CN110853151A - 一种基于视频的三维立体点集恢复方法 - Google Patents

一种基于视频的三维立体点集恢复方法 Download PDF

Info

Publication number
CN110853151A
CN110853151A CN201910978745.8A CN201910978745A CN110853151A CN 110853151 A CN110853151 A CN 110853151A CN 201910978745 A CN201910978745 A CN 201910978745A CN 110853151 A CN110853151 A CN 110853151A
Authority
CN
China
Prior art keywords
image
point
matrix
pixel
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910978745.8A
Other languages
English (en)
Other versions
CN110853151B (zh
Inventor
王映辉
赵艳妮
宁小娟
杨奔奔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201910978745.8A priority Critical patent/CN110853151B/zh
Publication of CN110853151A publication Critical patent/CN110853151A/zh
Application granted granted Critical
Publication of CN110853151B publication Critical patent/CN110853151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20228Disparity calculation for image-based rendering

Abstract

本发明公开了一种基于视频的三维立体点集恢复方法,具体按照如下步骤实施:步骤1,采集视频数据,并进行两帧图像特征点的计算和匹配,实现图形帧自动获取;步骤2,计算两帧图像在同一坐标系间变换关系,分解变换矩阵获得旋转矩阵和平移向量,并根据极线约束关系对两帧图像进行平行校正,使得两帧图像对应的像素点处于同一高度上;步骤3,获取初始视差图;步骤4,优化初始视差图;步骤5,结合三角相似性原理,在步骤4优化的视差图基础上对目标场景进行三维点云恢复,获取目标场景的深度。本发明的目的是提供一种基于视频的三维立体点集恢复方法,解决了现有技术中存在的因遮挡、视差不连续导致的视差缺失,而引起的匹配效果不好的问题。

Description

一种基于视频的三维立体点集恢复方法
技术领域
本发明属于计算机图形学和虚拟现实相结合的交叉学科技术领域,涉及一种基于视频的三维立体点集恢复方法。
背景技术
三维立体恢复技术在诸多领域扮演极为重要角色,直接影响基于图像的三维视觉广泛应用。虽3D扫描仪获取的点云能直观有效反映场景或物体深度信息及物体空间位置关系,但3D设备造价昂贵且采集过程繁琐,而双目相机存在左右参数不一致对复杂纹理适用性差问题,此外现有单目图像深度恢复方法都对图像质量有较高依赖,如通过单目相机拍摄的图片序列进行立体匹配来恢复任意三维场景点云信息,这将会有着非常明显的实用价值。
目前立体匹配算法分为局部和全局立体匹配。局部立体匹配包括区域立体匹配、基于特征立体匹配、基于相位立体匹配三类。区域立体匹配需选择窗口大小,将像素点及窗口范围内相邻像素点信息作为基元进行匹配,所获视差图为稠密视差图。基于特征匹配是对特征点进行匹配求取特征点视差,所获视差图为稀疏视差图。基于相位立体匹配计算相位信息,寻找局部相位相等对应点计算视差,所获视差图为稠密视差图。全局立体匹配包括图割法、信念传播法、动态规划法三类,三者均需要构建能量函数,将视差计算转化为能量最小化求解问题,然后采用不同策略进行最优化求解,所得视差图均为稠密视差图。局部立体匹配针对局部信息计算,在计算效率上有一定优势,但信息量相对较少在面对遮挡、视差不连续等情况很难有较好匹配效果;全局立体匹配弥补此缺陷,但仍存在视差缺失问题,且大量迭代计算导致算法复杂度较高。此外,无论局部还是全局立体匹配,现有方法都对参数要求较高,需不断调整参数重复大量实验才可获取较为理想匹配效果。
发明内容
本发明的目的是提供一种基于视频的三维立体点集恢复方法,解决了现有技术中存在的因遮挡、视差不连续导致的视差缺失,而引起的匹配效果不好的问题。
本发明所采用的技术方案是,一种基于视频的三维立体点集恢复方法,具体按照如下步骤实施:
步骤1,使用单目相机采集视频数据,并进行两帧图像特征点的计算和匹配,计算叠加比例,实现图形帧自动获取,并进行相机内参标定;
步骤2,计算两帧图像在同一坐标系间变换关系,分解变换矩阵获得旋转矩阵和平移向量,并根据极线约束关系对两帧图像进行平行校正,使得两帧图像对应的像素点处于同一高度上;
步骤3,对经步骤2处理的两帧图像采用自适应方式根据图像纹理不同计算最合适的窗口大小,采用动态规划算法在8个方向上寻找最小代价匹配路径,获取初始视差图;
步骤4,对步骤3获取的初始视差图,采用基于融合的插值优化方法进行优化;
步骤5,结合三角相似性原理,在步骤4优化的视差图基础上对目标场景进行三维点云恢复,获取目标场景的深度。
本发明的特征还在于,
步骤1具体为:
步骤1.1,使用单目相机在空间上匀速移动进行视频数据采集;
步骤1.2,针对步骤1.1获取的视频数据,选取SURF算子求取图像特征点,两帧图像特征点分别存在集合Aset{A0,A1,A2......}和Bset{B0,B1,B2......}中,获取SURF特征点后,基于K近邻的双向匹配方式进行特征点匹配,寻找两图像上对应点,得到特征点匹配对;
步骤1.3,计算水平方向重叠比例d/w,对步骤1.2匹配的每对特征点计算d,叠加比例选取出现频率最高的d进行计算,其中,d为Aset和Bset中对应特征点两两对齐在水平方向上移动的长度,w表示图像宽度;
步骤1.4,依据步骤1.3获得的重叠比例进行图像帧自动截取;
步骤1.5,采用张正友标定法计算相机参数,获得相机内参数矩阵K。
步骤1.2具体为:
设置阈值T,迭代计算A0与Bset中每一点的欧氏距离,其中,欧氏距离用Cos&表示,以O为原点的空间坐标系中,两向量
Figure BDA0002234503260000031
Figure BDA0002234503260000032
间的夹角记为Cos&,记录欧式距离最小点与第二小点的欧式距离min1、min2,如min1/min2<T,则直接将最小点作为A0特征点的对应点;
如此逐一在Bset中匹配Aset中各个特征点的对应点;
匹配完后采用双向匹配进行验证,即以同样方法对Bset中特征点寻找Aset中对应点,如结果一致,则确认此两点为一对匹配点,否则删除该对匹配点。
步骤1.4具体为:
对采取视频的每一帧图像按顺序编号,基准帧标记为0,依次标记记为1、2、3…n,随机选取一帧,若所选取图像帧的水平方向重叠比例d/w>p,则下次选择第2m个帧进行水平方向重叠比例的计算以及选择第m/2个帧进行水平方向重叠比例的计算,以此类推,直到d/w最接近于p,记录该帧编号x,此时基准帧和第x帧为筛选结果,然后再以第x帧为基准帧以同样方式寻找下一帧,直到最后一帧n则结束,从而实现图形帧自动获取;
其中,m<30<n,p为依据实验设置重叠面积比例,m/2进行取整。
步骤2具体为:
步骤2.1,计算本质矩阵E,具体为:
对步骤1.2获取的特征点匹配对,根据对极几何关系建立式(1),
X'TFX=0 (1)
其中,X与X'为任意一对相互的匹配特征点,x,y分别是X的两个坐标值,x′和y′分别是X'的两个坐标值,F为基础矩阵,带入匹配点式(1)形成式(2),
Figure BDA0002234503260000041
展开得出式(3),
x'xf11+x'yf12+x'f13+y'xf21+yy'f22+y'f23+xf31+yf32+f33=0 (3)
采用八点法选8对特征点建立式(3)联立方程求解基础矩阵,再计算本质矩阵E:
E=KTFK (4);
步骤2.2,采用基于SVD奇异值分解方式,对步骤2.1获得的本质矩阵进行分解,得到两帧图像间的旋转矩阵R和平移向量T,具体为:
假设M*N矩阵E,则E描述为式(5),
E=UΣVT (5)
其中,U为M*M正交矩阵,V为N*N正交矩阵,Σ=diag(σ1,σ2,.....,σr,.......σn)为M*N对角阵,r为矩阵E的秩,对角线上的元素值按照递减顺序排列即σ1≥σ2.....≥σr,σr后元素都为0,对于矩阵E假设存在一组正交基{ν1,ν2,......,νn}使得映射后任意两个元素正交,即式(6),
i.Eνj=(Eνi)T.Eνj=νi TET.Eνj=0 (6)
其中,i=1、2、3…n,j=1、2、3…n,i≠j,由于正交基存在,νi Tνj=νiνj=0,ETE为对称矩阵,当作为ETE特征向量时,其中,ν为ν1,ν2,......,νn中任意一个,ν也存在任意两元素间都满足正交的关系,即式(7),
νi TET.Eνj=νi Tλjνj=λjνiνj=0 (7)
其中,λ为特征向量v对应的特征值,对于矩阵E存在式(8),
i.Eνi=λi (8)
联立式(6)、(7),并取向量的单位向量,得出式(9)、(10),
Figure BDA0002234503260000051
Figure BDA0002234503260000052
其中,ui是E的左奇异向量,νi为E的右奇异向量,σi为E的奇异值;
利用矩阵分块相乘方式对本征矩阵完成分解,将E转换成R与T相乘形式,即式(11)、(12)、(13);
Figure BDA0002234503260000054
Figure BDA0002234503260000055
之后完成拆分,分别获取两帧图片之间的旋转矩阵R与平移向量T;
步骤2.3,图像校正,具体为:
首先,将步骤2.2获取的R拆为R1、R2,使左右图像根据旋转矩阵各旋转一半,
Figure BDA0002234503260000061
其次,根据平移向量T构造变换矩阵Ta,使得图像平面与基线平行;
构造e1使左极线与图像不存在极点,即图像与基线不存在交点或交点无穷远,
Figure BDA0002234503260000062
由极线约束模型知e2与右帧图像所在相机光轴正交,且与e1垂直,则通过e1与主光轴方向的叉积并归一化获得e2
Figure BDA0002234503260000063
构造e3,e3与e1、e2都存在正交关系,即e3=e1×e2
变换矩阵Ta为:
Figure BDA0002234503260000064
最后,将式(15)中R1、R2分别与式(17)获得的变换矩阵Ta相乘,获取左右两帧图像旋转程度Ra1、Ra2,并依据左右两帧图像旋转程度Ra1、Ra2对两帧图像进行旋转校正;
Figure BDA0002234503260000065
步骤3具体为:
步骤3.1,计算图像梯度,具体为:
步骤3.1.1,采用Sobel算子在水平方向对经步骤2处理的图像每个像素点进行处理,
其中,P为图像中某一像素点,x、y为P的横、纵坐标;
步骤3.1.2,引入常数参数α,据式(19)将经过水平Sobel算子处理后的图像上每个像素点映射成一个新的图像,PNew表示新图像上的像素点:
即得到图像的梯度信息;
步骤3.2,计算图像灰度,具体为:
按照按照3:6:1权重将图像的RGB三个颜色值转换为黑白图,具体为:
Gray=R×0.3+G×0.6+B×0.1 (21)
其中,R、G、B分别为图像中某像素点三个颜色值,Gray为该像素点转换后的灰度值;
步骤3.3,梯度代价计算和基于灰度的SAD代价计算,具体为:
首先,在图像上选取大小N×N窗口记作D,使用Birch等提出的采样方法计算窗口内图像梯度代价CBT
CBT(xi,yi,IL,IR)=max(0,IL(xi-Imax),Imin-IL(xi)) (22)
其中,I表示灰度值,左帧图像中心点xi,左右相邻点xi-1,xi+1,右帧图像中心点yi,左右相邻点yi-1,yi+1,Imin=IR -,Imax=IR(yi),IL(xi)是左帧中心点xi的灰度值,IR -指右帧中心点左相邻点yi-1的灰度值,IR(yi)是右帧中心点yi的灰度值;
其次,计算左右帧图像窗口中所有对应像素之差的绝对值之和,即窗口内像素的SAD代价:
CSAD(u,v,d)=Σ(i,j)∈D(u,v)|L(i,j)-R(i,j+d)| (23)
其中,L(i,j)为左帧图像中像素灰度值,R(i,j+d)为右帧图像中像素灰度值,公式整体计算左右窗口的灰度和的差值;
步骤3.4,利用图像标准差自适应计算最佳匹配窗口,具体为:
首先,设置初始窗口D大小N×N,将图像按D大小分割成S个局部区域,计算每个局部区域图像的标准差δ(i,j):
Figure BDA0002234503260000081
其中,P为局部区域;δ(i,j)是以像素(i,j)为中心的局部区域标准差;Dx,Dy为局部区域大小;
其次,引入标准差阈值δT,统计δ(i,j)>δT的像素个数记作Max,δ(i,j)<δT的像素个数记作Min,引入阈值K作为纹理强弱的参考:
当Min/Max≥K,则图像整体纹理信息弱,需增大匹配窗口,此时增大为(N+2)×(N+2),迭代步骤3.4.1和步骤3.4.2;窗口最大设置为M×M,如N≤M则继续迭代运算,否则选取M×M为匹配窗口大小;
当Min/Max<K则直接选择当前窗口大小为匹配窗口大小;
步骤3.5,采用动态规划算法寻找最小代价匹配路径,获取初始视差图,具体为:
对像素p,在水平、垂直、对角线共8个方向进行代价累积计算,a是8个方向中的某一个方向,则p的a方向上代价聚合值La(p,Dp)为:
Figure BDA0002234503260000091
其中,p-a表示像素点p在邻域a方向上的逐单位地递推像素,D表示图像视差;C(p,Dp)为像素p的匹配代价,La(p-a,Dp)为像素p邻域a方向上像素点p-a的当前视差代价聚合值,La(p-a,Dp-1)为p-a与当前视差差值相减为1的代价聚合值加P1,La(p-a,Dp-1)为p-a与当前视差差值相减为-1的代价聚合值,La(p-a,i)为p-a与当前视差差值大于1的最小代价聚合值,
Figure BDA0002234503260000092
是为防止最终结果过大导致溢出而减去该方向上前一像素的最小代价;
将像素p邻域内各个方向上的代价聚合值分别进行计算并统计代价和S(p,Dp),计算得到的累计代价最小时的视差即为该像素点的初始视差图。
步骤4具体为:
步骤4.1,在初始基准帧前后选取两帧图像,依照步骤1-3进行处理并完成校正,获取各自视差图M、N,以M为参照,对N进行补充,即对N中像素逐个判断,如某像素位置上存在视差值则不做改变,如无视差值则选M中特征点的对应点的视差值作为N在该位置上的视差值,若M、N此像素均无视差则不予处理;
步骤4.2,采用步骤4.1的方式,对视差图逐行检测得出无视差区域A,标记出A左右两边边界视差值的边界点P(x1,y)和P1(x2,y),O((x1+x2)/2,y)是P P1中点,对A中任意点q(x,y)的视差值:
Figure BDA0002234503260000093
视差是两帧图像重叠区域,所以视差图最左边没有视差,因此将检测的无视差区域右边界的视差值作为参考进行填充,获得完整的视差图;
步骤4.3,采用高斯滤波对步骤4.2获取的视差图进行滤波处理,消除存在的噪点,达到优化目的获取最终视差图。
步骤5具体为:
步骤5.1,世界坐标系中某点成像过程表示为:
Figure BDA0002234503260000101
其中Xc、Yc、Zc表示相机坐标系3个轴坐标,u、v表示图像坐标系下某一坐标点,u0、v0表示图像坐标系中心点坐标,Xw、Zw、Zw是描述世界坐标系中的三维坐标,R、T是世界坐标系到相机坐标系的平移、旋转关系,为:
Figure BDA0002234503260000102
将式(28)带入(27)中可得:
Figure BDA0002234503260000103
步骤5.2,根据(29)推导出图像中某像素点(u,v)在世界坐标系中所对应的三维坐(Xw,Yw,Zw)为:
Figure BDA0002234503260000104
步骤5.3,建立一坐标系,根据校正后的彩色图像中任意一像素及该像素在视差图中对应视差值计算得到该像素点在世界坐标系中的三维坐标,迭代计算图像中每个像素点的三维坐标,并在同一坐标系下表示,从而获取场景图像的三维点云信息。
本发明的有益效果是:本发明是一种基于视频的三维立体点集恢复方法,在半全局立体匹配算法基础上自适应获取匹配窗口大小计算图像视差,解决手动选取参数问题,而对遮挡、视差不连续导致的视差缺失问题,本发明基于融合插值思想根据视差图前后帧的视差信息对缺失部分进行补充完善,较为真实的反映场景的视差信息,匹配效果好。
附图说明
图1是本发明一种基于视频的三维立体点集恢复方法中欧式距离计算示意图;
图2是本发明一种基于视频的三维立体点集恢复方法中双向特征点匹配效果图;
图3是本发明一种基于视频的三维立体点集恢复方法中截取的图像帧序列效果图;
图4是本发明一种基于视频的三维立体点集恢复方法中图形校正效果图;
图5是本发明一种基于视频的三维立体点集恢复方法中是CBT的定义和计算示意图;
图6是本发明一种基于视频的三维立体点集恢复方法中依据标准差自适应选取最佳窗口大小效果图;
图7是本发明一种基于视频的三维立体点集恢复方法中融合后的视差图;
图8是本发明一种基于视频的三维立体点集恢复方法中左端无视差区域图;
图9是本发明一种基于视频的三维立体点集恢复方法中的最终视差图;
图10是本发明一种基于视频的三维立体点集恢复方法中三维立体点集恢复视图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种基于视频的三维立体点集恢复方法,具体按照如下步骤实施:
步骤1,使用单目相机采集视频数据,并进行两帧图像特征点的计算和匹配,计算叠加比例,实现图形帧自动获取,并进行相机内参标定;具体为:
步骤1.1,使用单目相机在空间上匀速移动进行视频数据采集;
步骤1.2,针对步骤1.1获取的视频数据,选取SURF算子求取图像特征点,两帧图像特征点分别存在集合Aset{A0,A1,A2......}和Bset{B0,B1,B2......}中,获取SURF特征点后,基于K近邻的双向匹配方式进行特征点匹配,寻找两图像上对应点,得到特征点匹配对,具体为:
图1中Dis(A,B)表示欧氏距离,两向量
Figure BDA0002234503260000121
之间欧式距离通常指向量方向上的差别,用两向量间夹角Cos&表示;设置阈值T,迭代计算A0与Bset中每一点的欧氏距离,以O为原点的空间坐标系中,两向量
Figure BDA0002234503260000122
Figure BDA0002234503260000123
间的夹角记为Cos&,记录欧式距离最小点与第二小点的欧式距离min1、min2,如min1/min2<T,则直接将最小点作为A0特征点的对应点;
如此逐一在Bset中匹配Aset中各个特征点的对应点;
匹配完后采用双向匹配进行验证,即以同样方法对Bset中特征点寻找Aset中对应点,如结果一致,则确认此两点为一对匹配点,否则删除该对匹配点,匹配效果如图2所示,a是基于K近邻的特征点匹配效果图,b是基于K近邻的双向特征点匹配效果图;
步骤1.3,计算水平方向重叠比例d/w,对步骤1.2匹配的每对特征点计算d,叠加比例选取出现频率最高的d进行计算,其中,d为Aset和Bset中对应特征点两两对齐在水平方向上移动的长度,w表示图像宽度;
步骤1.4,依据步骤1.3获得的重叠比例进行图像帧自动截取,具体为:
对采取视频的每一帧图像按顺序编号,基准帧标记为0,依次标记记为1、2、3…n,随机选取一帧,若所选取图像帧的水平方向重叠比例d/w>p,则下次选择第2m个帧进行水平方向重叠比例的计算以及选择第m/2个帧进行水平方向重叠比例的计算,以此类推,直到d/w最接近于p,记录该帧编号x,此时基准帧和第x帧为筛选结果,然后再以第x帧为基准帧以同样方式寻找下一帧,直到最后一帧n则结束,从而实现图形帧自动获取,图像帧自动截取效果如图3所示;
其中,m<30<n,p为依据实验设置重叠面积比例,m/2进行取整,p为0.8;
步骤1.5,采用张正友标定法计算相机参数,获得相机内参数矩阵K;
步骤2,计算两帧图像在同一坐标系间变换关系,分解变换矩阵获得旋转矩阵和平移向量,并根据极线约束关系对两帧图像进行平行校正,使得两帧图像对应的像素点处于同一高度上,具体为:
步骤2.1,计算本质矩阵E,具体为:
对步骤1.2获取的特征点匹配对,根据对极几何关系建立式(1),
X'TFX=0 (1)
其中,X与X'为任意一对相互的匹配特征点,x,y分别是X的两个坐标值,x′和y′分别是X'的两个坐标值,F为基础矩阵,带入匹配点式(1)形成式(2),
Figure BDA0002234503260000141
展开得出式(3),
x'xf11+x'yf12+x'f13+y'xf21+yy'f22+y'f23+xf31+yf32+f33=0 (3)
采用八点法选8对特征点建立式(3)联立方程求解基础矩阵,再计算本质矩阵E:
E=KTFK (4);
步骤2.2,采用基于SVD奇异值分解方式,对步骤2.1获得的本质矩阵进行分解,得到两帧图像间的旋转矩阵R和平移向量T,具体为:
假设M*N矩阵E,则E描述为式(5),
E=UΣVT (5)
其中,U为M*M正交矩阵,V为N*N正交矩阵,∑=diag(σ1,σ2,.....,σr,.......σn)为M*N对角阵,r为矩阵E的秩,对角线上的元素值按照递减顺序排列即σ1≥σ2.....≥σr,σr后元素都为0,对于矩阵E假设存在一组正交基{ν1,ν2,......,νn}使得映射后任意两个元素正交,即式(6),
i.Eνj=(Eνi)T.Eνj=νi TET.Eνj=0 (6)
其中,i=1、2、3…n,j=1、2、3…n,i≠j,由于正交基存在,νi Tνj=νiνj=0,ETE为对称矩阵,当作为ETE特征向量时,其中,ν为ν1,ν2,......,νn中任意一个,ν也存在任意两元素间都满足正交的关系,即式(7),
νi TET.Eνj=νi Tλjνj=λjνiνj=0 (7)
其中,λ为特征向量v对应的特征值,对于矩阵E存在式(8),
i.Eνi=λi (8)
联立式(6)、(7),并取向量的单位向量,得出式(9)、(10),
Figure BDA0002234503260000152
其中,ui是E的左奇异向量,νi为E的右奇异向量,σi为E的奇异值;
利用矩阵分块相乘方式对本征矩阵完成分解,将E转换成R与T相乘形式,即式(11)、(12)、(13);
Figure BDA0002234503260000153
Figure BDA0002234503260000154
Figure BDA0002234503260000155
之后完成拆分,分别获取两帧图片之间的旋转矩阵R与平移向量T;
步骤2.3,图像校正,具体为:
首先,将步骤2.2获取的R拆为R1、R2,使左右图像根据旋转矩阵各旋转一半,
Figure BDA0002234503260000156
其次,根据平移向量T构造变换矩阵Ta,使得图像平面与基线平行;
构造e1使左极线与图像不存在极点,即图像与基线不存在交点或交点无穷远,
Figure BDA0002234503260000157
由极线约束模型知e2与右帧图像所在相机光轴正交,且与e1垂直,则通过e1与主光轴方向的叉积并归一化获得e2
Figure BDA0002234503260000161
构造e3,e3与e1、e2都存在正交关系,即e3=e1×e2
变换矩阵Ta为:
Figure BDA0002234503260000162
最后,将式(15)中R1、R2分别与式(17)获得的变换矩阵Ta相乘,获取左右两帧图像旋转程度Ra1、Ra2,并依据左右两帧图像旋转程度Ra1、Ra2对两帧图像进行旋转校正,校正效果图如图4所示,a是校正前的原始图,b是校正后的效果图;
Figure BDA0002234503260000163
步骤3,对经步骤2处理的两帧图像采用自适应方式根据图像纹理不同计算最合适的窗口大小,采用动态规划算法在8个方向上寻找最小代价匹配路径,获取初始视差图;具体为:
步骤3.1,计算图像梯度,具体为:
步骤3.1.1,采用Sobel算子在水平方向对经步骤2处理的图像每个像素点进行处理,
Figure BDA0002234503260000164
其中,P为图像中某一像素点,x、y为P的横、纵坐标;
步骤3.1.2,引入常数参数α,据式(19)将经过水平Sobel算子处理后的图像上每个像素点映射成一个新的图像,PNew表示新图像上的像素点:
Figure BDA0002234503260000171
即得到图像的梯度信息;
步骤3.2,计算图像灰度,具体为:
按照按照3:6:1权重将图像的RGB三个颜色值转换为黑白图,具体为:
Gray=R×0.3+G×0.6+B×0.1 (21)
其中,R、G、B分别为图像中某像素点三个颜色值,Gray为该像素点转换后的灰度值;
步骤3.3,梯度代价计算和基于灰度的SAD代价计算,具体为:
首先,如图5所示,在图像上选取大小N×N窗口记作D,使用Birch等提出的采样方法计算窗口内图像梯度代价CBT
CBT(xi,yi,IL,IR)=max(0,IL(xi-Imax),Imin-IL(xi)) (22)
其中,I表示灰度值,左帧图像中心点xi,左右相邻点xi-1,xi+1,右帧图像中心点yi,左右相邻点yi-1,yi+1,Imin=IR -,Imax=IR(yi),IL(xi)是左帧中心点xi的灰度值,IR -指右帧中心点左相邻点yi-1的灰度值,IR(yi)是右帧中心点yi的灰度值;
其次,计算左右帧图像窗口中所有对应像素之差的绝对值之和,即窗口内像素的SAD代价:
CSAD(u,v,d)=∑(i,j)∈D(u,v)|L(i,j)-R(i,j+d)| (23)
其中,L(i,j)为左帧图像中像素灰度值,R(i,j+d)为右帧图像中像素灰度值,公式整体计算左右窗口的灰度和的差值;
步骤3.4,利用图像标准差自适应计算最佳匹配窗口,具体为:
首先,设置初始窗口D大小N×N,将图像按D大小分割成S个局部区域,计算每个局部区域图像的标准差δ(i,j):
Figure BDA0002234503260000181
其中,P为局部区域;δ(i,j)是以像素(i,j)为中心的局部区域标准差;Dx,Dy为局部区域大小;
其次,引入标准差阈值δT,统计δ(i,j)>δT的像素个数记作Max,δ(i,j)<δT的像素个数记作Min,引入阈值K作为纹理强弱的参考:
当Min/Max≥K,则图像整体纹理信息弱,需增大匹配窗口,此时增大为(N+2)×(N+2),迭代步骤3.4.1和步骤3.4.2;窗口最大设置为M×M,如N≤M则继续迭代运算,否则选取M×M为匹配窗口大小;
当Min/Max<K则直接选择当前窗口大小为匹配窗口大小;
步骤3.5,采用动态规划算法寻找最小代价匹配路径,获取初始视差图,本发明采用Middlebury视觉库中Aloe(1)原始图像,实验效果图为图6所示,a是Middlebury提供的实验数据Aloe(1)原图,b是匹配后的视差图,具体为:
对像素p,在水平、垂直、对角线共8个方向进行代价累积计算,a是8个方向中的某一个方向,则p的a方向上代价聚合值La(p,Dp)为:
Figure BDA0002234503260000182
其中,p-a表示像素点p在邻域a方向上的逐单位地递推像素,D表示图像视差;C(p,Dp)为像素p的匹配代价,La(p-a,Dp)为像素p邻域a方向上像素点p-a的当前视差代价聚合值,La(p-a,Dp-1)为p-a与当前视差差值相减为1的代价聚合值加P1,La(p-a,Dp-1)为p-a与当前视差差值相减为-1的代价聚合值,La(p-a,i)为p-a与当前视差差值大于1的最小代价聚合值,
Figure BDA0002234503260000191
是为防止最终结果过大导致溢出而减去该方向上前一像素的最小代价;
将像素p邻域内各个方向上的代价聚合值分别进行计算并统计代价和S(p,Dp),计算得到的累计代价最小时的视差即为该像素点的初始视差图;
步骤4,对步骤3获取的初始视差图,采用基于融合的插值优化方法进行优化;具体为:
步骤4.1,在初始基准帧前后选取两帧图像,依照步骤1-3进行处理并完成校正,获取各自视差图M、N,以M为参照,对N进行补充,即对N中像素逐个判断,如某像素位置上存在视差值则不做改变,如无视差值则选M中特征点的对应点的视差值作为N在该位置上的视差值,若M、N此像素均无视差则不予处理,融合后的左视差图如图7所示,a是左右两视差图,b是融合后的左视差图;
步骤4.2,采用步骤4.1的方式,对视差图逐行检测得出无视差区域A,标记出A左右两边边界视差值的边界点P(x1,y)和P1(x2,y),O((x1+x2)/2,y)是P P1中点,对A中任意点q(x,y)的视差值:
Figure BDA0002234503260000192
视差是两帧图像重叠区域,所以视差图最左边没有视差,如图8所示,因此将检测的无视差区域右边界的视差值作为参考进行填充,获得完整的视差图;
步骤4.3,采用高斯滤波对步骤4.2获取的视差图进行滤波处理,消除存在的噪点,达到优化目的获取最终视差图,如图9所示;
步骤5,结合三角相似性原理,在步骤4优化的视差图基础上对目标场景进行三维点云恢复,获取目标场景的深度,具体为:
步骤5.1,世界坐标系中某点成像过程表示为:
Figure BDA0002234503260000201
其中Xc、Yc、Zc表示相机坐标系3个轴坐标,u、v表示图像坐标系下某一坐标点,u0、v0表示图像坐标系中心点坐标,Xw、Zw、Zw是描述世界坐标系中的三维坐标,R、T是世界坐标系到相机坐标系的平移、旋转关系,为:
Figure BDA0002234503260000202
将式(28)带入(27)中可得:
Figure BDA0002234503260000203
步骤5.2,根据(29)推导出图像中某像素点(u,v)在世界坐标系中所对应的三维坐(Xw,Yw,Zw)为:
步骤5.3,建立一坐标系,根据校正后的彩色图像中任意一像素及该像素在视差图中对应视差值计算得到该像素点在世界坐标系中的三维坐标,迭代计算图像中每个像素点的三维坐标,并在同一坐标系下表示,从而获取场景图像的三维点云信息,最终三维立体点集恢复效果如图10所示,a是三维立体点集恢复的正视图,b是三维立体点集恢复的侧视图。

Claims (8)

1.一种基于视频的三维立体点集恢复方法,其特征在于,具体按照如下步骤实施:
步骤1,使用单目相机采集视频数据,并进行两帧图像特征点的计算和匹配,计算叠加比例,实现图形帧自动获取,并进行相机内参标定;
步骤2,计算两帧图像在同一坐标系间变换关系,分解变换矩阵获得旋转矩阵和平移向量,并根据极线约束关系对两帧图像进行平行校正,使得两帧图像对应的像素点处于同一高度上;
步骤3,对经步骤2处理的两帧图像采用自适应方式根据图像纹理不同计算最合适的窗口大小,采用动态规划算法在8个方向上寻找最小代价匹配路径,获取初始视差图;
步骤4,对步骤3获取的初始视差图,采用基于融合的插值优化方法进行优化;
步骤5,结合三角相似性原理,在步骤4优化的视差图基础上对目标场景进行三维点云恢复,获取目标场景的深度。
2.根据权利要求1所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤1具体为:
步骤1.1,使用单目相机在空间上匀速移动进行视频数据采集;
步骤1.2,针对步骤1.1获取的视频数据,选取SURF算子求取图像特征点,两帧图像特征点分别存在集合Aset{A0,A1,A2......}和Bset{B0,B1,B2......}中,获取SURF特征点后,基于K近邻的双向匹配方式进行特征点匹配,寻找两图像上对应点,得到特征点匹配对;
步骤1.3,计算水平方向重叠比例d/w,对步骤1.2匹配的每对特征点计算d,叠加比例选取出现频率最高的d进行计算,其中,d为Aset和Bset中对应特征点两两对齐在水平方向上移动的长度,w表示图像宽度;
步骤1.4,依据步骤1.3获得的重叠比例进行图像帧自动截取;
步骤1.5,采用张正友标定法计算相机参数,获得相机内参数矩阵K。
3.根据权利要求2所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤1.2具体为:
设置阈值T,迭代计算A0与Bset中每一点的欧氏距离,其中,欧氏距离用Cos&表示,以O为原点的空间坐标系中,两向量
Figure FDA0002234503250000021
间的夹角记为Cos&,记录欧式距离最小点与第二小点的欧式距离min1、min2,如min1/min2<T,则直接将最小点作为A0特征点的对应点;
如此逐一在Bset中匹配Aset中各个特征点的对应点;
匹配完后采用双向匹配进行验证,即以同样方法对Bset中特征点寻找Aset中对应点,如结果一致,则确认此两点为一对匹配点,否则删除该对匹配点。
4.根据权利要求3所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤1.4具体为:
对采取视频的每一帧图像按顺序编号,基准帧标记为0,依次标记记为1、2、3…n,随机选取一帧,若所选取图像帧的水平方向重叠比例d/w>p,则下次选择第2m个帧进行水平方向重叠比例的计算以及选择第m/2个帧进行水平方向重叠比例的计算,以此类推,直到d/w最接近于p,记录该帧编号x,此时基准帧和第x帧为筛选结果,然后再以第x帧为基准帧以同样方式寻找下一帧,直到最后一帧n则结束,从而实现图形帧自动获取;
其中,m<30<n,p为依据实验设置重叠面积比例,m/2进行取整。
5.根据权利要求4所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤2具体为:
步骤2.1,计算本质矩阵E,具体为:
对步骤1.2获取的特征点匹配对,根据对极几何关系建立式(1),
X'TFX=0 (1)
其中,X与X'为任意一对相互的匹配特征点,x,y分别是X的两个坐标值,x′和y′分别是X'的两个坐标值,F为基础矩阵,带入匹配点式(1)形成式(2),
展开得出式(3),
x'xf11+x'yf12+x'f13+y'xf21+yy'f22+y'f23+xf31+yf32+f33=0 (3)
采用八点法选8对特征点建立式(3)联立方程求解基础矩阵,再计算本质矩阵E:
E=KTFK (4);
步骤2.2,采用基于SVD奇异值分解方式,对步骤2.1获得的本质矩阵进行分解,得到两帧图像间的旋转矩阵R和平移向量T,具体为:
假设M*N矩阵E,则E描述为式(5),
E=UΣVT (5)
其中,U为M*M正交矩阵,V为N*N正交矩阵,Σ=diag(σ1,σ2,.....,σr,.......σn)为M*N对角阵,r为矩阵E的秩,对角线上的元素值按照递减顺序排列即σ1≥σ2.....≥σr,σr后元素都为0,对于矩阵E假设存在一组正交基{ν1,ν2,......,νn}使得映射后任意两个元素正交,即式(6),
i.Eνj=(Eνi)T.Eνj=νi TET.Eνj=0 (6)
其中,i=1、2、3…n,j=1、2、3…n,i≠j,由于正交基存在,νi Tνj=νiνj=0,ETE为对称矩阵,当作为ETE特征向量时,其中,ν为ν1,ν2,......,νn中任意一个,ν也存在任意两元素间都满足正交的关系,即式(7),
νi TET.Eνj=νi Tλjνj=λjνiνj=0 (7)
其中,λ为特征向量v对应的特征值,对于矩阵E存在式(8),
i.Eνi=λi (8)
联立式(6)、(7),并取向量的单位向量,得出式(9)、(10),
Figure FDA0002234503250000041
Figure FDA0002234503250000042
其中,ui是E的左奇异向量,νi为E的右奇异向量,σi为E的奇异值;
利用矩阵分块相乘方式对本征矩阵完成分解,将E转换成R与T相乘形式,即式(11)、(12)、(13);
Figure FDA0002234503250000043
Figure FDA0002234503250000044
Figure FDA0002234503250000045
之后完成拆分,分别获取两帧图片之间的旋转矩阵R与平移向量T;
步骤2.3,图像校正,具体为:
首先,将步骤2.2获取的R拆为R1、R2,使左右图像根据旋转矩阵各旋转一半,
Figure FDA0002234503250000051
其次,根据平移向量T构造变换矩阵Ta,使得图像平面与基线平行;
构造e1使左极线与图像不存在极点,即图像与基线不存在交点或交点无穷远,
Figure FDA0002234503250000052
由极线约束模型知e2与右帧图像所在相机光轴正交,且与e1垂直,则通过e1与主光轴方向的叉积并归一化获得e2
Figure FDA0002234503250000053
构造e3,e3与e1、e2都存在正交关系,即e3=e1×e2
变换矩阵Ta为:
最后,将式(15)中R1、R2分别与式(17)获得的变换矩阵Ta相乘,获取左右两帧图像旋转程度Ra1、Ra2,并依据左右两帧图像旋转程度Ra1、Ra2对两帧图像进行旋转校正;
6.根据权利要求5所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤3具体为:
步骤3.1,计算图像梯度,具体为:
步骤3.1.1,采用Sobel算子在水平方向对经步骤2处理的图像每个像素点进行处理,
Figure FDA0002234503250000061
其中,P为图像中某一像素点,x、y为P的横、纵坐标;
步骤3.1.2,引入常数参数α,据式(19)将经过水平Sobel算子处理后的图像上每个像素点映射成一个新的图像,PNew表示新图像上的像素点:
Figure FDA0002234503250000062
即得到图像的梯度信息;
步骤3.2,计算图像灰度,具体为:
按照按照3:6:1权重将图像的RGB三个颜色值转换为黑白图,具体为:
Gray=R×0.3+G×0.6+B×0.1 (21)
其中,R、G、B分别为图像中某像素点三个颜色值,Gray为该像素点转换后的灰度值;
步骤3.3,梯度代价计算和基于灰度的SAD代价计算,具体为:
首先,在图像上选取大小N×N窗口记作D,使用Birch等提出的采样方法计算窗口内图像梯度代价CBT
CBT(xi,yi,IL,IR)=max(0,IL(xi-Imax),Imin-IL(xi)) (22)
其中,I表示灰度值,左帧图像中心点xi,左右相邻点xi-1,xi+1,右帧图像中心点yi,左右相邻点yi-1,yi+1,Imin=IR -,Imax=IR(yi),IL(xi)是左帧中心点xi的灰度值,IR -指右帧中心点左相邻点yi-1的灰度值,IR(yi)是右帧中心点yi的灰度值;
其次,计算左右帧图像窗口中所有对应像素之差的绝对值之和,即窗口内像素的SAD代价:
CSAD(u,v,d)=Σ(i,j)∈D(u,v)|L(i,j)-R(i,j+d)| (23)
其中,L(i,j)为左帧图像中像素灰度值,R(i,j+d)为右帧图像中像素灰度值,公式整体计算左右窗口的灰度和的差值;
步骤3.4,利用图像标准差自适应计算最佳匹配窗口,具体为:
首先,设置初始窗口D大小N×N,将图像按D大小分割成S个局部区域,计算每个局部区域图像的标准差δ(i,j):
其中,P为局部区域;δ(i,j)是以像素(i,j)为中心的局部区域标准差;Dx,Dy为局部区域大小;
其次,引入标准差阈值δT,统计δ(i,j)>δT的像素个数记作Max,δ(i,j)<δT的像素个数记作Min,引入阈值K作为纹理强弱的参考:
当Min/Max≥K,则图像整体纹理信息弱,需增大匹配窗口,此时增大为(N+2)×(N+2),迭代步骤3.4.1和步骤3.4.2;窗口最大设置为M×M,如N≤M则继续迭代运算,否则选取M×M为匹配窗口大小;
当Min/Max<K则直接选择当前窗口大小为匹配窗口大小;
步骤3.5,采用动态规划算法寻找最小代价匹配路径,获取初始视差图,具体为:
对像素p,在水平、垂直、对角线共8个方向进行代价累积计算,a是8个方向中的某一个方向,则p的a方向上代价聚合值La(p,Dp)为:
Figure FDA0002234503250000072
其中,p-a表示像素点p在邻域a方向上的逐单位地递推像素,D表示图像视差;C(p,Dp)为像素p的匹配代价,La(p-a,Dp)为像素p邻域a方向上像素点p-a的当前视差代价聚合值,La(p-a,Dp-1)为p-a与当前视差差值相减为1的代价聚合值加P1,La(p-a,Dp-1)为p-a与当前视差差值相减为-1的代价聚合值,La(p-a,i)为p-a与当前视差差值大于1的最小代价聚合值,
Figure FDA0002234503250000081
是为防止最终结果过大导致溢出而减去该方向上前一像素的最小代价;
将像素p邻域内各个方向上的代价聚合值分别进行计算并统计代价和S(p,Dp),计算得到的累计代价最小时的视差即为该像素点的初始视差图。
7.根据权利要求6所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤4具体为:
步骤4.1,在初始基准帧前后选取两帧图像,依照步骤1-3进行处理并完成校正,获取各自视差图M、N,以M为参照,对N进行补充,即对N中像素逐个判断,如某像素位置上存在视差值则不做改变,如无视差值则选M中特征点的对应点的视差值作为N在该位置上的视差值,若M、N此像素均无视差则不予处理;
步骤4.2,采用步骤4.1的方式,对视差图逐行检测得出无视差区域A,标记出A左右两边边界视差值的边界点P(x1,y)和P1(x2,y),O((x1+x2)/2,y)是P P1中点,对A中任意点q(x,y)的视差值:
Figure FDA0002234503250000082
视差是两帧图像重叠区域,所以视差图最左边没有视差,因此将检测的无视差区域右边界的视差值作为参考进行填充,获得完整的视差图;
步骤4.3,采用高斯滤波对步骤4.2获取的视差图进行滤波处理,消除存在的噪点,达到优化目的获取最终视差图。
8.根据权利要求7所述的一种基于视频的三维立体点集恢复方法,其特征在于,所述步骤5具体为:
步骤5.1,世界坐标系中某点成像过程表示为:
Figure FDA0002234503250000091
其中Xc、Yc、Zc表示相机坐标系3个轴坐标,u、v表示图像坐标系下某一坐标点,u0、v0表示图像坐标系中心点坐标,Xw、Zw、Zw是描述世界坐标系中的三维坐标,R、T是世界坐标系到相机坐标系的平移、旋转关系,为:
Figure FDA0002234503250000092
将式(28)带入(27)中可得:
步骤5.2,根据(29)推导出图像中某像素点(u,v)在世界坐标系中所对应的三维坐(Xw,Yw,Zw)为:
Figure FDA0002234503250000094
步骤5.3,建立一坐标系,根据校正后的彩色图像中任意一像素及该像素在视差图中对应视差值计算得到该像素点在世界坐标系中的三维坐标,迭代计算图像中每个像素点的三维坐标,并在同一坐标系下表示,从而获取场景图像的三维点云信息。
CN201910978745.8A 2019-10-15 2019-10-15 一种基于视频的三维立体点集恢复方法 Active CN110853151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910978745.8A CN110853151B (zh) 2019-10-15 2019-10-15 一种基于视频的三维立体点集恢复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910978745.8A CN110853151B (zh) 2019-10-15 2019-10-15 一种基于视频的三维立体点集恢复方法

Publications (2)

Publication Number Publication Date
CN110853151A true CN110853151A (zh) 2020-02-28
CN110853151B CN110853151B (zh) 2024-02-09

Family

ID=69597493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910978745.8A Active CN110853151B (zh) 2019-10-15 2019-10-15 一种基于视频的三维立体点集恢复方法

Country Status (1)

Country Link
CN (1) CN110853151B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432117A (zh) * 2020-03-23 2020-07-17 北京迈格威科技有限公司 图像矫正方法、装置和电子系统
CN112102404A (zh) * 2020-08-14 2020-12-18 青岛小鸟看看科技有限公司 物体检测追踪方法、装置及头戴显示设备
CN112132895A (zh) * 2020-09-10 2020-12-25 湖北亿咖通科技有限公司 基于图像的位置确定方法、电子设备及存储介质
CN112164099A (zh) * 2020-09-23 2021-01-01 北京的卢深视科技有限公司 基于单目结构光的自检自校准方法及装置
CN112215871A (zh) * 2020-09-29 2021-01-12 武汉联影智融医疗科技有限公司 一种基于机器人视觉的移动目标追踪方法及装置
CN113947608A (zh) * 2021-09-30 2022-01-18 西安交通大学 一种基于几何匹配法控制的结构不规则运动高精度测量方法
CN113965742A (zh) * 2021-02-28 2022-01-21 北京中科慧眼科技有限公司 基于多传感融合的稠密视差图提取方法、系统和智能终端
CN116258759A (zh) * 2023-05-15 2023-06-13 北京爱芯科技有限公司 一种立体匹配方法、装置和设备
CN116935493A (zh) * 2023-09-13 2023-10-24 成都市青羊大数据有限责任公司 一种教育管理系统
CN117213373A (zh) * 2023-11-09 2023-12-12 成都飞机工业(集团)有限责任公司 一种三维点云获取方法
CN117381799A (zh) * 2023-12-11 2024-01-12 南方科技大学 基于机器视觉的抓取装置控制方法、抓取装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236082A (zh) * 2013-04-27 2013-08-07 南京邮电大学 面向捕获静止场景的二维视频的准三维重建方法
CN106228605A (zh) * 2016-07-29 2016-12-14 东南大学 一种基于动态规划的立体匹配三维重建方法
WO2018049581A1 (zh) * 2016-09-14 2018-03-22 浙江大学 一种同时定位与地图构建方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236082A (zh) * 2013-04-27 2013-08-07 南京邮电大学 面向捕获静止场景的二维视频的准三维重建方法
CN106228605A (zh) * 2016-07-29 2016-12-14 东南大学 一种基于动态规划的立体匹配三维重建方法
WO2018049581A1 (zh) * 2016-09-14 2018-03-22 浙江大学 一种同时定位与地图构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
门宇博;马宁;张国印;李香;门朝光;孙鹏飞;: "非参数变换和改进动态规划的立体匹配算法" *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432117A (zh) * 2020-03-23 2020-07-17 北京迈格威科技有限公司 图像矫正方法、装置和电子系统
CN112102404A (zh) * 2020-08-14 2020-12-18 青岛小鸟看看科技有限公司 物体检测追踪方法、装置及头戴显示设备
CN112132895A (zh) * 2020-09-10 2020-12-25 湖北亿咖通科技有限公司 基于图像的位置确定方法、电子设备及存储介质
CN112132895B (zh) * 2020-09-10 2021-07-20 湖北亿咖通科技有限公司 基于图像的位置确定方法、电子设备及存储介质
CN112164099A (zh) * 2020-09-23 2021-01-01 北京的卢深视科技有限公司 基于单目结构光的自检自校准方法及装置
CN112215871A (zh) * 2020-09-29 2021-01-12 武汉联影智融医疗科技有限公司 一种基于机器人视觉的移动目标追踪方法及装置
CN112215871B (zh) * 2020-09-29 2023-04-21 武汉联影智融医疗科技有限公司 一种基于机器人视觉的移动目标追踪方法及装置
CN113965742B (zh) * 2021-02-28 2022-04-19 北京中科慧眼科技有限公司 基于多传感融合的稠密视差图提取方法、系统和智能终端
CN113965742A (zh) * 2021-02-28 2022-01-21 北京中科慧眼科技有限公司 基于多传感融合的稠密视差图提取方法、系统和智能终端
CN113947608A (zh) * 2021-09-30 2022-01-18 西安交通大学 一种基于几何匹配法控制的结构不规则运动高精度测量方法
CN113947608B (zh) * 2021-09-30 2023-10-20 西安交通大学 一种基于几何匹配法控制的结构不规则运动高精度测量方法
CN116258759A (zh) * 2023-05-15 2023-06-13 北京爱芯科技有限公司 一种立体匹配方法、装置和设备
CN116258759B (zh) * 2023-05-15 2023-09-22 北京爱芯科技有限公司 一种立体匹配方法、装置和设备
CN116935493A (zh) * 2023-09-13 2023-10-24 成都市青羊大数据有限责任公司 一种教育管理系统
CN116935493B (zh) * 2023-09-13 2024-01-02 成都市青羊大数据有限责任公司 一种教育管理系统
CN117213373A (zh) * 2023-11-09 2023-12-12 成都飞机工业(集团)有限责任公司 一种三维点云获取方法
CN117381799A (zh) * 2023-12-11 2024-01-12 南方科技大学 基于机器视觉的抓取装置控制方法、抓取装置及存储介质
CN117381799B (zh) * 2023-12-11 2024-04-16 南方科技大学 基于机器视觉的抓取装置控制方法、抓取装置及存储介质

Also Published As

Publication number Publication date
CN110853151B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN110853151A (zh) 一种基于视频的三维立体点集恢复方法
US11562498B2 (en) Systems and methods for hybrid depth regularization
EP2064675B1 (en) Method for determining a depth map from images, device for determining a depth map
CN109308719B (zh) 一种基于三维卷积的双目视差估计方法
Cheng et al. Spatio-temporally consistent novel view synthesis algorithm from video-plus-depth sequences for autostereoscopic displays
KR102206108B1 (ko) 체적형 객체 촬영을 위한 다중 rgb-d 카메라 기반의 포인트 클라우드 정합 방법
CN106530336B (zh) 基于色彩信息和图割理论的立体匹配方法
Yuan et al. 3D reconstruction of background and objects moving on ground plane viewed from a moving camera
CN113538569A (zh) 一种弱纹理物体位姿估计方法和系统
Jang et al. Egocentric scene reconstruction from an omnidirectional video
CN113313740A (zh) 一种基于平面连续性的视差图和表面法向量联合学习方法
CN114998532B (zh) 一种基于数字图像重建的三维影像视觉传达优化方法
CN114935316B (zh) 基于光学跟踪与单目视觉的标准深度图像生成方法
Wu et al. Joint view synthesis and disparity refinement for stereo matching
Orozco et al. HDR multiview image sequence generation: Toward 3D HDR video
CN112637582B (zh) 模糊边缘驱动的单目视频虚拟视图三维模糊表面合成方法
Xie et al. A novel disparity refinement method based on semi-global matching algorithm
Onofrio et al. 3D Face Reconstruction with a four camera acquisition system
Tardón et al. Markov random fields in the context of stereo vision
Usami et al. Synchronizing 3D point cloud from 3D scene flow estimation with 3D Lidar and RGB camera
Lee et al. Depth map boundary enhancement using random walk
Kumara et al. 3D Models Construction from RGB Video Stream
Shen et al. Three-dimensional Reconstruction Based on Quadrotors with Binocular Vision
CN117315138A (zh) 基于多目视觉的三维重建方法及系统
CN113658202A (zh) 边缘模糊定位联合mrf优化的单目视频虚拟视图合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant