CN110864649A - Method for determining compensation value and determining flatness of optical module - Google Patents
Method for determining compensation value and determining flatness of optical module Download PDFInfo
- Publication number
- CN110864649A CN110864649A CN201911168368.8A CN201911168368A CN110864649A CN 110864649 A CN110864649 A CN 110864649A CN 201911168368 A CN201911168368 A CN 201911168368A CN 110864649 A CN110864649 A CN 110864649A
- Authority
- CN
- China
- Prior art keywords
- optical module
- calibration
- edge
- point
- calibration point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学领域,具体地,涉及一种确定补偿值以及确定光学模组平面度的方法。The invention relates to the field of optics, in particular to a method for determining a compensation value and determining the flatness of an optical module.
背景技术Background technique
光学模组的平面度是光学模组中固有的特性,通常采用存储在光学模组中的平面度算法对光学模组的平面度进行验证。The flatness of the optical module is an inherent characteristic of the optical module, and the flatness algorithm stored in the optical module is usually used to verify the flatness of the optical module.
现有技术中平面度算法中补偿值的确定通常是采用offset补偿法进行确定;根据光学模组到不同标定点的距离得到不同距离值,进而得到距离差值;其中距离差值为补偿值,但是此方法只能得到一些特定标定点的补偿值,因此光学模组在验证平面度过程中,使得光学模组得到的图像并不精准,光学模组的平面度也不准确。In the prior art, the determination of the compensation value in the flatness algorithm is usually determined by the offset compensation method; different distance values are obtained according to the distances from the optical module to different calibration points, and then the distance difference value is obtained; wherein the distance difference value is the compensation value, However, this method can only obtain the compensation values of some specific calibration points. Therefore, in the process of verifying the flatness of the optical module, the image obtained by the optical module is not accurate, and the flatness of the optical module is also inaccurate.
为解决上述技术问题,本发明提供一种确定补偿值以及验证光学模组平面度的方法。In order to solve the above technical problems, the present invention provides a method for determining a compensation value and verifying the flatness of an optical module.
发明内容SUMMARY OF THE INVENTION
本发明的一个目的是提供一种确定补偿值以及确定光学模组平面度的方法。An object of the present invention is to provide a method for determining a compensation value and determining the flatness of an optical module.
根据本发明的第一方面,提供了一种确定补偿值的方法,所述方法包括以下步骤:According to a first aspect of the present invention, there is provided a method for determining a compensation value, the method comprising the following steps:
提供放置区,所述放置区被配置为用于放置待测光学模组;providing a placement area configured to place the optical module to be tested;
设置标定板,所述标定板具有标定点,所述标定点包括中心标定点,和多个边缘标定点,所述中心标定点处于所述标定板的几何中心;Setting up a calibration plate, the calibration plate has calibration points, the calibration points include a center calibration point, and a plurality of edge calibration points, and the center calibration point is located at the geometric center of the calibration plate;
使位于所述放置区的待测光学模组正对所述中心标定点设置,使所述待测光学模组发射光线,所述光线射至所述中心标定点得到所述中心标定点与所述待测光学模组间的距离值,将所述距离值作为参照值;The optical module to be measured located in the placement area is set facing the center calibration point, so that the optical module to be measured emits light, and the light hits the center calibration point to obtain the center calibration point and the center calibration point. the distance value between the optical modules to be measured, and the distance value is used as a reference value;
使所述光线射至多个所述边缘标定点得到多个所述边缘标定点与所述待测光学模组间的多个实际距离值;Make the light radiate to a plurality of the edge calibration points to obtain a plurality of actual distance values between the edge calibration points and the optical module to be measured;
将所述中心标定点作为坐标原点,以及根据参照值,多个所述边缘标定点和多个实际距离值进行曲面拟合,得到拟合方程;The center calibration point is used as the origin of coordinates, and according to the reference value, a plurality of the edge calibration points and a plurality of actual distance values are subjected to surface fitting to obtain a fitting equation;
所述拟合方程被配置为用于确定多个所述边缘标定点的补偿值。The fitting equation is configured to determine compensation values for a plurality of the edge calibration points.
可选地,所述标定板的表面为平面。Optionally, the surface of the calibration plate is flat.
可选地,多个所述边缘标定点位于所述中心标定点的周围。Optionally, a plurality of the edge mark points are located around the center mark point.
可选地,所述拟合方程为曲面方程。Optionally, the fitting equation is a surface equation.
可选地,根据最小二乘法确定所述拟合方程中的参数。Optionally, the parameters in the fitting equation are determined according to the least squares method.
根据本发明的另一方面,提供一种利用上述所述的方法确定光学模组平面度的方法,所述方法包括以下步骤:According to another aspect of the present invention, there is provided a method for determining the flatness of an optical module using the method described above, the method comprising the following steps:
使所述拟合方程设置在光学模组的处理器中;causing the fitting equation to be set in the processor of the optical module;
将已设置所述拟合方程的光学模组与被摄对象相对设置;setting the optical module on which the fitting equation has been set relative to the subject;
所述被摄对象具有所述中心标定点和多个所述边缘标定点;使多个所述边缘标定点对应的实际距离值与参照值作差值得到多个所述边缘标定点的多个补偿值;The subject has the center calibration point and a plurality of the edge calibration points; a plurality of the edge calibration points are obtained by making a difference between the actual distance value corresponding to the plurality of the edge calibration points and the reference value. compensation value;
将已设置所述拟合方程的光学模组发射光线射至所述被摄对象,根据多个所述补偿值对光学模组获得的第一图像进行补偿,得到第二图像;The optical module for which the fitting equation has been set emits light to the subject, and the first image obtained by the optical module is compensated according to a plurality of the compensation values to obtain a second image;
所述第二图像被配置为标志所述已设置所述拟合方程的光学模组的平面度。The second image is configured to indicate the flatness of the optical module for which the fitting equation has been set.
可选地,所述第二图像被配置为光学模组实际显示的图像,所述第二图像为平面。Optionally, the second image is configured as an image actually displayed by the optical module, and the second image is a plane.
可选地,根据多个所述补偿值对所述第一图像进行拉伸得到第二图像。Optionally, the first image is stretched according to a plurality of the compensation values to obtain the second image.
可选地,所述中心标定点和多个所述边缘标定点分别对应的坐标值为所述拟合方程中的已知变量。Optionally, the coordinate values respectively corresponding to the center calibration point and the plurality of edge calibration points are known variables in the fitting equation.
可选地,光学模组的处理器中设置平面度算法,所述拟合方程设置在所述平面度算法中。Optionally, a flatness algorithm is set in the processor of the optical module, and the fitting equation is set in the flatness algorithm.
本发明的有益效果:本发明提供一种确定补偿值以及确定光学模组平面度的方法,本发明通过采用曲面拟合方法得到确定补偿值的方程得到拟合方程,进而根据拟合方程得到不同标定点处的不同补偿值,进而对光学模组获得的图像进行补偿,得到补偿后的图像。本发明使得不同标定点处的补偿值更加准确,同时提高了光学模组中平面度的精准度。Beneficial effects of the present invention: The present invention provides a method for determining the compensation value and determining the flatness of the optical module. The present invention obtains the fitting equation by using the surface fitting method to obtain the equation for determining the compensation value, and then obtains different equations according to the fitting equation. Different compensation values at the calibration point are used to compensate the image obtained by the optical module to obtain a compensated image. The invention makes the compensation values at different calibration points more accurate, and at the same time improves the precision of the flatness in the optical module.
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features and advantages of the present invention will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.
附图说明Description of drawings
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
图1是现有技术中补偿值的确定方法的示意图。FIG. 1 is a schematic diagram of a method for determining a compensation value in the prior art.
图2是本发明补偿值的确定方法的原理图。FIG. 2 is a schematic diagram of the method for determining the compensation value of the present invention.
图3是本发明光学模组获得的第一图像的示意图。3 is a schematic diagram of a first image obtained by the optical module of the present invention.
图4是本发明光学模组补偿后呈现的第二图像的示意图。FIG. 4 is a schematic diagram of a second image presented after compensation by the optical module of the present invention.
具体实施方式Detailed ways
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangement of components and steps, the numerical expressions and numerical values set forth in these embodiments do not limit the scope of the invention unless specifically stated otherwise.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods, and apparatus known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods, and apparatus should be considered part of the specification.
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as illustrative only and not limiting. Accordingly, other instances of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further discussion in subsequent figures.
根据本发明的一个实施例,如图2所示,提供一种确定补偿值的方法,所述方法包括以下步骤:According to an embodiment of the present invention, as shown in FIG. 2, a method for determining a compensation value is provided, and the method includes the following steps:
提供放置区,所述放置区被配置为用于放置待测光学模组102;providing a placement area configured to place the
设置标定板101,所述标定板101具有标定点,所述标定点包括中心标定点0,和多个边缘标定点,所述中心标定点0处于所述标定板的几何中心;A
使位于所述放置区的待测光学模组102正对所述中心标定点0设置,使所述待测光学模组102发射光线,所述光线射至所述中心标定点0得到所述中心标定点0与所述待测光学模组102间的距离值,所述距离值作为参照值;The
使所述光线射至多个所述边缘标定点得到多个所述边缘标定点与所述待测光学模组间的多个实际距离值;Make the light radiate to a plurality of the edge calibration points to obtain a plurality of actual distance values between the edge calibration points and the optical module to be measured;
将所述中心标定点0作为坐标原点,以及根据参照值,多个所述边缘标定点和多个实际距离值进行曲面拟合,得到拟合方程;The
所述拟合方程被配置为用于确定多个所述边缘标定点的补偿值。The fitting equation is configured to determine compensation values for a plurality of the edge calibration points.
现有技术中,通常采用offset补偿法确定边缘标定点处的补偿值。In the prior art, the offset compensation method is usually used to determine the compensation value at the edge calibration point.
具体地,如图1所示,现有技术中确定边缘标定点处的补偿值的示意图,其中横轴表示在标定板上标定点的坐标值,纵轴表示标定点对应的距离值。Specifically, as shown in FIG. 1 , a schematic diagram of determining the compensation value at the edge calibration point in the prior art, wherein the horizontal axis represents the coordinate value of the calibration point on the calibration board, and the vertical axis represents the distance value corresponding to the calibration point.
其中,0点表示中心标定点,a表示0点处中心标定点对应的距离值;1点和2点分别表示边缘标定点,b表示1点处的边缘标定点对应的距离值,c表示2点处边缘标定点对应的距离值。现有技术中只能得到特定边缘标定点处的补偿值。Among them, 0 point represents the center calibration point, a represents the distance value corresponding to the center calibration point at 0 point; 1 point and 2 points represent the edge calibration point respectively, b represents the distance value corresponding to the edge calibration point at 1 point, and c represents 2 The distance value corresponding to the edge calibration point at the point. In the prior art, only the compensation value at a specific edge calibration point can be obtained.
具体地,中心标定点与待测光学模组测得的距离值为1m(即a为1m),1点处的边缘标定点与待测光学模组测得的距离值为1.2m(即b为1.2m),则1点处的边缘标定点处的补偿值为0.2;此时则认为以0点为圆点,以1点距离0点的距离长度为半径形成的圆上的标定点的补偿值均为0.2;Specifically, the distance between the center calibration point and the optical module to be measured is 1 m (that is, a is 1 m), and the distance between the edge calibration point at 1 point and the optical module to be measured is 1.2 m (that is, b is 1.2m), then the compensation value at the edge calibration point at
2点处的边缘标定点与待测光学模组测得的距离值为1.4m(即c为1.4m),则2点处的边缘标定点的补偿值为0.4;此时则认为以0点为圆点,以2点距离0点的距离长度为半径形成的圆上的标定点的补偿值均为0.4;其中2点距离0点的距离长度为1点距离0点的距离长度的2倍。The distance between the edge calibration point at 2 points and the optical module to be tested is 1.4m (that is, c is 1.4m), then the compensation value of the edge calibration point at 2 points is 0.4; The compensation value of the calibration point on the circle formed by the distance between the 2 points and the 0 point is 0.4; the distance between the 2 points and the 0 point is twice the distance between the 1 point and the 0 point. .
依次类推,则认定在横轴上的3点处的边缘标定点与待测光学模组间的距离值为1.6m,认定3点处的边缘标定点的补偿值为0.6。其中3点距离0点的距离长度为1点距离0点的距离长度的3倍。By analogy, the distance between the edge calibration point at 3 points on the horizontal axis and the optical module to be tested is 1.6m, and the compensation value of the edge calibration point at 3 points is 0.6. The distance between 3 points and 0 point is 3 times the distance between 1 point and 0 point.
但是现有技术中只是通过测量一定数量的标定点处的距离值得到标定点的补偿值,在根据类推方式获得其他标定点处的补偿值;但是通过类推方式获得的补偿值并非精确的;而且现有技术中也无法确定0点中心标定点与1点的边缘标定点之间的其他边缘标定点处的补偿值,所以现有技术中只能得到特定边缘标定点处的补偿值,而且特定边缘标定点处的补偿值呈等差数列(其实采用这种方式获得的补偿值是不准确的);在对待测光学模组获得的图像进行补偿时,也只能对特定边缘标定点处的图像进行补偿,使得最后得到的光学模组的平面度并不准确。However, in the prior art, the compensation value of the calibration point is only obtained by measuring the distance values at a certain number of calibration points, and the compensation value at other calibration points is obtained by analogy; however, the compensation value obtained by analogy is not accurate; and The compensation value at other edge calibration points between the 0-point center calibration point and the 1-point edge calibration point cannot be determined in the prior art, so in the prior art, only the compensation value at a specific edge calibration point can be obtained, and the specific edge calibration point can only be obtained. The compensation value at the edge calibration point is an arithmetic progression (in fact, the compensation value obtained in this way is inaccurate). The image is compensated, so that the flatness of the final optical module is not accurate.
其中“特定边缘标定点”定义为以中心标定点为中心点,最靠近所述中心标定点的边缘标定点与中心标定点的距离为参考值,相邻两个其他边缘标定点间的距离与参考值相等,则边缘标定点为特定边缘标定点。其中图1中1点处的边缘标定点和2点处的边缘标定点为特定边缘标定点,0点中心标定点与1点处边缘标定点间的边缘标定点为非特定边缘标定点。The “specific edge calibration point” is defined as taking the center calibration point as the center point, the distance between the edge calibration point closest to the center calibration point and the center calibration point is the reference value, and the distance between two other adjacent edge calibration points is the same as If the reference values are equal, the edge calibration point is a specific edge calibration point. The edge calibration point at
本例子中,在确定边缘标定点处的补偿值时,将所述中心标定点作为坐标原点,以及根据参照值,多个所述边缘标定点和多个实际距离值进行曲面拟合,得到拟合方程;所述拟合方程被配置为用于确定多个所述边缘标定点的补偿值。本例子能够根据拟合方程确定任意边缘标定点处的补偿值,将所述拟合方程应用到光学模组中时,能够提高光学模组的平面度。In this example, when determining the compensation value at the edge calibration point, the center calibration point is used as the coordinate origin, and according to the reference value, a plurality of the edge calibration points and a plurality of actual distance values are subjected to surface fitting to obtain the approximate a fitting equation; the fitting equation is configured to determine compensation values for a plurality of the edge calibration points. In this example, the compensation value at any edge calibration point can be determined according to the fitting equation. When the fitting equation is applied to the optical module, the flatness of the optical module can be improved.
具体地,本发明将中心标定点作为坐标原点建立坐标系,其中以标定点作为坐标系的横轴,中心坐标点对应的距离值和实际距离值作为坐标系的纵轴。Specifically, the present invention uses the center calibration point as the coordinate origin to establish a coordinate system, wherein the calibration point is used as the horizontal axis of the coordinate system, and the distance value and actual distance value corresponding to the center coordinate point are used as the vertical axis of the coordinate system.
将中心标定点,中心标定点对应的距离值,多个边缘标定点以及多个边缘标定点测得的实际距离值进行曲面拟合得到拟合方程。The center calibration point, the distance value corresponding to the center calibration point, the multiple edge calibration points and the actual distance values measured by the multiple edge calibration points are subjected to surface fitting to obtain a fitting equation.
可选地,为了使得拟合方程更加精确,通常测得多个实际距离值;例如可以通过测量20~40个边缘标定点获得20~40个实际距离值。Optionally, in order to make the fitting equation more accurate, a plurality of actual distance values are usually measured; for example, 20 to 40 actual distance values may be obtained by measuring 20 to 40 edge calibration points.
可选地,根据最小二乘法确定所述拟合方程中的参数。Optionally, the parameters in the fitting equation are determined according to the least squares method.
例如,采用曲面拟合方法获得的拟合图像大致呈抛物面,则确定拟合方程为:For example, if the fitted image obtained by the surface fitting method is roughly parabolic, the fitting equation is determined as:
使用最小二乘法得到拟合方程中给的参数,其中公式(1)中的参数为a,b,c三个系数的值,进而得到准确的拟合方程。Use the least squares method to obtain the parameters given in the fitting equation, where the parameters in formula (1) are the values of the three coefficients a, b, and c, and then obtain an accurate fitting equation.
可选地,根据距离值和实际距离值得到拟合图像,其中拟合图像并不限于椭圆抛物面,还可以是其他形式的曲面。例如所述拟合方程为曲面方程,曲面方程包括圆柱面,双曲柱面,椭圆柱面等。Optionally, a fitted image is obtained according to the distance value and the actual distance value, wherein the fitted image is not limited to an elliptical paraboloid, but can also be a curved surface in other forms. For example, the fitting equation is a curved surface equation, and the curved surface equation includes a cylindrical surface, a hyperbolic cylindrical surface, an elliptical cylindrical surface, and the like.
在一个例子中,如图2所示,待测光学模组照射102在标定板101的光源是发散的,即当待测光学模组发射光线,所述光线射至所述中心标定点得到所述中心标定点与所述待测光学模组间的距离值时,同时也能够得到多个边缘标定点与待测光学模组间的多个实际距离值。其中待测光学模组被配置为与外部计算机电连接,所述外部计算机能够记录并显示所述距离值和多个实际距离值;或者待测光学模组被配置为能够将所述距离值和多个实际距离值存储在其存储器中并通过其显示器进行显示。In one example, as shown in FIG. 2 , the light source illuminating the
可选地,多个所述边缘标定点位于所述中心标定点的周围,例如如图2所示,1点处的标定点,2点处的标定点,4点~10点处的标定点均为边缘标定点。Optionally, a plurality of the edge calibration points are located around the center calibration point, for example, as shown in FIG. 2 , the calibration point at 1 point, the calibration point at 2 o’clock, and the calibration point at 4 o’clock to 10 o’clock Both are edge calibration points.
可选地,多个所述边缘标定点呈阵列方式均匀分布在所述标定板上。如图2所示,0点表示为中心标定点,1点,2点,4点-10点均表示为边缘标定点,其中中心标定点位于标定板101的几何中心,边缘标定板呈矩形阵列或圆形阵列方式均匀分布。Optionally, a plurality of the edge calibration points are evenly distributed on the calibration plate in an array manner. As shown in Figure 2,
可选地,所述标定板101的表面为平面。具体地,所述标定板101与待测光学模组102相对设置时,标定板101面对所述待测光学模组102的表面为平面。即标定板101的表面呈平而直,提高边缘标定点处的补偿值的精确度,进而提高光学模组的平面度的精准度。Optionally, the surface of the
根据本发明另一方面,提供一种采用上述所述的确定补偿值的方法确定光学模组平面度的方法,所述方法包括以下步骤:According to another aspect of the present invention, there is provided a method for determining the flatness of an optical module by using the above-mentioned method for determining a compensation value, the method comprising the following steps:
使所述拟合方程设置在光学模组的处理器中;causing the fitting equation to be set in the processor of the optical module;
将已设置所述拟合方程的光学模组与被摄对象相对设置;setting the optical module on which the fitting equation has been set relative to the subject;
所述被摄对象具有所述中心标定点和多个所述边缘标定点;使多个所述边缘标定点对应的实际距离值与参照值作差值得到多个所述边缘标定点的多个补偿值;The subject has the center calibration point and a plurality of the edge calibration points; a plurality of the edge calibration points are obtained by making a difference between the actual distance value corresponding to the plurality of the edge calibration points and the reference value. compensation value;
将已设置所述拟合方程的光学模组发射光线射至所述被摄对象,根据多个所述补偿值对光学模组获得的第一图像进行补偿,得到第二图像;The optical module for which the fitting equation has been set emits light to the subject, and the first image obtained by the optical module is compensated according to a plurality of the compensation values to obtain a second image;
所述第二图像被配置为标志所述已设置所述拟合方程的光学模组的平面度。The second image is configured to indicate the flatness of the optical module for which the fitting equation has been set.
具体地,如图3至图4所示,在采用上述所述确定补偿值的方法进行待测光学模组的平面度确定时,将确定补偿值的方法中得到的拟合方程设置在待测光学模组的处理器中,用于对光学模组获得的第一图像进行补偿。Specifically, as shown in FIGS. 3 to 4 , when the flatness of the optical module to be measured is determined by using the method for determining the compensation value described above, the fitting equation obtained in the method for determining the compensation value is set in the The processor of the optical module is used for compensating the first image obtained by the optical module.
例如,光学模组的处理器中设置平面度算法,所述拟合方程设置在所述平面度算法中。For example, a flatness algorithm is set in the processor of the optical module, and the fitting equation is set in the flatness algorithm.
在进行待测光学模组的平面度确定时,将已设置所述拟合方程的光学模组与被摄对象相对设置;例如所述被摄对象可以是幕布等。本例子中涉及的光学模组均为“已设置所述拟合方程的光学模组”。When determining the flatness of the optical module to be measured, the optical module on which the fitting equation has been set is set relative to the object to be photographed; for example, the object to be photographed may be a curtain or the like. The optical modules involved in this example are all "optical modules for which the fitting equation has been set".
其中被摄对象与光学模组相对设置,具体地,所述被摄对象与所述光学模组之间设置预定距离,所述预定距离被配置为能够使得光学模组发射的光线照射到所述被摄对象的边缘。即光学模组能够照射到被摄对象的全景。The object to be photographed and the optical module are arranged opposite to each other. Specifically, a predetermined distance is set between the object to be photographed and the optical module, and the predetermined distance is configured to enable the light emitted by the optical module to irradiate the optical module. the edge of the subject. That is, the optical module can illuminate the panorama of the subject.
其中预定距离的选择与被摄对象的尺寸相关。本例子中预定距离为1m,即被摄对象的几何中心点距离光学模组间垂直距离为1m。The selection of the predetermined distance is related to the size of the subject. In this example, the predetermined distance is 1m, that is, the vertical distance between the geometric center point of the subject and the optical modules is 1m.
所述被摄对象具有中心标定点和多个边缘标定点;根据拟合方程使多个所述边缘标定点对应的实际距离值与参照值作差值得到多个所述边缘标定点的多个补偿值;The subject has a center calibration point and a plurality of edge calibration points; according to the fitting equation, the actual distance values corresponding to the plurality of edge calibration points and the reference value are made difference values to obtain a plurality of the edge calibration points. compensation value;
其中被摄对象中的中心标定点位于被摄对象的几何中心,多个边缘标定点位于中心标定板的周围。The center calibration point in the subject is located at the geometric center of the subject, and a plurality of edge calibration points are located around the center calibration plate.
具体地,使光学模组发射光线,所述光线射至所述被摄对象,根据多个所述补偿值对光学模组获得的第一图像进行补偿,得到第二图像;Specifically, the optical module is made to emit light, the light is incident on the subject, and the first image obtained by the optical module is compensated according to a plurality of the compensation values to obtain a second image;
例如,光学模组获得第一图像时,光学模组中处理器中的平面度算法自动启动,这时平面度算法中已经包含了所述拟合方程,通过拟合方程得到多个边缘标定点处的补偿值,根据补偿值对第一图像进行补偿。For example, when the optical module obtains the first image, the flatness algorithm in the processor in the optical module is automatically activated. At this time, the flatness algorithm already includes the fitting equation, and multiple edge calibration points are obtained through the fitting equation. The compensation value at the first image is compensated according to the compensation value.
具体地,所述被摄对象具有标定点,所述标定点包括中心标定点,和边缘标定点,其中边缘标定点能够尽可能覆盖所述被摄对象的表面。例如被摄对象的表面具有边缘标定点2,和边缘标定点4-10,其中如图3所示,光学模组获得的第一图像同样的具有所述边缘标定点2,和所述边缘标定点4-10。光学模组发射光线,所述光线射至被摄对象获得第一图像,其中所述第一图像并不在光学模组的显示器上进行显示。Specifically, the subject has calibration points, the calibration points include a center calibration point and an edge calibration point, wherein the edge calibration points can cover the surface of the subject as much as possible. For example, the surface of the subject has an
其中,根据边缘标定点2,和边缘标定点4-10处的补偿值,具体地,利用拟合方程,将边缘标定点2,和边缘标定点4-10对应的横轴坐标值带入拟合方程中,分别得到与不同边缘标定点对应的实际距离值,将得到的实际距离值与中心标定点0处对应的距离值作差值,分别得到不同边缘标定点对应的补偿值,对光学模组获得的第一图像进行补偿,得到第二图像。如图4所示,为对第一图像补偿后获得的第二图像,Among them, according to the
其中所述中心标定点和多个所述边缘标定点分别对应的坐标值为所述拟合方程中的已知变量,即被摄对象上的任意边缘标定点的坐标值可以根据中心标定点建立坐标系得到。The coordinate values corresponding to the center calibration point and a plurality of the edge calibration points are known variables in the fitting equation, that is, the coordinate value of any edge calibration point on the subject can be established according to the center calibration point. The coordinate system is obtained.
具体地,当待测光学模组获得第一图像时,待测光学模组中处理器中平面度算法自动启动,这时平面度算法中已经包含了本发明中确定补偿值的方程,通过确定补偿值的方程对第一图像进行补偿。Specifically, when the optical module to be tested obtains the first image, the flatness algorithm in the processor in the optical module to be tested is automatically activated. At this time, the flatness algorithm already includes the equation for determining the compensation value in the present invention, and by determining The equation of compensation value compensates the first image.
例如,光学模组获得的第一图像如图3所示,其中第一图像具有与被摄对象对应的所述边缘标定点2,和所述边缘标定点4-10。即将边缘标定点对应的坐标值带入拟合方程中,得到边缘标定点对应的实际距离值;将实际距离值与中心标定点的距离值作差值,得到的差值为边缘标定点的补偿值。For example, the first image obtained by the optical module is shown in FIG. 3 , wherein the first image has the
例如,中心标定点0处的补偿值为0,则第一图像在此处不进行图像补偿;边缘标定点2处的补偿值为0.1,则第一图像在此处图像补偿0.1,即在此处将图像向上拉伸0.1;边缘标定点4处的补偿值为0.05,则第一图像在此处图像补偿0.05,即在此处将图像向上拉伸0.05。以此方式,计算出第一图像任意边缘标定点处的补偿值,并对第一图像上的任意边缘标定点处的图像进行补偿,得到补偿后的第二图像;如图4所示,其中光学模组呈现出的补偿后的第二图像,所述第二图像为平面,即第二图像呈平而直,所述第二图像被配置为标志所述已设置所述拟合方程的光学模组的平面度。For example, if the compensation value at the
可选地,本例子中边缘标定点处的补偿值都为正值,即补偿方式为第一图像在所述边缘标定点处向内拉伸0.1,其中“向内”为在垂直于第一图像的方向向内拉伸。当边缘标定点处的补偿值为负值时,即补偿方式为第一图像在所述边缘标定点处向外拉伸0.1,其中“向外”为在垂直于第一图像的方向向外拉伸。Optionally, in this example, the compensation values at the edge calibration points are all positive values, that is, the compensation method is that the first image is stretched inward by 0.1 at the edge calibration points, where "inward" is perpendicular to the first image. The orientation of the image is stretched inward. When the compensation value at the edge calibration point is a negative value, that is, the compensation method is that the first image is stretched outward at the edge calibration point by 0.1, and "outward" means that the first image is pulled outward in the direction perpendicular to the first image. stretch.
本发明采用曲面拟合方法获得拟合方程,根据拟合方程能够得到任意边缘标定点处的补偿值,使得任意标定点处的补偿值更为精准;同时将所述拟合方程应用到光学模组中也提高了光学模组的平面度的精准度。The present invention adopts the surface fitting method to obtain the fitting equation, and the compensation value at any edge calibration point can be obtained according to the fitting equation, so that the compensation value at any calibration point is more accurate; meanwhile, the fitting equation is applied to the optical model. The accuracy of the flatness of the optical module has also been improved in the group.
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。Although some specific embodiments of the present invention have been described in detail by way of examples, those skilled in the art should understand that the above examples are provided for illustration only and not for the purpose of limiting the scope of the present invention. Those skilled in the art will appreciate that modifications may be made to the above embodiments without departing from the scope and spirit of the present invention. The scope of the invention is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911168368.8A CN110864649B (en) | 2019-11-25 | 2019-11-25 | A method for determining compensation value and determining flatness of optical module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911168368.8A CN110864649B (en) | 2019-11-25 | 2019-11-25 | A method for determining compensation value and determining flatness of optical module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110864649A true CN110864649A (en) | 2020-03-06 |
CN110864649B CN110864649B (en) | 2021-10-08 |
Family
ID=69656508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911168368.8A Active CN110864649B (en) | 2019-11-25 | 2019-11-25 | A method for determining compensation value and determining flatness of optical module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110864649B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111895921A (en) * | 2020-08-05 | 2020-11-06 | 珠海博明视觉科技有限公司 | Compensation model for improving measurement precision of system to height difference |
CN112629417A (en) * | 2020-12-14 | 2021-04-09 | 苏州耘侬软件科技有限公司 | Length measuring method, device, equipment and storage medium |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0388586A (en) * | 1989-08-31 | 1991-04-12 | Sharp Corp | Crt type projector |
CN1518333A (en) * | 2003-01-08 | 2004-08-04 | Lg������ʽ���� | Image distortion correcting equipment and its method |
CN1830207A (en) * | 2003-07-30 | 2006-09-06 | 卡西欧计算机株式会社 | Projector and method for projecting images |
CN101661162A (en) * | 2009-09-09 | 2010-03-03 | 谭洪舟 | Distortion compensation method based on wide-angle lens |
JP5590498B2 (en) * | 2009-09-07 | 2014-09-17 | 株式会社ニコン | Projection device |
CN104299218A (en) * | 2013-07-17 | 2015-01-21 | 南京邮电大学 | Projector calibration method based on lens distortion rule |
CN104537616A (en) * | 2014-12-20 | 2015-04-22 | 中国科学院西安光学精密机械研究所 | Correction Method of Fisheye Image Distortion |
CN105635703A (en) * | 2015-12-25 | 2016-06-01 | 北京小鸟科技发展有限责任公司 | Projection method and device based on image geometric correction coordinate compression and projector |
CN105847773A (en) * | 2016-03-29 | 2016-08-10 | 乐视控股(北京)有限公司 | Method and device used for correcting projected image distortion of projector |
CN108961329A (en) * | 2018-06-22 | 2018-12-07 | 成都市极米科技有限公司 | Acquisition method, device and the computer readable storage medium of Projector Space location information |
CN109600590A (en) * | 2018-11-30 | 2019-04-09 | 歌尔股份有限公司 | Antidote, device and the medium of projector image distortion |
CN110111262A (en) * | 2019-03-29 | 2019-08-09 | 北京小鸟听听科技有限公司 | A kind of projector distortion correction method, device and projector |
-
2019
- 2019-11-25 CN CN201911168368.8A patent/CN110864649B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0388586A (en) * | 1989-08-31 | 1991-04-12 | Sharp Corp | Crt type projector |
CN1518333A (en) * | 2003-01-08 | 2004-08-04 | Lg������ʽ���� | Image distortion correcting equipment and its method |
CN1830207A (en) * | 2003-07-30 | 2006-09-06 | 卡西欧计算机株式会社 | Projector and method for projecting images |
JP5590498B2 (en) * | 2009-09-07 | 2014-09-17 | 株式会社ニコン | Projection device |
CN101661162A (en) * | 2009-09-09 | 2010-03-03 | 谭洪舟 | Distortion compensation method based on wide-angle lens |
CN104299218A (en) * | 2013-07-17 | 2015-01-21 | 南京邮电大学 | Projector calibration method based on lens distortion rule |
CN104537616A (en) * | 2014-12-20 | 2015-04-22 | 中国科学院西安光学精密机械研究所 | Correction Method of Fisheye Image Distortion |
CN105635703A (en) * | 2015-12-25 | 2016-06-01 | 北京小鸟科技发展有限责任公司 | Projection method and device based on image geometric correction coordinate compression and projector |
CN105847773A (en) * | 2016-03-29 | 2016-08-10 | 乐视控股(北京)有限公司 | Method and device used for correcting projected image distortion of projector |
CN108961329A (en) * | 2018-06-22 | 2018-12-07 | 成都市极米科技有限公司 | Acquisition method, device and the computer readable storage medium of Projector Space location information |
CN109600590A (en) * | 2018-11-30 | 2019-04-09 | 歌尔股份有限公司 | Antidote, device and the medium of projector image distortion |
CN110111262A (en) * | 2019-03-29 | 2019-08-09 | 北京小鸟听听科技有限公司 | A kind of projector distortion correction method, device and projector |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111895921A (en) * | 2020-08-05 | 2020-11-06 | 珠海博明视觉科技有限公司 | Compensation model for improving measurement precision of system to height difference |
CN111895921B (en) * | 2020-08-05 | 2022-03-11 | 珠海博明视觉科技有限公司 | Compensation method for improving measurement precision of system to height difference |
CN112629417A (en) * | 2020-12-14 | 2021-04-09 | 苏州耘侬软件科技有限公司 | Length measuring method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN110864649B (en) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111595269B (en) | Device and method for measuring surface topography and calibration method | |
Kang et al. | Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution | |
CN110392252A (en) | Method for generating a correction model of a camera to correct aberrations | |
CN111161358B (en) | A camera calibration method and device for structured light depth measurement | |
CN108961184B (en) | A depth image correction method, device and device | |
CN105486289B (en) | A kind of laser photography measuring system and camera calibration method | |
US20220172394A1 (en) | Determining the Relative Position Between a Point Cloud Generating Camera and Another Camera | |
CN103196574A (en) | Method and device for measuring environment temperatures | |
KR20110136866A (en) | Surface shape measuring device, measuring device, and observation device | |
CN103389037B (en) | A kind of illumination diffraction optical element geometric techniques parameter detection device and method | |
CN110864649A (en) | Method for determining compensation value and determining flatness of optical module | |
CN110501026A (en) | Camera internal position element caliberating device and method based on array asterism | |
TWI832205B (en) | Optical measurement device and measurement method | |
CN104655153A (en) | Method for calibrating elements of interior orientation of mapping camera based on matrix orthogonality | |
JP2017207477A (en) | Precise hand-held scanner | |
CN109682398B (en) | Method, device and system for calibrating azimuth elements in the whole stereo surveying and mapping camera | |
MacDonald et al. | Determining the coordinates of lamps in an illumination dome | |
CN213783397U (en) | projector | |
CN100428049C (en) | Optical center monitoring device and method | |
JP2012150018A (en) | Method for measuring shape | |
CN104655005B (en) | A kind of combined type noncontact space coordinates measurement apparatus | |
CN107870522B (en) | Imaging optical path device and detection control method of imaging optical path device | |
TWI819548B (en) | Optical measurement device and calibration method thereof | |
JP4046282B2 (en) | Range finder | |
CN105606026B (en) | A kind of sphere centre coordinate measuring device and its measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20201010 Address after: 261031 north of Yuqing street, east of Dongming Road, high tech Zone, Weifang City, Shandong Province (Room 502, Geer electronic office building) Applicant after: GoerTek Optical Technology Co.,Ltd. Address before: 261031 Dongfang Road, Weifang high tech Development Zone, Shandong, China, No. 268 Applicant before: GOERTEK Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |