CN110863871A - System for fused salt heat storage energy storage optimizes thermal power peak regulation - Google Patents

System for fused salt heat storage energy storage optimizes thermal power peak regulation Download PDF

Info

Publication number
CN110863871A
CN110863871A CN201911228254.8A CN201911228254A CN110863871A CN 110863871 A CN110863871 A CN 110863871A CN 201911228254 A CN201911228254 A CN 201911228254A CN 110863871 A CN110863871 A CN 110863871A
Authority
CN
China
Prior art keywords
molten salt
heat exchanger
steam
heater
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911228254.8A
Other languages
Chinese (zh)
Inventor
尚德华
贾葳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yu Yuan Power Tech Corp Inc
Original Assignee
Shanghai Yu Yuan Power Tech Corp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Yu Yuan Power Tech Corp Inc filed Critical Shanghai Yu Yuan Power Tech Corp Inc
Priority to CN201911228254.8A priority Critical patent/CN110863871A/en
Publication of CN110863871A publication Critical patent/CN110863871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention discloses a fused salt heat storage and energy storage thermal power peak regulation optimizing system which comprises a boiler, a high-temperature fused salt tank, a low-temperature fused salt delivery pump, a heat exchanger, a steam regulating valve, a steam turbine, a generator, a steam regulating valve, a heating building heater, a low-temperature fused salt tank, a high-temperature fused salt delivery pump, a deaerator, a primary heater, a secondary heater, a tertiary heater, a heat exchanger and a high-pressure water supply regulating valve. The invention has the beneficial effects that: the device can realize deep peak regulation and rapid slope climbing of the power generation load of the thermal power generating unit and can supply heat for a tail heating building, so that the energy utilization rate is improved, and the unit has the advantages of short peak regulation response time and large amplitude.

Description

System for fused salt heat storage energy storage optimizes thermal power peak regulation
Technical Field
The invention relates to a thermal power peak regulation system, in particular to a fused salt heat storage energy storage thermal power peak regulation optimization system, and belongs to the technical field of thermal power peak regulation.
Background
The power resources and regional economic distribution in China are unbalanced, the load fluctuation of a power grid is large, the peak regulation resources are scarce, the proportion of a heat supply unit is increased, and the thermal power unit carries out deep peak regulation crisis and the power grid is safe. With the intensive development of renewable energy sources, a series of problems are brought to power grid peak regulation and power grid operation regulation. At present, domestic construction of pumped storage power stations is a main means for solving power grid peak regulation and power grid operation regulation, but site selection of pumped storage power stations is influenced by geographical positions, water heads, terrain geology and other aspects, most power grid peak regulation resources are extremely short, and peak regulation and even deep peak regulation are basically carried out by means of thermal power generating sets. The large-scale and high-parameter unit participates in peak shaving to cause unit metal fatigue, the service life of the unit is damaged, the energy efficiency of long-time low-load operation is reduced, the economical efficiency is reduced, the safety is also reduced, the environmental protection efficiency is also damaged, the limit of the thermal power unit is limited, the difficulty of adapting to load change in a short time is high, and the peak shaving effect is poor. When the load rate of a domestic common coal-electric machine set is lower than 50%, the flow of flue gas at the inlet of an absorption tower of a desulfurization system is reduced, and an induced draft fan runs at a reduced speed, so that bed collapse can be caused; when the load factor is lower than about 35 percent, the desulfurization system is stopped. The long-time low-load operation of coal-electric machine group can lead to getting into the flue gas temperature of deNOx systems and cross lowly, and denitration catalyst effect is influenced, influences denitration efficiency greatly, leads to oxynitride to discharge and increases.
Along with the large-area heat supply transformation of the thermal power generating unit, the proportion of the heat supply unit in the power grid is higher and higher, and in order to guarantee the heating requirement in winter, the heat supply unit needs to be maintained at a certain load to operate, so that the peak regulation difficulty of the power grid is increased, and the safe operation of the power grid is threatened. In order to adapt to the load requirement change of a power grid, other peak shaving units need frequent load lifting and load lifting, operate under special working conditions for a long time, cause frequent swinging of a turbine regulating valve, bear severe temperature change and alternating stress for a long time by a boiler and other auxiliary equipment, seriously damage the service life of the equipment, increase the maintenance frequency and maintenance cost, even more terrible cause the increase of the unplanned shutdown times of the units and seriously threaten the personal safety of the units, the power grid and operating personnel.
Disclosure of Invention
The invention aims to solve the problems and provide a system for optimizing thermal power peak regulation by using molten salt to store heat and store energy.
The invention realizes the purpose through the following technical scheme: a system for optimizing thermal power peak regulation by fused salt heat storage and energy storage comprises a boiler, a steam turbine and a heating building heater; the boiler is connected with a steam turbine through a steam pipeline, the steam turbine is connected with a generator, a water supply end of the heating building heater is connected with the boiler through a soft water pipeline, a deaerator, a primary heater, a secondary heater and a tertiary heater are installed on the soft water pipeline between the heating building heater and the boiler, the other output end of the tertiary heater is connected with the steam turbine through a second heat exchanger, a high-pressure water supply regulating valve is installed on a pipeline between the tertiary heater and the second heat exchanger, a second steam regulating valve is installed on a pipeline between the second heat exchanger and the steam turbine, the other diversion steam pipeline of the boiler is connected with the heating building heater through a first heat exchanger, and a first steam regulating valve is installed on the other diversion steam pipeline between the boiler and the first heat exchanger, still be connected with high temperature molten salt jar and low temperature molten salt jar between first heat exchanger and the second heat exchanger, just install low temperature molten salt delivery pump on the pipeline between high temperature molten salt jar and the first heat exchanger, install high temperature molten salt delivery pump on the pipeline between low temperature molten salt jar and the second heat exchanger.
As a still further scheme of the invention: and the molten salt in the high-temperature molten salt tank and the molten salt in the low-temperature molten salt tank are communicated with each other through the low-temperature molten salt delivery pump and the high-temperature molten salt delivery pump.
As a still further scheme of the invention: the high-temperature steam heated by the boiler and the high-temperature steam heated by the heat released by the molten salt can jointly enter the steam turbine.
The invention has the beneficial effects that: the system for optimizing thermal power peak regulation through fused salt heat storage and energy storage is reasonable in design, can realize deep peak regulation and rapid climbing of power generation load of a thermal power generating unit and can supply heat for a tail-end heating building, energy utilization rate is improved, and the thermal power generating unit has the advantages of being fast in peak regulation response time and large in amplitude.
Drawings
FIG. 1 is a schematic view of the structure of the present invention.
In the figure: 1. the system comprises a boiler, 2, a high-temperature molten salt tank, 3, a low-temperature molten salt delivery pump, 4, a heat exchanger, 5, a steam regulating valve, 6, a steam turbine, 7, a generator, 8, a steam regulating valve, 9, a heating building heater, 10, a low-temperature molten salt tank, 11, a high-temperature molten salt delivery pump, 12, a deaerator, 13, a primary heater, 14, a secondary heater, 15, a tertiary heater, 16, a heat exchanger, 17 and a high-pressure feed water regulating valve.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Referring to fig. 1, a system for optimizing thermal power peak regulation by using molten salt to store heat and store energy comprises a boiler 1, a steam turbine 6 and a heating building heater 9; the boiler 1 is connected with a steam turbine 6 through a steam pipeline, the steam turbine 6 is connected with a generator 7, a water supply end of the heating building heater 9 is connected with the boiler 1 through a soft water pipeline, a deaerator 12, a primary heater 13, a secondary heater 14 and a tertiary heater 15 are installed on the soft water pipeline between the heating building heater 9 and the boiler 1, the other output end of the tertiary heater 15 is connected with the steam turbine 6 through a second heat exchanger 16, a high-pressure feed water regulating valve 17 is installed on a pipeline between the tertiary heater 15 and the second heat exchanger 16, a second steam regulating valve 8 is installed on a pipeline between the second heat exchanger 16 and the steam turbine 6, the other diversion steam pipeline of the boiler 1 is connected with the heating building heater 9 through a first heat exchanger 4, and a first steam regulating valve 5 is installed on the other diversion steam pipeline between the boiler 1 and the first heat exchanger 4, still be connected with high temperature molten salt jar 2 and low temperature molten salt jar 10 between first heat exchanger 4 and the second heat exchanger 16, just install low temperature molten salt delivery pump 3 on the pipeline between high temperature molten salt jar 2 and the first heat exchanger 4, install high temperature molten salt delivery pump 11 on the pipeline between low temperature molten salt jar 10 and the second heat exchanger 16.
Further, in the embodiment of the present invention, the molten salts in the high-temperature molten salt tank 2 and the low-temperature molten salt tank 10 flow through each other through the low-temperature molten salt delivery pump 3 and the high-temperature molten salt delivery pump 11, and can respectively pass through the first heat exchanger 4 and the second heat exchanger 16 to complete the high-temperature and low-temperature conversion, thereby realizing heat storage or heat supply.
Further, in the embodiment of the invention, the high-temperature steam heated by the boiler 1 and the high-temperature steam heated by the heat released from the molten salt can enter the steam turbine 6 together, so that the output of the steam turbine 6 is improved, and the electric power of the thermal power generating unit is rapidly increased.
The working principle is as follows: when the fused salt heat storage and energy storage system is used for optimizing thermal power peak regulation, when the heat production amount of a unit is higher than the heat load, the heat storage device stores surplus heat. The method specifically comprises the following steps: soft water is filtered by a deaerator 12, then enters a boiler 1 through a primary heater 13, a secondary heater 14 and a tertiary heater 15, is fully heated by the boiler 1 to become high-temperature steam, a first steam regulating valve 5 is opened, partial high-temperature steam is shunted from the outlet of the boiler 1 to enter a first heat exchanger 4, a low-temperature molten salt delivery pump 3 is started, molten salt in a low-temperature molten salt tank 10 flows into a high-temperature molten salt tank 2 after being heated by the first heat exchanger 4 through a molten salt circulation pipeline, the high-temperature steam entering the first heat exchanger 4 heats the molten salt flowing from the low-temperature molten salt tank 10 to the high-temperature molten salt tank 2, then the steam continues to enter a heating building heater 9 to heat a heating building in a power grid, and simultaneously the molten salt heat storage process is completed, because the first steam regulating valve 5 is opened, the high-temperature steam heats the molten salt, the reheated steam entering, the electric power of the thermal power generating unit is rapidly reduced, and the processes of heat storage and power grid heating of buildings are completed simultaneously.
When the heat production quantity is lower than the heat load, the heat storage device releases heat to supplement the shortage of heat supply, the first steam regulating valve 5 is closed, the steam which is originally supplied by the boiler 1 and heated by the fused salt enters the steam turbine 6, the output of the steam turbine is improved, the high-pressure water supply regulating valve 17 is opened, part of the water which is connected with the high-pressure water supply pipeline of the boiler 1 from the tertiary heater 15 flows through the second heat exchanger 16, the high-temperature fused salt delivery pump 11 is started, the fused salt in the low-temperature fused salt tank 10 flows to the high-temperature fused salt tank, and in the flowing process, the water is heated by the second heat exchanger 16 to be partially fed, the second steam regulating valve 8 between the second heat exchanger 16 and a high-pressure cylinder pipeline of the steam turbine 6 is opened, high-pressure steam enters the steam turbine 6 through the pipeline, and the high-temperature steam heated by heat release of high-temperature steam heated by the boiler 1 and molten salt enters the steam turbine 6, so that the output of the steam turbine is improved, and the electric power of the thermal power generating unit is rapidly improved.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. Any reference sign in a claim should not be construed as limiting the claim concerned.
Furthermore, it should be understood that although the present description refers to embodiments, not every embodiment may contain only a single embodiment, and such description is for clarity only, and those skilled in the art should integrate the description, and the embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (3)

1. A fused salt heat storage and energy storage system for optimizing thermal power peak regulation comprises a boiler (1), a steam turbine (6) and a heating building heater (9); the method is characterized in that: the boiler (1) is connected with a steam turbine (6) through a steam pipeline, the steam turbine (6) is connected with a generator (7), a water supply end of the heating building heater (9) is connected with the boiler (1) through a soft water pipeline, a deaerator (12), a primary heater (13), a secondary heater (14) and a tertiary heater (15) are installed on the soft water pipeline between the heating building heater (9) and the boiler (1), another output end of the tertiary heater (15) is connected with the steam turbine (6) through a second heat exchanger (16), a high-pressure water supply regulating valve (17) is installed on a pipeline between the tertiary heater (15) and a second heat exchanger (16), and a second steam regulating valve (8) is installed on a pipeline between the second heat exchanger (16) and the steam turbine (6), boiler (1) another reposition of redundant personnel steam conduit is connected through first heat exchanger (4) and heating building heat supply ware (9), just install first steam control valve (5) on another reposition of redundant personnel steam conduit between boiler (1) and first heat exchanger (4), still be connected with high temperature molten salt jar (2) and low temperature molten salt jar (10) between first heat exchanger (4) and second heat exchanger (16), just install low temperature molten salt delivery pump (3) on the pipeline between high temperature molten salt jar (2) and first heat exchanger (4), install high temperature molten salt delivery pump (11) on the pipeline between low temperature molten salt jar (10) and second heat exchanger (16).
2. The system for optimizing thermal power peak regulation through fused salt heat storage and energy storage according to claim 1, is characterized in that: molten salt in the high-temperature molten salt tank (2) and the low-temperature molten salt tank (10) mutually circulates through the low-temperature molten salt delivery pump (3) and the high-temperature molten salt delivery pump (11).
3. The system for optimizing thermal power peak regulation through fused salt heat storage and energy storage according to claim 1, is characterized in that: the high-temperature steam heated by the boiler (1) and the high-temperature steam heated by the exothermic heat of the molten salt can jointly enter the steam turbine (6).
CN201911228254.8A 2019-12-04 2019-12-04 System for fused salt heat storage energy storage optimizes thermal power peak regulation Pending CN110863871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911228254.8A CN110863871A (en) 2019-12-04 2019-12-04 System for fused salt heat storage energy storage optimizes thermal power peak regulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911228254.8A CN110863871A (en) 2019-12-04 2019-12-04 System for fused salt heat storage energy storage optimizes thermal power peak regulation

Publications (1)

Publication Number Publication Date
CN110863871A true CN110863871A (en) 2020-03-06

Family

ID=69658298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911228254.8A Pending CN110863871A (en) 2019-12-04 2019-12-04 System for fused salt heat storage energy storage optimizes thermal power peak regulation

Country Status (1)

Country Link
CN (1) CN110863871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847109A (en) * 2021-09-26 2021-12-28 西安热工研究院有限公司 Electric heating comprehensive energy storage peak regulation system of coal electric unit and working method
CN114251137A (en) * 2021-12-14 2022-03-29 西安热工研究院有限公司 Photo-thermal coupled cooperative heat storage and peak regulation system and method
CN114609985A (en) * 2022-03-11 2022-06-10 傲普(上海)新能源有限公司 EMS system control method, device, medium and equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203837549U (en) * 2014-05-16 2014-09-17 淮南中科储能科技有限公司 High-temperature steam molten-salt energy storage system
CN108426238A (en) * 2018-03-20 2018-08-21 北京工业大学 A kind of thermal power plant's fused salt storage heating system heated using main steam
US20180245485A1 (en) * 2015-11-05 2018-08-30 William M. Conlon Dispatchable storage combined cycle power plants
CN108548168A (en) * 2018-03-20 2018-09-18 北京工业大学 A kind of thermal power plant's fused salt accumulation of heat peak regulation system heated using main steam
CN110006026A (en) * 2019-04-18 2019-07-12 北京工业大学 A kind of thermal power plant's depth peak regulation system
CN211038761U (en) * 2019-12-04 2020-07-17 上海豫源电力科技有限公司 System for fused salt heat storage energy storage optimizes thermal power peak regulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203837549U (en) * 2014-05-16 2014-09-17 淮南中科储能科技有限公司 High-temperature steam molten-salt energy storage system
US20180245485A1 (en) * 2015-11-05 2018-08-30 William M. Conlon Dispatchable storage combined cycle power plants
CN108426238A (en) * 2018-03-20 2018-08-21 北京工业大学 A kind of thermal power plant's fused salt storage heating system heated using main steam
CN108548168A (en) * 2018-03-20 2018-09-18 北京工业大学 A kind of thermal power plant's fused salt accumulation of heat peak regulation system heated using main steam
CN110006026A (en) * 2019-04-18 2019-07-12 北京工业大学 A kind of thermal power plant's depth peak regulation system
CN211038761U (en) * 2019-12-04 2020-07-17 上海豫源电力科技有限公司 System for fused salt heat storage energy storage optimizes thermal power peak regulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847109A (en) * 2021-09-26 2021-12-28 西安热工研究院有限公司 Electric heating comprehensive energy storage peak regulation system of coal electric unit and working method
CN113847109B (en) * 2021-09-26 2024-02-20 西安热工研究院有限公司 Electric heating comprehensive energy storage peak shaving system of coal motor unit and working method
CN114251137A (en) * 2021-12-14 2022-03-29 西安热工研究院有限公司 Photo-thermal coupled cooperative heat storage and peak regulation system and method
CN114609985A (en) * 2022-03-11 2022-06-10 傲普(上海)新能源有限公司 EMS system control method, device, medium and equipment
CN114609985B (en) * 2022-03-11 2024-01-26 傲普(上海)新能源有限公司 Control method, device, medium and equipment of EMS system

Similar Documents

Publication Publication Date Title
CN113048456B (en) Energy storage power generation and heat supply system and method for deep peak shaving
US11817228B2 (en) Wind-solar reactor system and working method thereof
CN110863871A (en) System for fused salt heat storage energy storage optimizes thermal power peak regulation
CN104405599A (en) Fuel gas-supercritical carbon dioxide united power electricity generation system utilizing solar energy
CN111140296A (en) Fused salt gradient energy storage and release peak regulation system and method for thermal power generating unit
CN102758746A (en) Coupled power generating system using solar thermal collector assisted coal-fired unit
CN111637442B (en) Configuration self-adaptive efficient flexible clean coal-fired power generation system and operation method
CN211038761U (en) System for fused salt heat storage energy storage optimizes thermal power peak regulation
CN110529209B (en) Solar photo-thermal heat storage system and method for deep peak shaving of cogeneration unit
CN212003284U (en) Fused salt step storage energy peak regulation system of thermal power generating unit
CN114992613A (en) Energy storage depth peak regulation system of steam-fused salt coupling
CN212157095U (en) Thermal power plant heat storage power generation peak regulation frequency modulation system
CN110761859B (en) Inclined temperature layer heat storage peak regulation system and peak regulation method based on low-pressure heating loop
CN111637440A (en) Configuration self-adaptive flexible clean cooperative coal-fired power generation system and operation method
CN101886884A (en) Circulating cooling water solar energy saving and controlling device for coal-based power plant
CN101139971A (en) Small hydropower water regime operation system
CN219494049U (en) Fused salt heat accumulation power generation peak regulation system
CN204312262U (en) A kind of solar energy assists the overheated heat power generating system of reheating
CN116045709A (en) Fused salt energy storage peak regulation system with flue gas temperature control function
CN116025884A (en) Peak regulation and frequency modulation system of thermal power plant with fused salt heat storage participation
CN113405086B (en) Steam mixing system for realizing denitration and temperature raising and adjusting method thereof
CN215259735U (en) Steam injection system for steam generation by electric heat synergistic utilization
US11396827B2 (en) Control method for optimizing solar-to-power efficiency of solar-aided coal-fired power system under off-design working conditions
CN212108324U (en) Embedded thermal power emission reduction system for photo-thermal heat storage
CN213956089U (en) Low-load denitration system of thermal power plant based on fused salt energy storage system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Room 8050, 8 / F, 1033 Changning Road, Changning District, Shanghai 200050

Applicant after: Aopu (Shanghai) new energy Co., Ltd

Address before: 201103 22 / F, building B, Dongyin center, No. 500, ruby Road, Changning District, Shanghai

Applicant before: SHANGHAI YUYUAN POWER TECHNOLOGY Co.,Ltd.