CN110837046A - Converter switching tube fault detection and diagnosis method based on mechanical vibration signals - Google Patents

Converter switching tube fault detection and diagnosis method based on mechanical vibration signals Download PDF

Info

Publication number
CN110837046A
CN110837046A CN201911041755.5A CN201911041755A CN110837046A CN 110837046 A CN110837046 A CN 110837046A CN 201911041755 A CN201911041755 A CN 201911041755A CN 110837046 A CN110837046 A CN 110837046A
Authority
CN
China
Prior art keywords
fault
order
switching tube
characteristic frequency
order characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911041755.5A
Other languages
Chinese (zh)
Other versions
CN110837046B (en
Inventor
邱颖宁
任铭
冯延晖
黄光远
徐晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911041755.5A priority Critical patent/CN110837046B/en
Publication of CN110837046A publication Critical patent/CN110837046A/en
Application granted granted Critical
Publication of CN110837046B publication Critical patent/CN110837046B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The invention discloses a converter switching tube fault detection and diagnosis method based on mechanical vibration signals, which comprises two links of fault detection and fault diagnosis; a fault detection link acquires a vibration signal of the generator; carrying out envelope spectrum analysis on the acquired vibration signals to obtain an envelope spectrum; calculating first-order and second-order characteristic frequencies of the vibration signals; determining amplitudes corresponding to the first-order characteristic frequency and the second-order characteristic frequency according to the envelope spectrum, comparing the amplitudes with a first-order threshold value and a second-order threshold value respectively, and judging whether the converter switching tube fails or not; extracting the phase of the first-order characteristic frequency component in a fault diagnosis link; and comparing the phase of the first-order characteristic frequency component with the fault positioning information of the switching tube to finish diagnosis. The invention avoids the distortion problem generated by directly calculating the current phase by the fault current and improves the reliability of diagnosis.

Description

Converter switching tube fault detection and diagnosis method based on mechanical vibration signals
Technical Field
The invention belongs to the technical field of power generation, and particularly relates to a converter switching tube fault detection and diagnosis method based on a mechanical vibration signal.
Background
In the case of high-load and overload operation, the power switch tube is the weakest part in the converter, and the investigation shows that the fault rate of the switch tube in the wind power generation system reaches 38%. Therefore, the switching tube with faults can be quickly and accurately diagnosed, isolated and subjected to fault-tolerant control, and the method plays an important role in the operation stability of the whole system. The fault state of the power switch tube can be divided into three types of open-circuit fault, short-circuit fault and intermittent gate signal fault, and the detection and diagnosis of the open-circuit fault are the most critical because the latter two faults can be converted into the open-circuit fault through isolation.
At present, fault diagnosis of a switch tube of a converter is mostly based on an electrical signal and cannot be decoupled with a control system, so that the fault diagnosis is easily influenced by a control strategy and cannot be applied to certain occasions where current/voltage sensors cannot be installed. Since the vibration of the permanent magnet synchronous motor controlled by the converter on the mechanical structure is caused by the fault of the converter switching tube, the fault diagnosis by using a mechanical vibration signal can be considered. However, at present, fault diagnosis based on vibration signals is only used for diagnosing electromechanical faults, such as gear faults, shaft faults, bearing faults and motor faults, and no method for diagnosing faults of a switching tube of a converter of a permanent magnet synchronous power generation system by using vibration signals exists.
Disclosure of Invention
The invention aims to provide a fault detection and diagnosis method for a switching tube of a current transformer based on a mechanical vibration signal.
The technical solution for realizing the purpose of the invention is as follows: a converter switch tube fault detection and diagnosis method based on mechanical vibration signals comprises two links of fault detection and fault diagnosis;
(1) the fault detection link comprises the following specific steps:
step 1, collecting a vibration signal of a generator;
step 2, carrying out envelope spectrum analysis on the collected vibration signals to obtain an envelope spectrum;
step 3, calculating first-order and second-order characteristic frequencies of the vibration signals;
step 4, determining amplitude values corresponding to the first-order characteristic frequency and the second-order characteristic frequency according to the envelope spectrum, comparing the amplitude values with a first-order threshold value and a second-order threshold value respectively, and judging whether the converter switching tube has faults or not;
(2) the fault diagnosis link comprises the following specific steps:
step 1, extracting the phase of a first-order characteristic frequency component;
and 2, comparing the phase of the first-order characteristic frequency component with fault positioning information of the switching tube to finish diagnosis.
Compared with the prior art, the invention has the following remarkable advantages: 1) the vibration signal of the generator is used as a fault diagnosis signal, is completely independent from a converter system, cannot interfere with the converter system, ensures the stability of system operation, and is suitable for a working environment in which strong interference such as a current/voltage sensor cannot be installed; 2) the current phase signal obtained by calculating the mechanical phase signal of the photoelectric encoder is used for positioning the fault, so that the problem of distortion caused by directly calculating the current phase by the fault current is avoided, and the reliability of diagnosis is improved.
Drawings
Fig. 1 is a structural diagram of a permanent magnet synchronous power generation system.
Fig. 2 is a schematic view of a mounting position of the vibration sensor.
Fig. 3 is a flow chart of a method for detecting and diagnosing faults of a switching tube of a converter.
Fig. 4 is a characteristic diagram of the envelope spectrum of the vibration signal under different open circuit faults of the current transformer.
Fig. 5 is a schematic diagram of the diagnosis of the open circuit fault of the S3 tube according to the present invention.
Detailed Description
The scheme of the invention is further explained by combining the attached drawings and the specific embodiment.
The invention relates to a converter topology of a permanent magnet synchronous power generation system, which is shown in figure 1 and belongs to a voltage type three-phase six-switch rectifier. The vibration sensor for detecting the mechanical vibration signal is installed above the bearing at the driving end of the permanent magnet synchronous generator, as shown in fig. 2. Fig. 3 shows a method for detecting and diagnosing faults of a switching tube of a current transformer based on a mechanical vibration signal, which includes the following specific contents:
(1) the fault detection link comprises the following specific steps:
step 1, collecting a vibration signal of a generator by using a vibration sensor arranged above a bearing at the driving end of a permanent magnet synchronous generator;
step 2, carrying out envelope spectrum analysis on the collected vibration signals to obtain an envelope spectrum;
firstly, screening vibration signals, and only reserving peak points of the signals, namely points larger than adjacent elements; then, carrying out fast Fourier transform on the peak point curve to obtain a complex number corresponding to each frequency; and finally, drawing a curve by taking the frequency as an abscissa and taking the modular length of the complex number as an ordinate to obtain an envelope spectrum.
Step 3, calculating first-order and second-order characteristic frequencies of the vibration signals;
the calculation formula is as follows:
the first-order characteristic frequency is pole pair number multiplied by the rotation frequency of the motor;
the second-order characteristic frequency is 2 × pole pair number × motor rotation frequency.
Step 4, determining amplitude values corresponding to the first-order characteristic frequency and the second-order characteristic frequency according to the envelope spectrum, comparing the amplitude values with a first-order threshold value and a second-order threshold value respectively, and judging whether the converter switching tube has faults or not;
finding amplitudes corresponding to the first-order characteristic frequency and the second-order characteristic frequency in the envelope spectrum, comparing the amplitudes with a first-order threshold value and a second-order threshold value, if the amplitude of the first-order characteristic frequency is greater than the first-order threshold value and the amplitude of the second-order characteristic frequency is greater than the second-order threshold value, judging that a fault occurs, and entering a fault diagnosis link; otherwise, judging that no fault occurs, and continuing to monitor. The first-order threshold range is 0.05-0.12, and the second-order threshold range is 0.03-0.07.
(2) The fault diagnosis link comprises the following specific steps:
step 1, extracting the phase of the first-order characteristic frequency component, wherein a specific calculation formula is as follows:
Figure BDA0002253035400000031
wherein arctan () is an arctan function, x is the real part of the first order eigenfrequency, and y is the imaginary part of the first order eigenfrequency;
and 2, comparing the phase of the first-order characteristic frequency component with fault positioning information of the switching tube to finish diagnosis.
TABLE 1 switching tube Fault location information Table
Figure BDA0002253035400000032
Examples
To verify the validity of the inventive scheme, the following simulation experiment was performed.
The motor is a 4-pole-pair permanent magnet synchronous motor, the rotating speed of the motor is set to be 1.6Hz, the envelope spectrum of vibration signals of the converter under different open-circuit faults is shown in figure 4, and the length of the vibration signals is the vibration signals of the permanent magnet synchronous generator rotating for two circles (720 degrees) under the frequency of 1.6 Hz. The threshold value of the first-order characteristic frequency is set to be 0.1, the second-order characteristic frequency is set to be 0.05, and the method is utilized to detect and diagnose the fault.
(1) Fault detection
For normal conditions, no fault is generated because the amplitude of the first-order characteristic frequency is judged not to exceed the threshold value of 0.1; for the S3 fault, the first-order characteristic frequency amplitude is 0.16 and exceeds the threshold value of 0.1, the second-order characteristic frequency amplitude is 0.1 and exceeds the threshold value of 0.05, and therefore the fault is judged to occur; for the S5 fault, the first-order characteristic frequency amplitude is 0.14 and exceeds a 0.1 threshold, the second-order characteristic frequency amplitude is 0.1 and exceeds a 0.05 threshold, and therefore the fault is judged to occur; for the S6 fault, since the first-order characteristic frequency amplitude is 0.16 and exceeds the threshold of 0.1, and the second-order characteristic frequency amplitude is 0.1 and exceeds the threshold of 0.05, the fault is determined to occur. The detection method is simple and effective, and the detection conclusion is completely consistent with the actual situation.
(2) Fault diagnosis
The open-circuit fault condition of the S3 tube is further diagnosed, and the diagnosis method in other conditions is analogized. The fault detection link determines that S3 has a fault, the first-order characteristic frequency of the fault is corresponding to a complex number (-30.38+32.52i), and a phase (arctan (32.52/-30.38) + pi (133 °) is obtained according to a phase calculation formula, as shown in fig. 3. According to table 1, since 133 ° is 90 ° to 150 °, it is determined that the S3 tube has failed, and the diagnosis is completed. The diagnosis method is simple and effective, and the diagnosis conclusion is completely consistent with the actual situation.

Claims (8)

1. The method for detecting and diagnosing the fault of the switching tube of the converter based on the mechanical vibration signal is characterized by comprising two links of fault detection and fault diagnosis;
(1) the fault detection link comprises the following specific steps:
step 1, collecting a vibration signal of a generator;
step 2, carrying out envelope spectrum analysis on the collected vibration signals to obtain an envelope spectrum;
step 3, calculating first-order and second-order characteristic frequencies of the vibration signals;
step 4, determining amplitude values corresponding to the first-order characteristic frequency and the second-order characteristic frequency according to the envelope spectrum, comparing the amplitude values with a first-order threshold value and a second-order threshold value respectively, and judging whether the converter switching tube has faults or not;
(2) the fault diagnosis link comprises the following specific steps:
step 1, extracting the phase of a first-order characteristic frequency component;
and 2, comparing the phase of the first-order characteristic frequency component with fault positioning information of the switching tube to finish diagnosis.
2. The method for detecting and diagnosing the fault of the converter switching tube based on the mechanical vibration signal as claimed in claim 1, wherein in the step 1 of the fault detection step, a vibration sensor installed above a bearing at the driving end of the permanent magnet synchronous generator is used for acquiring the vibration signal of the generator.
3. The method for detecting and diagnosing the fault of the switching tube of the current transformer based on the mechanical vibration signal as claimed in claim 1, wherein in the step 2 of the fault detection link, the vibration signal is firstly screened, and only the peak point of the signal, namely the point larger than the adjacent elements, is reserved; then, carrying out fast Fourier transform on the peak point curve to obtain a complex number corresponding to each frequency; and finally, drawing a curve by taking the frequency as an abscissa and the modular length of the complex number as an ordinate, and obtaining the envelope spectrum.
4. The method for detecting and diagnosing the fault of the switching tube of the converter based on the mechanical vibration signal as claimed in claim 1, wherein in the step 3 of the fault detection link, the calculation formula of the first-order and second-order characteristic frequencies of the vibration signal is as follows: the first-order characteristic frequency is pole pair number multiplied by the rotation frequency of the motor; the second-order characteristic frequency is 2 × pole pair number × motor rotation frequency.
5. The method for detecting and diagnosing the fault of the switching tube of the converter based on the mechanical vibration signal as claimed in claim 1, wherein in the step 4 of the fault detection link, the amplitudes corresponding to the first-order characteristic frequency and the second-order characteristic frequency are found in the envelope spectrum and are compared with a first-order threshold and a second-order threshold, if the amplitude of the first-order characteristic frequency is greater than the first-order threshold and the amplitude of the second-order characteristic frequency is greater than the second-order threshold, the fault is determined to occur, and the fault diagnosis link is entered; otherwise, judging that no fault occurs, and continuing to monitor.
6. The method for detecting and diagnosing faults of the switching tubes of the converter based on the mechanical vibration signals as claimed in claim 1, wherein in the step 4 of the fault detection link, the first-order threshold value ranges from 0.05 to 0.12, and the second-order threshold value ranges from 0.03 to 0.07.
7. The method for detecting and diagnosing the fault of the switching tube of the converter based on the mechanical vibration signal as claimed in claim 1, wherein in the step 1 of the fault diagnosis step, the calculation formula of the phase corresponding to the first-order characteristic frequency is as follows:
Figure FDA0002253035390000021
where arctan () is an arctan function, x is the real part of the first order eigenfrequency, and y is the imaginary part of the first order eigenfrequency.
8. The method for detecting and diagnosing the fault of the switching tube of the converter based on the mechanical vibration signal as claimed in claim 1, wherein in the step 2 of the fault diagnosis link, the fault location information of the switching tube is shown in table 1:
TABLE 1 switching tube Fault location information Table
Figure FDA0002253035390000022
CN201911041755.5A 2019-10-30 2019-10-30 Converter switching tube fault detection and diagnosis method based on mechanical vibration signals Active CN110837046B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911041755.5A CN110837046B (en) 2019-10-30 2019-10-30 Converter switching tube fault detection and diagnosis method based on mechanical vibration signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911041755.5A CN110837046B (en) 2019-10-30 2019-10-30 Converter switching tube fault detection and diagnosis method based on mechanical vibration signals

Publications (2)

Publication Number Publication Date
CN110837046A true CN110837046A (en) 2020-02-25
CN110837046B CN110837046B (en) 2021-05-04

Family

ID=69576033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911041755.5A Active CN110837046B (en) 2019-10-30 2019-10-30 Converter switching tube fault detection and diagnosis method based on mechanical vibration signals

Country Status (1)

Country Link
CN (1) CN110837046B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830435A (en) * 2020-07-27 2020-10-27 北京航空航天大学 Open-circuit fault diagnosis method for power tube of six-phase permanent magnet fault-tolerant motor system
CN113565484A (en) * 2021-07-23 2021-10-29 西安交通大学 Fracturing pump valve fault diagnosis method based on relative root mean square value
WO2022156274A1 (en) * 2021-01-19 2022-07-28 易事特集团股份有限公司 Open-circuit fault detection method and apparatus, and computer device
CN115824647A (en) * 2023-02-16 2023-03-21 南京凯奥思数据技术有限公司 Bearing fault diagnosis method and diagnosis equipment based on mean square error time domain down-sampling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672974A (en) * 1996-01-18 1997-09-30 Convex Corporation Returned reference compatible, straightaway envelope delay measurement instrument and method
EP1184669A2 (en) * 2000-08-31 2002-03-06 Anritsu Corporation Waveform measuring method and apparatus
US20050027771A1 (en) * 2003-07-30 2005-02-03 Broadcom Corporation System and method for approximating division
CN109297716A (en) * 2018-10-23 2019-02-01 西安热工研究院有限公司 Vibration fault diagnosis method for double-fed wind driven generator
CN109323858A (en) * 2018-09-21 2019-02-12 华南理工大学 A kind of gear distress vibration amplitude-modulation frequency-modulation signal is precisely separating method
CN109813417A (en) * 2019-01-18 2019-05-28 国网江苏省电力有限公司检修分公司 A kind of shunt reactor method for diagnosing faults based on improvement EMD
CN110132404A (en) * 2019-05-29 2019-08-16 国网江苏省电力有限公司南京供电分公司 A kind of on-load tap changers of transformers mechanical breakdown on-line monitoring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672974A (en) * 1996-01-18 1997-09-30 Convex Corporation Returned reference compatible, straightaway envelope delay measurement instrument and method
EP1184669A2 (en) * 2000-08-31 2002-03-06 Anritsu Corporation Waveform measuring method and apparatus
US20050027771A1 (en) * 2003-07-30 2005-02-03 Broadcom Corporation System and method for approximating division
CN109323858A (en) * 2018-09-21 2019-02-12 华南理工大学 A kind of gear distress vibration amplitude-modulation frequency-modulation signal is precisely separating method
CN109297716A (en) * 2018-10-23 2019-02-01 西安热工研究院有限公司 Vibration fault diagnosis method for double-fed wind driven generator
CN109813417A (en) * 2019-01-18 2019-05-28 国网江苏省电力有限公司检修分公司 A kind of shunt reactor method for diagnosing faults based on improvement EMD
CN110132404A (en) * 2019-05-29 2019-08-16 国网江苏省电力有限公司南京供电分公司 A kind of on-load tap changers of transformers mechanical breakdown on-line monitoring method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李敬微等: "基于包络谱分析和高斯受限玻尔兹曼机的滚动轴承故障诊断方法", 《机械研究与应用》 *
胡劲松等: "一种基于EMD的振动信号时频分析新方法研究", 《振动与冲击》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830435A (en) * 2020-07-27 2020-10-27 北京航空航天大学 Open-circuit fault diagnosis method for power tube of six-phase permanent magnet fault-tolerant motor system
CN111830435B (en) * 2020-07-27 2021-07-13 北京航空航天大学 Open-circuit fault diagnosis method for power tube of six-phase permanent magnet fault-tolerant motor system
WO2022156274A1 (en) * 2021-01-19 2022-07-28 易事特集团股份有限公司 Open-circuit fault detection method and apparatus, and computer device
CN113565484A (en) * 2021-07-23 2021-10-29 西安交通大学 Fracturing pump valve fault diagnosis method based on relative root mean square value
CN115824647A (en) * 2023-02-16 2023-03-21 南京凯奥思数据技术有限公司 Bearing fault diagnosis method and diagnosis equipment based on mean square error time domain down-sampling

Also Published As

Publication number Publication date
CN110837046B (en) 2021-05-04

Similar Documents

Publication Publication Date Title
CN110837046B (en) Converter switching tube fault detection and diagnosis method based on mechanical vibration signals
CN103344866B (en) A kind of open fault diagnostic method of permanent magnet direct-drive wind power generation system current transformer
US10473708B2 (en) Methods and systems for real-time monitoring of the insulation state of wind-powered generator windings
CN104698397A (en) Fault diagnosis method of multi-level inverter
CN106249144A (en) Double-fed wind power generator interturn short-circuit failure diagnosing method and fault monitoring method
CN101710162A (en) Motor rotor winding interturn short-circuit failure diagnosing method based on stator iron core vibration
CN109297716B (en) Vibration fault diagnosis method for double-fed wind driven generator
CN110609194B (en) Three-phase rectifier open-circuit fault diagnosis method based on voltage space vector
CN112162218B (en) Direct-drive permanent magnet wind turbine converter multi-power tube open-circuit fault diagnosis method
CN103675589A (en) Switch magnetic resistance motor power converter short-circuit fault bus current diagnosis method
CN103941142A (en) Switched reluctance motor power converter fault diagnosis phase current integration method
CN108761351B (en) Three-phase rectifier open-circuit fault diagnosis method based on SVPWM sector number
CN113391235B (en) System and method for detecting dynamic turn-to-turn short circuit fault of synchronous generator rotor
CN107024655A (en) A kind of permanent-magnetic synchronous motor stator winding failure diagnostic method
Soares et al. Multiphysical time-and frequency-domain fault detection and isolation technique for power-electronic converters in DFIG wind turbines
Ren et al. Fault diagnosis of motor bearing based on speed signal kurtosis spectrum analysis
CN108279362B (en) Method for identifying turn-to-turn short circuit fault of rotor winding of marine double-fed motor
CN107728063B (en) A kind of direct-drive permanent magnet wind turbine generator group current transformer open-circuit fault diagnostic method
CN109085447A (en) Wind electric converter open-circuit fault detection method based on current amplitude
Climente-Alarcon et al. Diagnosis of rotor asymmetries in wound rotor induction generators operating under varying load conditions via the Wigner-Ville Distribution
KR101133234B1 (en) Resolution increase method of device defect signal by synthesizing of electric motor 3 phase current signal
CN103869248B (en) Determine the method causing double-fed wind power generator imbalance of three-phase voltage stator phase
CN112034344A (en) Real-time online diagnosis method for turn-to-turn short circuit fault of rotor winding of hydraulic generator
CN109031011A (en) The open-circuit fault diagnostic method of multi-electrical level inverter based on phase voltage histogram
CN108445340A (en) The detection method of five-phase PMSM inverter open fault

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant