CN110848103A - 一种利用昼夜温差为能量源的发电系统 - Google Patents

一种利用昼夜温差为能量源的发电系统 Download PDF

Info

Publication number
CN110848103A
CN110848103A CN201911178628.XA CN201911178628A CN110848103A CN 110848103 A CN110848103 A CN 110848103A CN 201911178628 A CN201911178628 A CN 201911178628A CN 110848103 A CN110848103 A CN 110848103A
Authority
CN
China
Prior art keywords
working medium
closed container
generator
temperature difference
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911178628.XA
Other languages
English (en)
Inventor
贾东明
鞠宏艳
秦鹏举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACADEMY OF AEROSPACE SOLID PROPULSION TECHNOLOGY
Xian Aerospace Propulsion Institute
Original Assignee
ACADEMY OF AEROSPACE SOLID PROPULSION TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACADEMY OF AEROSPACE SOLID PROPULSION TECHNOLOGY filed Critical ACADEMY OF AEROSPACE SOLID PROPULSION TECHNOLOGY
Priority to CN201911178628.XA priority Critical patent/CN110848103A/zh
Publication of CN110848103A publication Critical patent/CN110848103A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明公开了一种利用昼夜温差为能量源的发电系统,包括封闭容器、发电机、液体工质及气体工质;封闭容器内部盛放液体工质及气体工质,液体工质由于重力作用位于封闭容器底部,气体工质部分溶解于液体工质,同时,封闭容器与发电机通过管道连通;昼夜温差导致封闭容器内气体工质在液体工质中的溶解度变化,使两种工质的总体积变化,发电机利用体积变化转化的压强波动发电。本发明能够利用昼夜温差的波动作为能量源发电。

Description

一种利用昼夜温差为能量源的发电系统
技术领域
本发明涉及发电装置技术领域,具体涉及一种利用昼夜温差为能量源的发电系统。
背景技术
发电即利用发电动力装置将水能、化石燃料(煤炭、石油、天然气等)的热能、核能以及太阳能、风能、地热能、海洋能等转换为电能。发电动力装置按能源的种类分为火电动力装置、水电动力装置、核电动力装置及其他能源发电动力装置。风力、太阳能、水力等这些能量源均需要在特殊环境下才能获得,能否找到一种在任何地域都能获得的能量源呢?研究发现,昼夜温度差是一种普遍存在的能量源,如果能够充分利用昼夜温度差发电,则该装置应该可以应用于各种地域,例如偏远地区等。
利用昼夜温差作为发电方式其温差大致是:每12小时温度变化为10℃左右,能量密度非常低,因此能量采集的体积非常大,从经济上来讲并不一定很划算,特别是对大型发电设备而言,能量采集的成本过高。目前的设备都不适合于昼夜温差发电,因为采用温差发电技术如热电偶发电、热蒸发发电,都需要有较大温差,10℃的温差不足以使这些设备发电,因此本发明重点集中在弱电,如手机充电、照明用电等小能量用电设备上。
发明内容
有鉴于此,本发明提供了一种利用昼夜温差为能量源的发电系统,能够利用昼夜温差的波动作为能量源发电。
本发明采用的技术方案如下:
一种利用昼夜温差为能量源的发电系统,包括封闭容器、发电机、液体工质及气体工质;
所述封闭容器内部盛放液体工质及气体工质,液体工质由于重力作用位于封闭容器底部,气体工质部分溶解于液体工质,同时,所述封闭容器与发电机通过管道连通;昼夜温差导致封闭容器内气体工质在液体工质中的溶解度变化,使两种工质的总体积变化,所述发电机利用体积变化转化的压强波动发电。
进一步地,所述发电机采用基于流体压强波动的变电容发电机。
进一步地,采用若干个封闭容器串联在一起组成容器组,或若干个发电机并联在一起组成发电机组。
有益效果:
1、本发明可以昼夜温差的波动作为能量源发电,扩充了发电系统的利用范围,而且大多数地域都可以适用,满足环保的要求,全寿命周期成本很低,可以实现无人值守发电。
2、本发明的发电机采用基于流体压强波动的变电容发电机,直接利用流体压强波动来发电,避免了更多的能量损失,效率高。
附图说明
图1为本发明整体结构示意图;
其中,1-封闭容器,2-发电机,3-液体工质,4-气体工质。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本实施例提供了一种利用昼夜温差为能量源的发电系统,如图1所示,包括封闭容器1、发电机2、液体工质3及气体工质4。
封闭容器1内部盛放液体工质3及气体工质4,液体工质3由于重力作用位于封闭容器1底部,气体工质4部分溶解于液体工质3,同时,封闭容器1与发电机2通过管道连通,封闭容器1中的液体工质3或气体工质4可以自由进出。
发电机2采用ZL201310502919.6的基于流体压强波动的变电容发电机作为发电装置,但不排除其他的发电装置。
工作原理为:当外界温度升高时,封闭容器1内气体工质4在液体工质3中的溶解度变化,液体工质3中的气体会排放进入气体工质4中,导致气体工质4的体积增大,气体工质4的压强与外界压强相等,因此两种工质的总体积增大会导致发电机2中的液体工质3或气体工质4增加,使发电机2据此发电;当外界温度降低时,气体工质4会被液体工质3所吸附,导致气体工质4的体积缩小,发电机2中工质减少,可以继续发电。
设封闭容器1的容积为V,液体工质3的体积为Vy,在温度TL下,气体工质4的体积为Vq,则有V=Vy+Vq。液体工质3可以选用溶解度比较高的溶液,如氨水等,在温度TL下溶解度为β(TL),当温度上升到TU时,设溶解度为β(TU),则此时从液体工质3中排出的气体体积为(β(TU)-β(TL))·Vy,气体自身由于热胀冷缩效应导致的体积增大为
Figure BDA0002290688070000031
因此理论上的对外做功
Figure BDA0002290688070000032
其中P0是外界气体压强,为一个大气压。当温度从TU下降到TL时,气体工质4会被液体工质3所吸附,同时气体体积也会因热胀冷缩而缩小,做功的分析与膨胀时相同,也是
Figure BDA0002290688070000033
因此,一个昼夜理论做功是2W,设发电系统效率是η,则本昼夜温差发电系统对外输出电能为2ηW。
如果一昼夜发一度电,则需要确定发电系统基本参数:设发电效率η=0.5,由2ηW=3600kJ,气体压强取为100kPa,需要的气体体积增量为
Figure BDA0002290688070000041
如果选用氨气作为气体工质4,氨水作为液体工质3,其溶解度表见下表。
温度T(℃) 溶解度β
0 88.5
10 70
20 56
30 44.5
40 34
根据上表数据,温度每升高10℃,溶解度约下降10,据此进行计算,如果昼夜温差相差10℃,需要氨水体积3.6m3
本发明还可以采用若干个封闭容器1串联在一起组成封闭容器组,或若干个发电机并联在一起组成发电机组。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种利用昼夜温差为能量源的发电系统,其特征在于,包括封闭容器、发电机、液体工质及气体工质;
所述封闭容器内部盛放液体工质及气体工质,液体工质由于重力作用位于封闭容器底部,气体工质部分溶解于液体工质,同时,所述封闭容器与发电机通过管道连通;昼夜温差导致封闭容器内气体工质在液体工质中的溶解度变化,使两种工质的总体积变化,所述发电机利用体积变化转化的压强波动发电。
2.如权利要求1所述的利用昼夜温差为能量源的发电系统,其特征在于,所述发电机采用基于流体压强波动的变电容发电机。
3.如权利要求1所述的利用昼夜温差为能量源的发电系统,其特征在于,采用若干个封闭容器串联在一起组成容器组,或若干个发电机并联在一起组成发电机组。
CN201911178628.XA 2019-11-27 2019-11-27 一种利用昼夜温差为能量源的发电系统 Pending CN110848103A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911178628.XA CN110848103A (zh) 2019-11-27 2019-11-27 一种利用昼夜温差为能量源的发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911178628.XA CN110848103A (zh) 2019-11-27 2019-11-27 一种利用昼夜温差为能量源的发电系统

Publications (1)

Publication Number Publication Date
CN110848103A true CN110848103A (zh) 2020-02-28

Family

ID=69605104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911178628.XA Pending CN110848103A (zh) 2019-11-27 2019-11-27 一种利用昼夜温差为能量源的发电系统

Country Status (1)

Country Link
CN (1) CN110848103A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201742A (zh) * 2020-05-15 2021-01-08 四川大学 一种用于沙漠地区昼夜运行的热电转换系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2215652A (en) * 1937-06-22 1940-09-24 Quinte Michael Salvador Continuous variable temperature power producing apparatus
US4036017A (en) * 1976-01-19 1977-07-19 Israel Siegel Low pressure engine
CN1186910A (zh) * 1997-11-10 1998-07-08 童成双 气体溶液吸收式地热发电
CN101922421A (zh) * 2009-06-12 2010-12-22 黄异男 胀力发电方法和装置
CN103633877A (zh) * 2013-10-23 2014-03-12 中国航天科技集团公司第四研究院第四十一研究所 基于流体压强波动的变电容发电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2215652A (en) * 1937-06-22 1940-09-24 Quinte Michael Salvador Continuous variable temperature power producing apparatus
US4036017A (en) * 1976-01-19 1977-07-19 Israel Siegel Low pressure engine
CN1186910A (zh) * 1997-11-10 1998-07-08 童成双 气体溶液吸收式地热发电
CN101922421A (zh) * 2009-06-12 2010-12-22 黄异男 胀力发电方法和装置
CN103633877A (zh) * 2013-10-23 2014-03-12 中国航天科技集团公司第四研究院第四十一研究所 基于流体压强波动的变电容发电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201742A (zh) * 2020-05-15 2021-01-08 四川大学 一种用于沙漠地区昼夜运行的热电转换系统

Similar Documents

Publication Publication Date Title
Kulasekara et al. A review of geothermal energy for future power generation
Li et al. Compressed air energy storage for offshore wind turbines
Al Wahedi et al. Assessment of a stand‐alone hybrid solar and wind energy‐based electric vehicle charging station with battery, hydrogen, and ammonia energy storages
Abdullah Applied energy: an introduction
CN111442326A (zh) 一种新型太阳能智能热电联供系统
Zhang et al. Parametric development and multi-aspect assessment of a novel solar energy driven plant for synchronic generation of green hydrogen and electricity
Deele et al. Design and Parametric Analysis of a Stand-Alone Solar-Hydro Power Plant with Pumped Water Storage Technology
Achkari et al. Renewable Energy Storage Technologies-A
CN110848103A (zh) 一种利用昼夜温差为能量源的发电系统
Kavadias et al. Sizing of a solar–geothermal hybrid power plant in remote island electrical network
Mitra et al. Various methodologies to improve the energy efficiency of a compressed air energy storage system
CN101924505A (zh) 一种太阳能温差发电装置
CN212081395U (zh) 一种新型太阳能智能热电联供系统
Rodriguez et al. Thermoelectric-driven autonomous sensors for a biomass power plant
Zarkevich Electricity without fuel
Kumar et al. A review on development and applications of solar dish stirling system
Hassan et al. Optimum Design of Photovoltaic/Regenerative Fuel Cell Power System for a Remote Telecom Station
Prinsen Design and analysis of a solar-powered compressed air energy storage system
Aishwarya et al. Solar powered stirling engine for self-generating electricity
Pirotti et al. A preliminary analysis of the generation of hydrogen from a floating offshore wind system
NKELE et al. Improving the Performance of Solar Thermal Energy Storage Systems
US20230111831A1 (en) Modular sustainable power plant for harvesting non-volcanic geothermal heat
CRISTESCU et al. Technologies of capture and storage of energy from renewable sources
Hallasmaa Implementation of an Energy Storage for Waste-to-Energy Plant
Furhana Shereen et al. A Critical Analysis of Renewable and Sustainable Energy Technologies: Energy Concept and Conversion Techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200228