CN110852498A - A method for predicting data center energy efficiency value PUE based on GRU neural network - Google Patents

A method for predicting data center energy efficiency value PUE based on GRU neural network Download PDF

Info

Publication number
CN110852498A
CN110852498A CN201911052854.3A CN201911052854A CN110852498A CN 110852498 A CN110852498 A CN 110852498A CN 201911052854 A CN201911052854 A CN 201911052854A CN 110852498 A CN110852498 A CN 110852498A
Authority
CN
China
Prior art keywords
gru
pue
energy consumption
prediction model
data center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911052854.3A
Other languages
Chinese (zh)
Inventor
赵鹏
康宗
杨丽娜
王佩哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911052854.3A priority Critical patent/CN110852498A/en
Publication of CN110852498A publication Critical patent/CN110852498A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Software Systems (AREA)
  • Tourism & Hospitality (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Business, Economics & Management (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Marketing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于GRU神经网络预测数据中心能耗效率值PUE的方法,包括以下步骤:1)收集数据中心能耗相关的属性数据;2)对步骤1)收集到的属性数据进行归一化及特征选择;3)选用GRU预测模型作为预测模型,设置损失函数J(w)与优化方法optimizer,然后利用步骤2)特征选择得到的部分数据对GRU预测模型进行训练;4)利用步骤2)特征选择得到的剩余数据对训练后的GRU预测模型进行评估,再利用评估后的GRU预测模型预测数据中心能耗效率值PUE,该方法能够较为准确的预测数据中心能耗效率值PUE。

The invention discloses a method for predicting the energy consumption efficiency value PUE of a data center based on a GRU neural network, comprising the following steps: 1) collecting attribute data related to the energy consumption of the data center; 2) normalizing the attribute data collected in step 1). Normalization and feature selection; 3) Select the GRU prediction model as the prediction model, set the loss function J(w) and the optimization method optimizer, and then use part of the data obtained in step 2) feature selection to train the GRU prediction model; 4) Utilize the steps 2) The remaining data obtained by feature selection is used to evaluate the trained GRU prediction model, and then use the evaluated GRU prediction model to predict the data center energy consumption efficiency value PUE. This method can more accurately predict the data center energy consumption efficiency value PUE.

Description

一种基于GRU神经网络预测数据中心能耗效率值PUE的方法A method for predicting the energy efficiency value PUE of data center based on GRU neural network

技术领域technical field

本发明属于数据中心节能技术领域,涉及一种基于GRU神经网络预测数据中心能耗效率值PUE的方法。The invention belongs to the technical field of data center energy saving, and relates to a method for predicting a data center energy consumption efficiency value PUE based on a GRU neural network.

背景技术Background technique

随着云计算、物联网、人工智能等技术的飞速发展,作为基础设施的数据中心在规模和数量上都增长迅猛。数据中心是一个大规模的用电设备的集合,包括用于处理、存储、转发数据的IT设备,维持环境在适宜温度、湿度的冷却控制系统以及供电系统等基础设施,为了保证这些设备的正常运转,其耗电量是非常巨大的。2014年,美国数据中心的用电量约为700亿千瓦时,约占美国总用电量的1.8%,根据目前的趋势估计,到2020年,美国的数据中心预计将消耗约730亿千瓦时。出于运营成本、能源、环境等方面的考虑,降低数据中心的用电量、提高数据中心能耗效率是当前迫切需要解决的问题。With the rapid development of technologies such as cloud computing, the Internet of Things, and artificial intelligence, the scale and number of data centers as infrastructure have grown rapidly. A data center is a collection of large-scale electrical equipment, including IT equipment for processing, storing, and forwarding data, cooling control systems and power supply systems that maintain the environment at a suitable temperature and humidity. In order to ensure the normal operation of these equipment. Operation, its power consumption is very huge. In 2014, U.S. data centers used approximately 70 billion kWh of electricity, or approximately 1.8% of total U.S. electricity consumption, and based on current trends, data centers in the U.S. are expected to consume approximately 73 billion kWh by 2020 . Due to the consideration of operating cost, energy, environment, etc., reducing the power consumption of the data center and improving the energy consumption efficiency of the data center are urgent problems to be solved at present.

数据中心的能耗效率通常使用PUE(Power Usage effectiveness)作为评估标准。PUE表示的是供给数据中心的总电量与只用于供给IT设备的用电量的比值,理论上PUE越接近1,其能耗效率就越高。在数据中心的能源管理过程中,PUE不仅可以用来评估数据中心的能耗效率,同时也能给数据中心的能源管理提供电力需求量等的相关信息。所以如果能准确预测数据中心的PUE,那么将对数据中心的能耗管理提供有效的建议。但是数据中心的能耗构成是非常复杂的,服务器、冷却系统、供电系统以及天气和环境等都会影响能耗,所以要准确预测PUE是非常有挑战的。The energy efficiency of data centers usually uses PUE (Power Usage Effectiveness) as an evaluation criterion. PUE represents the ratio of the total power supplied to the data center to the power consumption only used to supply IT equipment. In theory, the closer the PUE is to 1, the higher the energy consumption efficiency. In the energy management process of the data center, PUE can not only be used to evaluate the energy consumption efficiency of the data center, but also provide relevant information such as power demand for the energy management of the data center. Therefore, if the PUE of the data center can be accurately predicted, it will provide effective suggestions for the energy management of the data center. However, the energy consumption composition of a data center is very complex. Servers, cooling systems, power supply systems, weather and environment all affect energy consumption, so it is very challenging to accurately predict PUE.

对于已有的预测PUE和能耗的方法中,谷歌提出了使用了普通ANN(ArtificialNeural Network)来预测数据中心的PUE,另一些研究中提出使用带置信度的专家系统(ABelief Rule Based Expert System)、多项式线性回归模型等方法来预测数据中心的PUE。上述的这些工作为数据中心的能耗预测开辟了新的思路,但是也存在一些不足之处。一方面是用于预测PUE所考虑的属性与PUE的相关不强或者不全面;另一方面是所采用的模型不具有能考虑数据中心能耗属性的时序性的功能,使用的都是非时间序列相关的机器学习算法,这就忽略了一些时序变量如温度、湿度等连续性变化的特点。Among the existing methods for predicting PUE and energy consumption, Google proposed the use of ordinary ANN (Artificial Neural Network) to predict the PUE of the data center, and some other studies proposed the use of an expert system with confidence (ABelief Rule Based Expert System) , polynomial linear regression model and other methods to predict the PUE of the data center. The above works have opened up new ideas for data center energy consumption prediction, but there are also some shortcomings. On the one hand, the attributes considered for predicting PUE are not strongly or comprehensively related to PUE; on the other hand, the model used does not have the function of considering the time series of energy consumption attributes of the data center, and uses non-time series For related machine learning algorithms, this ignores the characteristics of continuous changes in some time series variables such as temperature and humidity.

因此,要准确预测数据中心PUE的前提是要充分考虑到与能耗相关的尽可能多的特征和这些特征的时序性特点。Therefore, the premise of accurately predicting data center PUE is to fully consider as many features as possible related to energy consumption and the temporal characteristics of these features.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服上述现有技术的缺点,提供了一种基于GRU神经网络预测数据中心能耗效率值PUE的方法,该方法能够较为准确的预测数据中心能耗效率值PUE。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a method for predicting the energy consumption efficiency value PUE of a data center based on a GRU neural network, which can more accurately predict the energy consumption efficiency value PUE of the data center.

为达到上述目的,本发明所述的基于GRU神经网络预测数据中心能耗效率值PUE的方法包括以下步骤:In order to achieve the above object, the method for predicting the energy consumption efficiency value PUE of a data center based on a GRU neural network according to the present invention comprises the following steps:

1)收集数据中心能耗相关的属性数据;1) Collect attribute data related to data center energy consumption;

2)对步骤1)收集到的属性数据进行归一化及特征选择;2) Normalization and feature selection are performed on the attribute data collected in step 1);

3)选用GRU预测模型作为预测模型,设置损失函数J(w)与优化方法optimizer,然后利用步骤2)特征选择得到的部分数据对GRU预测模型进行训练;3) Select the GRU prediction model as the prediction model, set the loss function J(w) and the optimization method optimizer, and then use the part of the data obtained by the feature selection in step 2) to train the GRU prediction model;

4)利用步骤2)特征选择得到的剩余数据对训练后的GRU预测模型进行评估,再利用评估后的GRU预测模型预测数据中心能耗效率值PUE。4) Evaluate the trained GRU prediction model using the remaining data obtained from the feature selection in step 2), and then use the evaluated GRU prediction model to predict the energy consumption efficiency value PUE of the data center.

步骤1)的具体操作为:按设定时间间隔收集数据中心能耗相关的属性数据,其中,收集得到的数据中心能耗相关的属性数据包括IT设备相关的属性数据、环境相关的属性数据、冷却系统相关的属性数据及基础设施相关的属性数据,其中,IT设备相关的属性数据包括服务器负载、UPS的电力负载及热增率;环境相关的属性数据包括温度、湿度及露点温度;冷却系统相关的属性数据包括冷却率及CRAC功率;基础设施相关的属性数据包括照明及HVAC功率,设在t时刻收集得到的数据中心能耗相关的属性数据Xt=(x1,x2,...,xn)。The specific operation of step 1) is: collecting the attribute data related to the energy consumption of the data center at a set time interval, wherein the collected attribute data related to the energy consumption of the data center includes attribute data related to IT equipment, attribute data related to the environment, Attribute data related to cooling system and attribute data related to infrastructure, among which, attribute data related to IT equipment includes server load, UPS power load and heat increase rate; environment-related attribute data includes temperature, humidity and dew point temperature; cooling system Relevant attribute data includes cooling rate and CRAC power; infrastructure-related attribute data includes lighting and HVAC power. Set the attribute data related to data center energy consumption collected at time t X t = (x 1 , x 2 , .. ., xn ).

步骤2)的具体操作为:The specific operations of step 2) are:

21)将收集得到的数据中心能耗相关的属性数据Xt=(x1,x2,...,xn)归一化到[0,1]之间,将归一化后的数据记为Xi=(x1,x2,...,xn);21) Normalize the collected attribute data X t =(x 1 ,x 2 ,...,x n ) related to energy consumption of the data center to [0,1], and normalize the normalized data Denoted as X i =(x 1 ,x 2 ,...,x n );

22)利用特征选择算法选出与预测PUE相关性最大的m个属性数据。22) Use the feature selection algorithm to select m attribute data with the greatest correlation with the predicted PUE.

步骤22)的具体操作为:The specific operation of step 22) is:

使用RFECV方法进行特征选择,选出与预测PUE关联性最大的m个属性数据X=(x1,x2,...,xm)。Feature selection is performed using the RFECV method, and m attribute data X=(x 1 , x 2 , . . . , x m ) that are most relevant to the predicted PUE are selected.

步骤3)中,使用GRU循环神经网络作为PUE预测模型,其中,GRU循环神经网络内的GRU神经元结构中存在重置门rt与更新门zt两个门控单元,用于实现记忆或遗忘之前训练步骤所产生的训练信息,GRU单元的具体计算过程为:In step 3), the GRU recurrent neural network is used as the PUE prediction model, wherein, in the GRU neuron structure in the GRU recurrent neural network, there are two gate control units, a reset gate r t and an update gate z t , which are used to realize memory or Forget the training information generated by the previous training step, the specific calculation process of the GRU unit is:

zt=σ(Wz·[ht-1,xt]+bz)z t =σ(W z ·[h t-1 , x t ]+b z )

rt=σ(Wr·[ht-1,xt]+br)r t =σ(W r ·[h t-1 , x t ]+ br )

Figure BDA0002255763670000032
Figure BDA0002255763670000032

其中,zt用于控制前一状态有多少信息ht-1被写入到当前状态ht,σ(·)为将值缩放到(0,1)之间的sigmoid激活函数,即:Among them, z t is used to control how much information h t-1 of the previous state is written to the current state h t , σ( ) is the sigmoid activation function that scales the value between (0, 1), namely:

Figure BDA0002255763670000041
Figure BDA0002255763670000041

t为传入待放缩的参数,其中,σ(·)值越接近0,则表示写入越多,σ(·)值越接近1,则表示写入得越少,其中,ht-1表示t-1时刻输出的状态信息,xt代表当前时刻的输入,Wz、Wr及Wn为权重参数,bz、br及bh为偏置常数;t is the incoming parameter to be scaled, where the closer the value of σ( ) is to 0, the more writing, the closer the value of σ( ) is to 1, the less the writing is, where h t- 1 represents the state information output at time t-1, x t represents the input at the current time, W z , W r and W n are weight parameters, and b z , br and b h are bias constants;

rt用于控制前一状态有多少信息被写入到当前的候选状态

Figure BDA0002255763670000042
rt的值越接近于1,则表示前一状态被写入的信息越多,rt的越接近于0,则表示前一状态被写入的信息越少;r t is used to control how much information from the previous state is written to the current candidate state
Figure BDA0002255763670000042
The closer the value of r t is to 1, the more information is written in the previous state, and the closer the value of r t is to 0, the less information is written in the previous state;

Figure BDA0002255763670000043
表示当前时刻下的候选状态信息,tanh(·)激活函数用于将值缩放到[-1,1]之间,即:
Figure BDA0002255763670000043
Represents the candidate state information at the current moment, and the tanh( ) activation function is used to scale the value between [-1, 1], namely:

Figure BDA0002255763670000044
Figure BDA0002255763670000044

步骤3)中对GRU预测模型进行训练的具体过程为:The specific process of training the GRU prediction model in step 3) is as follows:

设均方误差损失函数J(w)用于训练期间评估GRU预测模型对训练数据的拟合程度,J(w)的表达式为:Suppose the mean square error loss function J(w) is used to evaluate the fitting degree of the GRU prediction model to the training data during training, and the expression of J(w) is:

Figure BDA0002255763670000045
Figure BDA0002255763670000045

其中,N表示训练数据数目,yi表示第i条数据的标签,即真实的PUE值,

Figure BDA0002255763670000046
为GRU预测模型预测的PUE值;Among them, N represents the number of training data, y i represents the label of the i-th data, that is, the real PUE value,
Figure BDA0002255763670000046
PUE value predicted for the GRU prediction model;

设训练优化器为Adam,其更新参数w的方式为:Let the training optimizer be Adam, and the way to update the parameter w is:

先计算均方误差损失函数J(w)对参数w的梯度gt,再计算梯度gt的一阶矩mt及二阶矩vt,其中,First calculate the gradient g t of the mean square error loss function J(w) to the parameter w, and then calculate the first-order moment m t and the second-order moment v t of the gradient g t , where,

mt=β1·mt-1+(1-β1)·gt m t1 ·m t-1 +(1-β 1 )·g t

vt=β2·vt-1+(1-β2)·gt 2 v t2 ·v t-1 +(1-β 2 )·g t 2

其中,β1及β2为超参数;Among them, β 1 and β 2 are hyperparameters;

然后通过以下公式对一阶矩和二阶矩进行校正;The first and second moments are then corrected by the following formulas;

Figure BDA0002255763670000051
Figure BDA0002255763670000051

Figure BDA0002255763670000052
Figure BDA0002255763670000052

其中,β1 t及β2 t分别为β1及β2的t次方。Among them, β 1 t and β 2 t are the t powers of β 1 and β 2 , respectively.

对参数w的更新过程为:The update process of parameter w is:

Figure BDA0002255763670000053
Figure BDA0002255763670000053

其中,α表示学习率,ε为超参数。where α is the learning rate and ε is the hyperparameter.

步骤4)的具体操作为:The specific operation of step 4) is:

用决定系数R2评估GRU预测模型,其中,决定系数R2的表达式为: The GRU prediction model is evaluated with the coefficient of determination R2, where the expression for the coefficient of determination R2 is :

Figure BDA0002255763670000054
Figure BDA0002255763670000054

其中,yi为测试样本真实的PUE值,

Figure BDA0002255763670000055
为GRU预测模型的预测值,
Figure BDA0002255763670000056
为测试样本PUE的均值,决定系数R2表示GRU预测模型对真实数据的拟合程度,决定系数R2的值越接近1,则表示GRU预测模型的预测准确性越高。Among them, yi is the real PUE value of the test sample,
Figure BDA0002255763670000055
is the predicted value of the GRU prediction model,
Figure BDA0002255763670000056
In order to test the mean value of the sample PUE, the coefficient of determination R 2 represents the fit degree of the GRU prediction model to the real data. The closer the value of the coefficient of determination R 2 is to 1, the higher the prediction accuracy of the GRU prediction model.

本发明具有以下有益的技术效果:The present invention has the following beneficial technical effects:

本发明所述的基于GRU神经网络预测数据中心能耗效率值PUE的方法在具体操作时,选用GRU预测模型作为预测模型,由于GRU预测模型具有记忆训练信息的功能,可以使得能耗相关的属性被充分地考虑,如温度、湿度等的时序性,相对于现有技术,在训练的过程中充分挖掘PUE与能耗特征之间的相关性,提高预测PUE的准确率,本发明在数据中心模拟器EnergyPlus生成的数据上进行了验证,并与其它传统预测方法进行了比较,具有最优的预测效果。The method for predicting the energy consumption efficiency value PUE of a data center based on the GRU neural network of the present invention selects the GRU prediction model as the prediction model during the specific operation. Because the GRU prediction model has the function of memorizing training information, it can make the attributes related to energy consumption. It is fully considered, such as the timing of temperature, humidity, etc., compared with the prior art, the correlation between PUE and energy consumption features is fully exploited in the training process, and the accuracy of predicting PUE is improved. It has been verified on the data generated by the simulator EnergyPlus, and compared with other traditional forecasting methods, and it has the best forecasting effect.

附图说明Description of drawings

图1为GRU的网络单元的结构示意图;1 is a schematic structural diagram of a network unit of a GRU;

图2为本发明与其它预测方法在以相关系数R2为评价指标下的性能比较图;FIG. 2 is a performance comparison diagram of the present invention and other prediction methods with correlation coefficient R 2 as an evaluation index;

图3为本发明预测的PUE值与真实PUE的拟合图。FIG. 3 is a fitting diagram of the predicted PUE value of the present invention and the real PUE.

具体实施方式Detailed ways

下面结合附图对本发明做进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:

参考图1,本发明所述的基于GRU(GatedRecurrentUnit)神经网络预测数据中心能耗效率值PUE的方法包括以下步骤:1 , the method for predicting a data center energy consumption efficiency value PUE based on a GRU (GatedRecurrentUnit) neural network according to the present invention includes the following steps:

1)收集数据中心能耗相关的属性数据;1) Collect attribute data related to data center energy consumption;

步骤1)的具体操作为:按设定时间间隔(10min)收集数据中心能耗相关的属性数据,其中,收集得到的数据中心能耗相关的属性数据包括IT设备相关的属性数据、环境相关的属性数据、冷却系统相关的属性数据及基础设施相关的属性数据,其中,IT设备相关的属性数据包括服务器负载、UPS的电力负载及热增率;环境相关的属性数据包括温度、湿度及露点温度;冷却系统相关的属性数据包括冷却率及CRAC(Computer Room Air Condition)功率;基础设施相关的属性数据包括照明及HVAC(Heating,Ventilation and AirCondition)功率,设在t时刻收集得到的数据中心能耗相关的属性数据Xt=(x1,x2,...,xn)。The specific operation of step 1) is: collecting the attribute data related to the energy consumption of the data center at a set time interval (10 min), wherein the collected attribute data related to the energy consumption of the data center includes attribute data related to IT equipment, and attribute data related to the environment. Attribute data, attribute data related to cooling system and attribute data related to infrastructure, among which attribute data related to IT equipment includes server load, UPS power load and thermal increase rate; environment related attribute data includes temperature, humidity and dew point temperature ; The attribute data related to the cooling system includes cooling rate and CRAC (Computer Room Air Condition) power; the attribute data related to infrastructure includes lighting and HVAC (Heating, Ventilation and Air Condition) power, set the data center energy consumption collected at time t Relevant attribute data X t =(x 1 , x 2 , . . . , x n ).

2)对步骤1)收集到的属性数据进行归一化及特征选择;2) Normalization and feature selection are performed on the attribute data collected in step 1);

步骤2)的具体操作为:The specific operations of step 2) are:

21)将收集得到的数据中心能耗相关的属性数据Xt=(x1,x2,...,xn)归一化到[0,1]之间,将归一化后的数据记为Xi=(x1,x2,...,xn);21) Normalize the collected attribute data X t =(x 1 ,x 2 ,...,x n ) related to energy consumption of the data center to [0,1], and normalize the normalized data Denoted as X i =(x 1 ,x 2 ,...,x n );

设原始数据为Xi=(x1,x2,...,xn),则归一化数据属性值的方式为:Assuming that the original data is Xi = (x 1 , x 2 ,..., x n ) , the normalized data attribute values are as follows:

Figure BDA0002255763670000071
Figure BDA0002255763670000071

其中,x表示原属性值,xmin表示所有的数据中心属性具有的最小数值,xmax表示属性具有的最大数值,xnormal表示归一化后的属性值,其取值在[0,1],把归一化后的数据Xi记为Xi=(x1,x2,...,xn);Among them, x represents the original attribute value, x min represents the minimum value of all data center attributes, x max represents the maximum value of the attribute, x normal represents the normalized attribute value, and its value is in [0,1] , denote the normalized data X i as X i =(x 1 ,x 2 ,...,x n );

22)利用特征选择算法(RFECV(Recursive Feature Elimination with Cross-Validation))选出与预测PUE相关性最大的m个属性数据。22) Use a feature selection algorithm (RFECV (Recursive Feature Elimination with Cross-Validation)) to select m attribute data with the greatest correlation with the predicted PUE.

步骤22)的具体操作为:The specific operation of step 22) is:

使用RFECV方法进行特征选择,选出与预测PUE关联性最大的m个属性数据X=(x1,x2,...,xm)。Feature selection is performed using the RFECV method, and m attribute data X=(x 1 , x 2 , . . . , x m ) that are most relevant to the predicted PUE are selected.

3)选用GRU预测模型作为预测模型,设置损失函数J(w)与优化方法optimizer,然后利用步骤2)特征选择得到的部分数据对GRU预测模型进行训练;3) Select the GRU prediction model as the prediction model, set the loss function J(w) and the optimization method optimizer, and then use the part of the data obtained by the feature selection in step 2) to train the GRU prediction model;

步骤3)的具体操作为:The specific operation of step 3) is:

在现有的对于数据中心PUE值的预测方法中,使用的是简单ANN(ArtificialNeural Network)与多项式线性回归等机器学习方法,这些方法的不足之处在于没有考虑到数据中心能耗相关属性如:温度、湿度等具有的时序性特点,因此,在本发明中提出使用GRU(Gated Recurrent Unit)循环神经网络来作为PUE的预测模型。In the existing prediction methods for the PUE value of data centers, machine learning methods such as simple ANN (Artificial Neural Network) and polynomial linear regression are used. The disadvantage of these methods is that they do not take into account the attributes related to data center energy consumption, such as: Temperature, humidity, etc. have time series characteristics. Therefore, in the present invention, it is proposed to use GRU (Gated Recurrent Unit) recurrent neural network as the prediction model of PUE.

使用GRU循环神经网络作为PUE预测模型,其中,GRU循环神经网络内的GRU神经元结构中存在重置门(reset gate)rt与更新门(update gate)zt两个门控单元,用于实现记忆或遗忘之前训练步骤所产生的训练信息,GRU单元的具体计算过程为:The GRU recurrent neural network is used as the PUE prediction model, in which there are two gate units, reset gate r t and update gate z t in the GRU neuron structure in the GRU recurrent neural network, for To realize the training information generated by the training steps before memorizing or forgetting, the specific calculation process of the GRU unit is as follows:

zt=σ(Wz·[ht-1,xt]+bz)z t =σ(W z ·[h t-1 , x t ]+b z )

rt=σ(Wr·[ht-1,xt]+br)r t =σ(W r ·[h t-1 , x t ]+ br )

Figure BDA0002255763670000082
Figure BDA0002255763670000082

其中,zt用于控制前一状态有多少信息ht-1被写入到当前状态ht,σ(·)为将值缩放到(0,1)之间的sigmoid激活函数,即:Among them, z t is used to control how much information h t-1 of the previous state is written to the current state h t , σ( ) is the sigmoid activation function that scales the value between (0, 1), namely:

Figure BDA0002255763670000083
Figure BDA0002255763670000083

t为传入待放缩的参数,其中,σ(·)值越接近0,则表示写入越多,σ(·)值越接近1,则表示写入得越少,其中,ht-1表示t-1时刻输出的状态信息,xt代表当前时刻的输入,Wz、Wr及Wh为权重参数,bz、br及bh为偏置常数;t is the incoming parameter to be scaled, where the closer the value of σ( ) is to 0, the more writing, the closer the value of σ( ) is to 1, the less the writing is, where h t- 1 represents the state information output at time t-1, x t represents the input at the current time, W z , W r and W h are weight parameters, and b z , br and b h are bias constants;

rt用于控制前一状态有多少信息被写入到当前的候选状态

Figure BDA0002255763670000084
rt的值越接近于1,则表示前一状态被写入的信息越多,rt的越接近于0,则表示前一状态被写入的信息越少;r t is used to control how much information from the previous state is written to the current candidate state
Figure BDA0002255763670000084
The closer the value of r t is to 1, the more information is written in the previous state, and the closer the value of r t is to 0, the less information is written in the previous state;

Figure BDA0002255763670000085
表示当前时刻下的候选状态信息,tanh(·)激活函数用于将值缩放到[-1,1]之间,即:
Figure BDA0002255763670000085
Represents the candidate state information at the current moment, and the tanh( ) activation function is used to scale the value between [-1, 1], namely:

Figure BDA0002255763670000086
Figure BDA0002255763670000086

步骤3)中对GRU预测模型进行训练的具体过程为:The specific process of training the GRU prediction model in step 3) is as follows:

设均方误差损失函数J(w)用于训练期间评估GRU预测模型对训练数据的拟合程度,J(w)的表达式为:Suppose the mean square error loss function J(w) is used to evaluate the fitting degree of the GRU prediction model to the training data during training, and the expression of J(w) is:

Figure BDA0002255763670000091
Figure BDA0002255763670000091

其中,N表示训练数据数目,yi表示第i条数据的标签,即真实的PUE值,

Figure BDA0002255763670000092
为GRU预测模型预测的PUE值;Among them, N represents the number of training data, y i represents the label of the i-th data, that is, the real PUE value,
Figure BDA0002255763670000092
PUE value predicted for the GRU prediction model;

设训练优化器为Adam,其更新参数w的方式为:Let the training optimizer be Adam, and the way to update the parameter w is:

先计算均方误差损失函数J(w)对参数w的梯度gt,再计算梯度gt的一阶矩mt及二阶矩vt,其中,First calculate the gradient g t of the mean square error loss function J(w) to the parameter w, and then calculate the first-order moment m t and the second-order moment v t of the gradient g t , where,

mt=β1·mt-1+(1-β1)·gt m t1 ·m t-1 +(1-β 1 )·g t

Figure BDA0002255763670000093
Figure BDA0002255763670000093

其中,β1及β2为超参数;Among them, β 1 and β 2 are hyperparameters;

然后通过以下公式对一阶矩和二阶矩进行校正;The first and second moments are then corrected by the following formulas;

Figure BDA0002255763670000094
Figure BDA0002255763670000094

Figure BDA0002255763670000095
Figure BDA0002255763670000095

其中,β1 t及β2 t分别为β1及β2的t次方。Among them, β 1 t and β 2 t are the t powers of β 1 and β 2 , respectively.

对参数w的更新过程为:The update process of parameter w is:

Figure BDA0002255763670000096
Figure BDA0002255763670000096

其中,α表示学习率,ε为超参数。where α is the learning rate and ε is the hyperparameter.

4)利用步骤2)特征选择得到的剩余数据对训练后的GRU预测模型进行评估,再利用评估后的GRU预测模型预测数据中心能耗效率值PUE。4) Evaluate the trained GRU prediction model using the remaining data obtained from the feature selection in step 2), and then use the evaluated GRU prediction model to predict the energy consumption efficiency value PUE of the data center.

步骤4)的具体操作为:The specific operation of step 4) is:

用决定系数R2评估GRU预测模型,其中,决定系数R2(Coefficient ofdetermination)的表达式为:The GRU prediction model is evaluated with the coefficient of determination R 2 , where the expression for the coefficient of determination R 2 is:

Figure BDA0002255763670000101
Figure BDA0002255763670000101

其中,yi为测试样本真实的PUE值,

Figure BDA0002255763670000102
为GRU预测模型的预测值,
Figure BDA0002255763670000103
为测试样本PUE的均值,决定系数R2表示GRU预测模型对真实数据的拟合程度,决定系数R2的值越接近1,则表示GRU预测模型的预测准确性越高。Among them, yi is the real PUE value of the test sample,
Figure BDA0002255763670000102
is the predicted value of the GRU prediction model,
Figure BDA0002255763670000103
In order to test the mean value of the sample PUE, the coefficient of determination R 2 represents the fit degree of the GRU prediction model to the real data. The closer the value of the coefficient of determination R 2 is to 1, the higher the prediction accuracy of the GRU prediction model.

如图2所示,本发明在R2上的预测表现优于ANN、SVR等预测模型,这是由于GRU具有记忆的特性,使得能耗属性的时序性特点能被充分考虑到;GRU优于LSTM的原因在于GRU的门控单元少,因此参数也少,所以训练的时间少,复杂度低,预测的效果更好。As shown in Fig. 2, the prediction performance of the present invention on R 2 is better than that of ANN, SVR and other prediction models. This is because GRU has the characteristics of memory, so that the time series characteristics of energy consumption attributes can be fully considered; GRU is better than The reason for LSTM is that GRU has fewer gated units, so there are fewer parameters, so the training time is less, the complexity is lower, and the prediction effect is better.

Claims (7)

1. A method for predicting a data center energy consumption efficiency PUE based on a GRU neural network is characterized by comprising the following steps:
1) collecting attribute data related to energy consumption of a data center;
2) normalizing the attribute data collected in the step 1) and selecting features;
3) selecting a GRU prediction model as a prediction model, setting a loss function J (w) and an optimization method optimizer, and then training the GRU prediction model by using part of data obtained by the feature selection in the step 2);
4) and (3) evaluating the trained GRU prediction model by utilizing the residual data obtained by the feature selection in the step 2), and predicting the energy consumption efficiency PUE of the data center by utilizing the evaluated GRU prediction model.
2. The method for predicting the data center energy consumption efficiency rate PUE based on the GRU neural network as claimed in claim 1, wherein the specific operation of the step 1) is as follows: collecting attribute data related to energy consumption of a data center according to a set time interval, wherein the collected attribute data related to the energy consumption of the data center comprises attribute data related to IT equipment, attribute data related to environment, attribute data related to a cooling system and attribute data related to infrastructure, and the attribute data related to the IT equipment comprises server load, electric load of a UPS and heat gain rate; the environment-related attribute data includes temperature, humidity, and dew point temperature; cooling system related attribute data includes cooling rate and CRAC power; the attribute data related to the infrastructure includes lighting and HVAC power, and the attribute data X related to the energy consumption of the data center collected at the time tt=(x1,x2,...,xn)。
3. The method for predicting the data center energy consumption efficiency rate PUE based on the GRU neural network as claimed in claim 2, wherein the specific operation of the step 2) is as follows:
21) collecting the obtained attribute data X related to the energy consumption of the data centert=(x1,x2,...,xn) Normalized to [0,1 ]]In between, the normalized data is recorded as Xi=(x1,x2,...,xn);
22) And selecting m attribute data with the maximum correlation with the predicted PUE by using a feature selection algorithm.
4. The method for predicting a data center energy consumption efficiency rate PUE based on a GRU neural network as claimed in claim 3, wherein the specific operation of step 22) is:
feature selection is performed by using an RFECV method, and m attribute data X with the maximum relevance to the predicted PUE are selected (X is X)1,x2,...,xm)。
5. The method for predicting PUE (energy consumption efficiency) of data center based on GRU (neural network) of claim 1, wherein in the step 3), the GRU recurrent neural network is used as a PUE prediction model, wherein a reset gate r exists in a GRU neuron structure in the GRU recurrent neural networktAnd update gate ztTwo gate control units, which are used for realizing the training information generated in the training step before memorizing or forgetting, wherein the specific calculation process of the GRU unit is as follows:
zt=σ(Wz·[ht-1,xt]+bz)
rt=σ(Wr·[ht-1,xt]+br)
Figure FDA0002255763660000021
Figure FDA0002255763660000022
wherein z istFor controlling how much information h is in the previous statet-1Is written to the current state htσ () is a sigmoid activation function that scales values between (0,1), i.e.:
Figure FDA0002255763660000023
t is the parameter to be scaled in, where a closer value of σ () to 0 means more writes and a closer value of σ () to 1 means less writes, where ht-1Indicating the status information, x, output at time t-1tRepresenting the input at the current time, Wz、WrAnd WhAs weight parameter, bz、brAnd bhIs a bias constant;
rtfor controlling how much information from a previous state is written to a current candidate state
Figure FDA0002255763660000024
rtThe closer to 1 the value of (d) is, the more information is written indicating the previous state, rtThe closer to 0, the less information is written to the previous state;
Figure FDA0002255763660000025
representing candidate state information at the current time instant, tanh (-) activation function for scaling the value to [ -1,1]Namely:
Figure FDA0002255763660000031
6. the method for predicting the data center energy consumption efficiency PUE based on the GRU neural network as claimed in claim 5, wherein the specific process of training the GRU prediction model in the step 3) is as follows:
assuming that the mean square error loss function J (w) is used for evaluating the fitting degree of the GRU prediction model to the training data during training, the expression of J (w) is as follows:
Figure FDA0002255763660000032
where N denotes the number of training data, yiThe tag representing the ith piece of data, i.e. the true PUE value,
Figure FDA0002255763660000033
PUE values predicted for GRU prediction models;
let the training optimizer Adam, and the way to update the parameter w is:
first, the gradient g of the mean square error loss function J (w) to the parameter w is calculatedtThen, the gradient g is calculatedtFirst moment m oftAnd second moment vtWherein, in the step (A),
mt=β1·mt-1+(1-β1)·gt
vt=β2·vt-1+(1-β2)·gt 2
wherein, β1And β2Is a hyper-parameter;
then, correcting the first moment and the second moment by the following formula;
Figure FDA0002255763660000034
Figure FDA0002255763660000035
wherein, β1 tAnd β2 tAre respectively β1And β2To the t power;
the updating process of the parameter w is as follows:
where α denotes the learning rate, and ε is a hyperparameter.
7. The method for predicting the data center energy consumption efficiency rate PUE based on the GRU neural network as claimed in claim 6, wherein the specific operation of the step 4) is as follows:
by determining the coefficient R2Evaluating the GRU prediction model, wherein a coefficient R is determined2The expression of (a) is:
wherein, yiIn order to test the true PUE value of the sample,
Figure FDA0002255763660000043
for the predicted value of the GRU prediction model,
Figure FDA0002255763660000044
determining the coefficient R for the mean of the PUE of the test sample2Representing the fitting degree of the GRU prediction model to the real data, and determining a coefficient R2The closer to 1, the higher the prediction accuracy of the GRU prediction model.
CN201911052854.3A 2019-10-31 2019-10-31 A method for predicting data center energy efficiency value PUE based on GRU neural network Pending CN110852498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911052854.3A CN110852498A (en) 2019-10-31 2019-10-31 A method for predicting data center energy efficiency value PUE based on GRU neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911052854.3A CN110852498A (en) 2019-10-31 2019-10-31 A method for predicting data center energy efficiency value PUE based on GRU neural network

Publications (1)

Publication Number Publication Date
CN110852498A true CN110852498A (en) 2020-02-28

Family

ID=69598737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911052854.3A Pending CN110852498A (en) 2019-10-31 2019-10-31 A method for predicting data center energy efficiency value PUE based on GRU neural network

Country Status (1)

Country Link
CN (1) CN110852498A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693667A (en) * 2020-05-06 2020-09-22 杭州电子科技大学 Water quality detection system and method based on gated recursive array
CN112734097A (en) * 2020-12-31 2021-04-30 中南大学 Unmanned train energy consumption prediction method, system and storage medium
CN112991331A (en) * 2021-04-19 2021-06-18 广州大一互联网络科技有限公司 Operation and maintenance method and device of data center using insulating cooling liquid
CN113837480A (en) * 2021-09-29 2021-12-24 河北工业大学 Impact Load Forecasting Method Based on Improved GRU and Differential Error Compensation
CN114066024A (en) * 2021-10-29 2022-02-18 中国信息通信研究院 Method, device, electronic device and storage medium for predicting power supply load factor of power supply and distribution system
CN114692942A (en) * 2022-01-17 2022-07-01 陕西智引科技有限公司 Data center energy consumption prediction system based on GRU neural network model
CN114723303A (en) * 2022-04-15 2022-07-08 中国电信股份有限公司 Method, device and equipment for determining energy-saving space of machine room and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204978A (en) * 2015-06-23 2015-12-30 北京百度网讯科技有限公司 Data center operation data analysis system based on machine learning
CN108448610A (en) * 2018-03-12 2018-08-24 华南理工大学 A short-term wind power prediction method based on deep learning
CN109325624A (en) * 2018-09-28 2019-02-12 国网福建省电力有限公司 A method for forecasting monthly electricity demand based on deep learning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204978A (en) * 2015-06-23 2015-12-30 北京百度网讯科技有限公司 Data center operation data analysis system based on machine learning
CN108448610A (en) * 2018-03-12 2018-08-24 华南理工大学 A short-term wind power prediction method based on deep learning
CN109325624A (en) * 2018-09-28 2019-02-12 国网福建省电力有限公司 A method for forecasting monthly electricity demand based on deep learning

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NING LIU ET AL.: "data center power management for regulation service using neural network-based power prediction", 《2017 18TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED)》 *
王增平 等: "基于GRU-NN模型的短期负荷预测方法", 《电力系统自动化》 *
秦育: "大型公共建筑能耗预测模型与监管系统研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693667A (en) * 2020-05-06 2020-09-22 杭州电子科技大学 Water quality detection system and method based on gated recursive array
CN112734097A (en) * 2020-12-31 2021-04-30 中南大学 Unmanned train energy consumption prediction method, system and storage medium
CN112734097B (en) * 2020-12-31 2023-09-05 中南大学 Energy consumption prediction method, system and storage medium for unmanned train
CN112991331A (en) * 2021-04-19 2021-06-18 广州大一互联网络科技有限公司 Operation and maintenance method and device of data center using insulating cooling liquid
CN112991331B (en) * 2021-04-19 2021-10-26 广州大一互联网络科技有限公司 Operation and maintenance method and device of data center using insulating cooling liquid
CN113837480A (en) * 2021-09-29 2021-12-24 河北工业大学 Impact Load Forecasting Method Based on Improved GRU and Differential Error Compensation
CN113837480B (en) * 2021-09-29 2023-11-07 河北工业大学 Impact load prediction method based on improved GRU and differential error compensation
CN114066024A (en) * 2021-10-29 2022-02-18 中国信息通信研究院 Method, device, electronic device and storage medium for predicting power supply load factor of power supply and distribution system
CN114692942A (en) * 2022-01-17 2022-07-01 陕西智引科技有限公司 Data center energy consumption prediction system based on GRU neural network model
CN114723303A (en) * 2022-04-15 2022-07-08 中国电信股份有限公司 Method, device and equipment for determining energy-saving space of machine room and storage medium
CN114723303B (en) * 2022-04-15 2023-10-31 中国电信股份有限公司 Method, device, equipment and storage medium for determining energy-saving space of machine room

Similar Documents

Publication Publication Date Title
CN110852498A (en) A method for predicting data center energy efficiency value PUE based on GRU neural network
Tan et al. Ultra-short-term wind power prediction by salp swarm algorithm-based optimizing extreme learning machine
Ye et al. Predicting electricity consumption in a building using an optimized back-propagation and Levenberg–Marquardt back-propagation neural network: Case study of a shopping mall in China
CN105117602B (en) A kind of metering device running status method for early warning
CN108090629B (en) Load Forecasting Method and System Based on Nonlinear Autoregressive Neural Network
CN112734128B (en) A 7-Day Power Load Peak Forecasting Method Based on Optimal RBF
CN107644297B (en) Energy-saving calculation and verification method for motor system
Barzola-Monteses et al. Energy consumption of a building by using long short-term memory network: a forecasting study
CN116167531A (en) Photovoltaic power generation prediction method based on digital twin
CN116526473A (en) Electric heating load forecasting method based on particle swarm optimization LSTM
Huang et al. Elman neural network considering dynamic time delay estimation for short-term forecasting of offshore wind power
CN114022311A (en) Comprehensive energy system data compensation method for generating countermeasure network based on time sequence condition
CN115630709A (en) Method for dynamically analyzing and optimizing AI energy consumption threshold of data center
CN115759415A (en) Electricity Demand Forecasting Method Based on LSTM-SVR
CN115481788A (en) Load prediction method and system for phase change energy storage system
CN114240687A (en) Energy hosting efficiency analysis method suitable for comprehensive energy system
CN113128666A (en) Mo-S-LSTMs model-based time series multi-step prediction method
Zhao et al. A frequency item mining based embedded feature selection algorithm and its application in energy consumption prediction of electric bus
CN109390976B (en) A power identification method for distributed photovoltaic power generation in low-voltage station area
CN110598947A (en) Load prediction method based on improved cuckoo-neural network algorithm
CN114818827A (en) A non-intrusive load decomposition method based on seq2point network
CN118780438A (en) Adaptive hybrid rime optimization cooling load prediction method for public buildings and related devices
Li et al. Practice and application of LSTM in temperature prediction of HVAC system
CN116544931B (en) Electric power load distribution prediction method based on integrated segment transformation and temporal convolutional network
CN116415713A (en) Building energy consumption prediction method based on E+ and artificial intelligence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200228

RJ01 Rejection of invention patent application after publication