式和/或内部多界面架构样式。外部多界面架构样式和内部多界面架构样式可以根据各种已知技术分别在上电极层上制作。
例如,为了形成外部多界面架构样式,可以使用旋涂、溅射、蒸镀或化学气相沉积(CVD)技术等分别将对应于台阶结构的多个薄膜涂覆在压电层上,以达到期望的厚度。每次涂覆可以跟着对应光刻胶图案(例如,经由光刻)的涂覆以及利用光刻胶图案作为蚀刻掩膜的蚀刻工艺(例如,六氟化硫(SF6)基等离子体蚀刻)。这提供了嵌入在随后涂覆的上电极层中的突出结构,外部多界面架构样式在上电极层上成形。
例如,为了形成内部多界面架构样式,将与上电极层对应的导电层涂覆到压电层和突出结构(如上所述)的顶表面上。光刻胶图案连续地涂覆(例如,经由光刻)到上电极层导电层,每次涂覆都跟着对应于台阶结构的薄层的涂覆(使用旋涂、溅射、蒸镀或CVD技术涂覆到期望厚度)。光刻胶图案紧跟在各个薄层的涂覆之后或者与第三薄层的涂覆同时地去除,使得对应薄层沉积在光刻胶图案表面上的部分被剥离。薄层的剩余中心部分成为内部多界面架构样式的台阶结构。可以在结构上形成其他光刻胶样式,以使能外周边缘的蚀刻以形成薄膜体声谐振器。
值得注意的是,在各种实施例中,与外部多界面架构样式的台阶结构对应的多个薄层,可以如上面所讨论的关于台阶结构的形成类似地利用连续涂覆的光刻图案和期望厚度的薄层来形成。
步骤704,去除所述牺牲材料部分,形成薄膜体声谐振器。
本实施例中,衬底可以为硅衬底或其他材质的衬底,对此不予限制。
上述薄膜体声谐振器制作方法,通过对衬底进行预处理来使得衬底预设区域部分的反应速率大于非预设区域部分对应的预设反应速率,从而能够在对衬底进行预设反应时,生成预设形状的牺牲材料部分,再在所述牺牲材料层上形成多层结构,最后去除牺牲材料部分形成具有特殊腔体结构的薄膜体声谐振器,相对于传统的制作方法对薄膜体声谐振器工作区域的表面粗糙度更为容易控制。
参见图8,本发明一实施例公开一种薄膜体声谐振器制作方法,包括以下步骤:
步骤801,在衬底上形成屏蔽层400,所述屏蔽层400覆盖所述衬底上除预设区域之外的区域,参见图9(a)。
本步骤中,在衬底上形成屏蔽层的过程可以包括:
在所述衬底上形成屏蔽介质,所述屏蔽层用于屏蔽所述衬底除预设区域之外的区域发生所述预设反应;
去除预设区域对应的屏蔽介质,形成所述屏蔽层。
其中,屏蔽介质的作用为使得衬底上覆盖屏蔽介质部分的反应速率低于未覆盖屏蔽介质部分的反应速率。进一步的,屏蔽层可以用于屏蔽所述衬底除预设区域之外的区域发生所述预设反应。
步骤802,对形成屏蔽层的衬底进行预处理,控制衬底上与所述预设区域对应的部分发生预设反应,得到牺牲材料部分500;所述牺牲材料部分500包括位于所述衬底上表面之上的上半部分和位于所述衬底下表面之下的下半部分。
其中,所述下半部分由底面和第一侧面围成;所述底面整体与所述衬底表面平行,所述第一侧面为由所述底壁边缘延伸至所述衬底上表面的第一圆滑曲面。所述上半部分由所述多层结构的下侧面围成,所述多层结构与所述上半部分对应的部分包括顶面和第二侧面,所述第二侧面为由所述顶面边缘延伸至所述衬底上表面的第二圆滑曲面。
可选的,所述第一圆滑曲面包括圆滑过渡连接的第一曲面和第二曲面。例如,所述第一曲面的竖截面呈倒抛物线状,且位于所述底面所在的平面之上;所述第二曲面的竖截面呈抛物线状,且位于所述衬底上表面所在的平面之下。
可选的,所述第二圆滑曲面包括圆滑过渡连接的第三曲面和第四曲面;所述第三曲面的竖截面呈抛物线状,且位于所述顶面所在的平面之下;所述第四曲面的竖截面呈倒抛物线状,且位于所述衬底上表面所在的平面之上。
一个实施例中,所述第一圆滑曲面的曲率小于第一预设值;所述第二圆滑曲面的曲率小于第二预设值。
作为一种可实施方式,步骤802的实现过程可以包括:将所述衬底置于氧化气氛中进行氧化处理,控制衬底上与所述预设区域对应的部分发生氧化反应,得到牺牲材料部分500,参见图9(b)。
其中,所述将所述衬底置于氧化气氛中进行氧化处理,可以包括:
在预设范围的工艺温度环境中,向所述衬底通入高纯氧气,以使得所述衬底上与所述预设区域对应的部分生成氧化层;
经过第一预设时间后,停止向所述衬底通入高纯氧气,通过湿氧氧化、氢氧合成氧化和高压水汽氧化中的一种或多种方式,使得衬底上的氧化层厚度达到预设厚度;
停止向所述衬底通入湿氧并向所述衬底通入高纯氧气,经过第二预设时间后完成对所述衬底的氧化处理。
其中,所述预设范围可以为1000℃~1200℃;所述第一预设时间可以为20分钟~140分钟;所述预设厚度可以为0.4μm~4μm;所述第二预设时间可以为20分钟~140分钟;所述高纯氧气的流量可以为3L/分钟~15L/分钟。
需要说明的是,采用纯氧气、湿氧、氢氧合成和高压水汽氧化中的一种手段或几种手段的结合,过渡区形貌会有一定的差别;同时,屏蔽层的种类和结构的选择,对过渡区的形貌有一定的营销,根据多层结构的厚度和压电层对曲率变化的要求,合理选择氧化方式和屏蔽层种类和结构。
步骤803,去除预处理后的衬底屏蔽层,参见图9(c)。
步骤804,在去除屏蔽层后的衬底上形成多层结构,所述多层结构由下至上依次包括下电极层、压电层、上电极层和多个横向特征,参见图9(d)。
步骤805,移除所述牺牲材料部分500,参见图9(e)。
本实施例中,所述屏蔽层可以为SiN材质层、SiO2材质层、多晶硅材质层,或为由上述两种或三种材质混合组成的多层结构,所述衬底可以为硅衬底或其他材质的衬底,对此不予限制。
一个实施例中,屏蔽层可以采用SiN,也可以采用多层膜结构,SiN作为氧化屏蔽层,其屏蔽效果较好,屏蔽区和非屏蔽区反应速率相差较大。可以通过刻蚀或腐蚀等手段,把需要制作谐振器区域的屏蔽介质去除,将硅片放在氧化气氛中进行氧化,有屏蔽介质部分的反应速率和没有屏蔽介质部分的反应速率相差较大:没有屏蔽介质部分的反应速率较快,衬底Si与氧气反应形成SiO2,生成的SiO2厚度不断增加,其上表面逐渐比有屏蔽介质部分的表面升高,没有屏蔽介质部分的Si表面逐渐下降,相对没有屏蔽介质部分的表面降低,由于屏蔽层的边缘部分氧气会从侧面进入屏蔽层下面,使得屏蔽层边缘的氧化速率较没有屏蔽介质部分的氧化速率慢,比有屏蔽介质部分的氧化速率快,越接近屏蔽介质的边缘,速率越趋于没有屏蔽介质部分的氧化速率。在屏蔽层边缘形成一个没有速率变化的过渡区域,该过渡区域通过优化氧化方式和屏蔽层种类和结构,可以形成圆滑曲面,在该圆滑曲面上生长含AlN等压电薄膜的多层结构,可以确保压电薄膜的晶体质量。
本发明实施例还公开一种半导体器件器,包括上述任一种薄膜体声谐振器,具有上述薄膜体声谐振器所具有的有益效果。例如,该半导体器件可以为滤波器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

1.一种薄膜体声谐振器,其特征在于,包括:
衬底;
多层结构,形成于所述衬底上,所述多层结构由下至上依次包括下电极层、压电层、上电极层和多个横向特征,所述多个横向特征包括多个台阶结构,所述多个台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;
其中,在所述衬底和所述多层结构之间形成有腔体,所述腔体包括位于所述衬底上表面之下的下半腔体和超出所述衬底上表面并向所述多层结构突出的上半腔体;
所述下半腔体由底壁和第一侧壁围成,所述底壁整体与所述衬底表面平行,所述第一侧壁为由所述底壁边缘延伸至所述衬底上表面的第一圆滑曲面;所述第一圆滑曲面包括圆滑过渡连接的第一曲面和第二曲面;
所述上半腔体包括顶壁和第二侧壁,所述第二侧壁为由所述顶壁边缘延伸至所述衬底上表面的第二圆滑曲面;所述第二圆滑曲面包括圆滑过渡连接的第三曲面和第四曲面。
2.根据权利要求1所述的薄膜体声谐振器,其特征在于,所述多个横向特征包括位于所述上电极层的外部区域的外部多界面架构样式,所述外部多界面架构样式包括所述多个台阶结构。
3.根据权利要求2所述的薄膜体声谐振器,其特征在于,所述外部多界面架构样式被配置为反射在所述薄膜体声谐振器中激发的厚度延伸传播模式的至少一部分,增加所述薄膜体声谐振器的并联电阻。
4.根据权利要求2所述的薄膜体声谐振器,其特征在于,所述多个台阶结构的至少一个台阶结构由介电材料形成。
5.根据权利要求2所述的薄膜体声谐振器,其特征在于,所述多个台阶结构的至少一个台阶结构具有与所述多个台阶结构中的至少一个其他台阶结构的边缘不平行的边缘。
6.根据权利要求2所述的薄膜体声谐振器,其特征在于,所述外部多界面架构样式沿着所述上电极层的一个边缘包括与沿着所述上电极层的不同边缘相比数目不同的台阶结构。
7.根据权利要求2所述的薄膜体声谐振器,其特征在于,所述台阶结构的各个的宽度是在所述薄膜体声谐振器的谐振频率处激发的传播本征模式的四分之一波长的奇整数倍。
8.根据权利要求1所述的薄膜体声谐振器,其特征在于,所述多个横向特征包括位于所述上电极层的中心区域的内部多界面架构样式,所述内部多界面架构样式包括多个台阶结构。
9.根据权利要求8所述的薄膜体声谐振器,其特征在于,所述多个台阶结构的至少一个台阶结构由介电材料形成。
10.根据权利要求8所述的薄膜体声谐振器,其特征在于,所述多个台阶结构的至少一个台阶结构具有与所述多个台阶结构中的至少一个其他台阶结构的边缘不平行的边缘。
11.根据权利要求8所述的薄膜体声谐振器,其特征在于,所述内部多界面架构样式被配置成抑制厚度延伸传播横向声模式的至少一部分,减小所述薄膜体声谐振器的串联电阻。
12.一种薄膜体声谐振器,其特征在于,包括:
衬底;
多层结构,形成于所述衬底上,所述多层结构由下至上依次包括下电极层、压电层和上电极层;
在所述上电极层的外部区域处、所述上电极层的表面上的外部多界面架构样式,所述外部多界面架构样式包括多个第一台阶结构,所述多个第一台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;
在所述上电极层的中心区域处、所述上电极层的所述表面上的内部多界面架构样式,所述内部多界面架构样式中包括多个第二台阶结构,所述多个第二台阶结构具有不同的宽度且连续地堆叠在所述上电极层上;
其中,在所述衬底和所述多层结构之间形成有腔体,所述腔体包括位于所述衬底上表面之下的下半腔体和超出所述衬底上表面并向所述多层结构突出的上半腔体;
所述下半腔体由底壁和第一侧壁围成,所述底壁整体与所述衬底表面平行,所述第一侧壁为由所述底壁边缘延伸至所述衬底上表面的第一圆滑曲面;所述第一圆滑曲面包括圆滑过渡连接的第一曲面和第二曲面;
所述上半腔体包括顶壁和第二侧壁,所述第二侧壁为由所述顶壁边缘延伸至所述衬底上表面的第二圆滑曲面;所述第二圆滑曲面包括圆滑过渡连接的第三曲面和第四曲面。
13.根据权利要求12所述的薄膜体声谐振器,其特征在于,所述第一台阶结构各自的厚度大于对应的第二台阶结构的各自的厚度。
14.根据权利要求12所述的薄膜体声谐振器,其特征在于,所述下电极层堆叠在形成于所述衬底中的声反射器上方,并且
其中,所述薄膜体声谐振器的并联电阻随着所述第二台阶结构的厚度的增加而增加,并且所述薄膜体声谐振器的串联电阻随着所述第一台阶结构的厚度的增加而减小。
15.一种半导体器件,其特征在于,包括权利要求1至11任一项所述的薄膜体声谐振器或权利要求12至14任一项所述的薄膜体声谐振器。
CN201910328542.4A 2019-04-23 2019-04-23 薄膜体声谐振器和半导体器件 Active CN110868172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910328542.4A CN110868172B (zh) 2019-04-23 2019-04-23 薄膜体声谐振器和半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910328542.4A CN110868172B (zh) 2019-04-23 2019-04-23 薄膜体声谐振器和半导体器件

Publications (2)

Publication Number Publication Date
CN110868172A CN110868172A (zh) 2020-03-06
CN110868172B true CN110868172B (zh) 2023-09-26

Family

ID=69651972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910328542.4A Active CN110868172B (zh) 2019-04-23 2019-04-23 薄膜体声谐振器和半导体器件

Country Status (1)

Country Link
CN (1) CN110868172B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978094A (zh) * 2022-05-16 2022-08-30 武汉敏声新技术有限公司 一种体声波谐振器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095272A (ko) * 2005-02-28 2006-08-31 삼성전기주식회사 박막 벌크 음향 공진기
JP2007028669A (ja) * 2006-10-02 2007-02-01 Ube Ind Ltd 薄膜音響共振器の製造方法
CN101674062A (zh) * 2008-09-09 2010-03-17 富士通株式会社 滤波器、双工器和通信装置
CN103001602A (zh) * 2011-09-14 2013-03-27 安华高科技无线Ip(新加坡)私人有限公司 具有多个横向特征的声谐振器
CN105048986A (zh) * 2014-04-30 2015-11-11 安华高科技通用Ip(新加坡)公司 具有空气环及温度补偿层的声谐振器装置
CN107733396A (zh) * 2016-08-12 2018-02-23 三星电机株式会社 体声波谐振器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469599B1 (en) * 2003-04-18 2010-11-03 Samsung Electronics Co., Ltd. Air gap type FBAR, duplexer using the FBAR, and fabricating methods thereof
US9209776B2 (en) * 2009-06-30 2015-12-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of manufacturing an electrical resonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095272A (ko) * 2005-02-28 2006-08-31 삼성전기주식회사 박막 벌크 음향 공진기
JP2007028669A (ja) * 2006-10-02 2007-02-01 Ube Ind Ltd 薄膜音響共振器の製造方法
CN101674062A (zh) * 2008-09-09 2010-03-17 富士通株式会社 滤波器、双工器和通信装置
CN103001602A (zh) * 2011-09-14 2013-03-27 安华高科技无线Ip(新加坡)私人有限公司 具有多个横向特征的声谐振器
CN105048986A (zh) * 2014-04-30 2015-11-11 安华高科技通用Ip(新加坡)公司 具有空气环及温度补偿层的声谐振器装置
CN107733396A (zh) * 2016-08-12 2018-02-23 三星电机株式会社 体声波谐振器

Also Published As

Publication number Publication date
CN110868172A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
US9577603B2 (en) Solidly mounted acoustic resonator having multiple lateral features
US8896395B2 (en) Accoustic resonator having multiple lateral features
US9444426B2 (en) Accoustic resonator having integrated lateral feature and temperature compensation feature
US9490418B2 (en) Acoustic resonator comprising collar and acoustic reflector with temperature compensating layer
US8350445B1 (en) Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US9246473B2 (en) Acoustic resonator comprising collar, frame and perimeter distributed bragg reflector
US8330325B1 (en) Bulk acoustic resonator comprising non-piezoelectric layer
CN110868177B (zh) 谐振器和滤波器
US9748918B2 (en) Acoustic resonator comprising integrated structures for improved performance
US9490770B2 (en) Acoustic resonator comprising temperature compensating layer and perimeter distributed bragg reflector
KR102642910B1 (ko) 음향 공진기 및 그 제조 방법
US9083302B2 (en) Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9148117B2 (en) Coupled resonator filter comprising a bridge and frame elements
US10367472B2 (en) Acoustic resonator having integrated lateral feature and temperature compensation feature
US20140118088A1 (en) Accoustic resonator having composite electrodes with integrated lateral features
US8631547B2 (en) Method of isolation for acoustic resonator device
US20230327627A1 (en) Manufacturing process for bulk acoustic resonator, and bulk acoustic resonator
CN110868182A (zh) 谐振器和滤波器
CN110868183B (zh) 谐振器和滤波器
CN110868185B (zh) 体声波谐振器和半导体器件
CN110868172B (zh) 薄膜体声谐振器和半导体器件
CN110868174B (zh) 声学谐振器和滤波器
CN110868173B (zh) 谐振器及滤波器
US11984864B2 (en) Method for manufacturing resonator
CN110868175B (zh) 具有晶种层的谐振器、滤波器及谐振器制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant