CN110836913A - Iron-doped porous indium oxide gas-sensitive material and preparation method and application thereof - Google Patents
Iron-doped porous indium oxide gas-sensitive material and preparation method and application thereof Download PDFInfo
- Publication number
- CN110836913A CN110836913A CN201911071873.0A CN201911071873A CN110836913A CN 110836913 A CN110836913 A CN 110836913A CN 201911071873 A CN201911071873 A CN 201911071873A CN 110836913 A CN110836913 A CN 110836913A
- Authority
- CN
- China
- Prior art keywords
- gas
- iron
- indium oxide
- doped
- doped porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 229910003437 indium oxide Inorganic materials 0.000 title claims abstract description 100
- 239000000463 material Substances 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000002073 nanorod Substances 0.000 claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 16
- -1 iron ions Chemical class 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 4
- 239000011540 sensing material Substances 0.000 claims description 77
- 239000002994 raw material Substances 0.000 claims description 24
- GBOGAFPRHXVKNT-UHFFFAOYSA-N [Fe].[In] Chemical compound [Fe].[In] GBOGAFPRHXVKNT-UHFFFAOYSA-N 0.000 claims description 13
- 239000013256 coordination polymer Substances 0.000 claims description 13
- 229920001795 coordination polymer Polymers 0.000 claims description 13
- 239000013110 organic ligand Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000001354 calcination Methods 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical group CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000001856 Ethyl cellulose Substances 0.000 claims description 5
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 5
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 5
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 5
- 229920001249 ethyl cellulose Polymers 0.000 claims description 5
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 5
- 229940116411 terpineol Drugs 0.000 claims description 5
- 150000002471 indium Chemical class 0.000 claims description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 3
- 150000002505 iron Chemical class 0.000 claims description 3
- 238000004729 solvothermal method Methods 0.000 claims description 3
- CDVAIHNNWWJFJW-UHFFFAOYSA-N 3,5-diethoxycarbonyl-1,4-dihydrocollidine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C CDVAIHNNWWJFJW-UHFFFAOYSA-N 0.000 claims description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 229910000337 indium(III) sulfate Inorganic materials 0.000 claims description 2
- XGCKLPDYTQRDTR-UHFFFAOYSA-H indium(iii) sulfate Chemical compound [In+3].[In+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGCKLPDYTQRDTR-UHFFFAOYSA-H 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 20
- 230000035945 sensitivity Effects 0.000 abstract description 19
- 238000012360 testing method Methods 0.000 abstract description 11
- 238000011084 recovery Methods 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 239000011148 porous material Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 101
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000012718 coordination polymerization Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 229910018487 Ni—Cr Inorganic materials 0.000 description 3
- 238000001255 X-ray photoelectron diffraction Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/126—Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
技术领域technical field
本发明涉及NO2气敏材料技术领域,尤其涉及一种铁掺杂多孔氧化铟气敏材料及其制备方法与应用。The invention relates to the technical field of NO 2 gas-sensing materials, in particular to an iron-doped porous indium oxide gas-sensing material and a preparation method and application thereof.
背景技术Background technique
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。The information disclosed in this Background of the Invention is only for enhancement of understanding of the general background of the invention and should not necessarily be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person of ordinary skill in the art.
二氧化氮(NO2)气体是一种棕红色的、有刺激性气体的有毒气体,是大气中的主要污染物之一。NO2气体作为工业废气和生活废气中的典型污染气体,具有较高的化学活性和较强的腐蚀性,并能与空气中的水分或碳氢化合物发生反应,是形成酸雨、光化学烟雾和雾霾等二次污染物的主要来源,严重威胁着人们的身体健康和所居住的生活环境。据美国政府工业卫生协会(ACGIH)和职业安全与健康管理局(US)的数据显示,人们允许暴露在NO2气体中的阈限值为3ppm,其中在1ppm的NO2气体中暴露的时间不超过15min。因此,设计出具有高灵敏度、选择性的气敏传感材料对检测低浓度NO2气体具有重要意义。Nitrogen dioxide (NO 2 ) gas is a brown-red, irritating, toxic gas, and is one of the main pollutants in the atmosphere. As a typical polluting gas in industrial waste gas and domestic waste gas, NO 2 gas has high chemical activity and strong corrosiveness, and can react with moisture or hydrocarbons in the air to form acid rain, photochemical smog and fog. The main source of secondary pollutants such as haze is a serious threat to people's health and living environment. According to the American Association of Governmental Industrial Hygiene (ACGIH) and the Occupational Safety and Health Administration (US ) , the threshold limit for exposure to NO2 gas is 3ppm, of which the exposure time to 1ppm NO2 gas is not more than 15min. Therefore, designing gas-sensing sensing materials with high sensitivity and selectivity is of great significance for detecting low - concentration NO2 gas.
多孔氧化铟材料由于具有可调的孔道结构、高的比表面积和较强的离子交换性能,有利于反应物在活性位点进行反应,在气体的检测领域显示了极大的应用前景,因此多孔氧化铟材料被广泛应用于气敏传感领域。然而,大量研究表明:单一的In2O3气敏材料的气敏性能受控于材料的形貌、结构、晶型、比表面积、能带结构等因素,在气体检测时表现出灵敏度低、选择性差等缺点。同时,本发明人发现:现有的一些多孔In2O3气敏材料的工作所需的温度过高,如中国计量大学邓妮等提出的金属元素掺杂氧化铟气敏材料其工作温度高达300℃以上(见文献1);太原理工大学张萌等提出贵金属修饰氧化铟微结构气敏材料在200℃左右对测试气体具有好的灵敏度和响应恢复速度(见文献2);上海工业第二大学陈杨等提出的纳米氧化铟及复合材料能有效提高低温下的气敏性能,但是其在对NO2气体检测时,工作温度仍是在150℃以上(见文献3)。这些高达几百摄氏度的气敏传感器工作温度对仪器设备的功率要求极高,从而限制了氧化铟在气体传感器领域的实际应用。Porous indium oxide material has great application prospects in the field of gas detection due to its tunable pore structure, high specific surface area and strong ion exchange performance, which is conducive to the reaction of reactants at the active site. Indium oxide materials are widely used in the field of gas sensing. However, a large number of studies have shown that the gas-sensing properties of a single In 2 O 3 gas-sensing material are controlled by the material's morphology, structure, crystal form, specific surface area, energy band structure and other factors. Disadvantages such as poor selectivity. At the same time, the inventors found that the working temperature of some existing porous In 2 O 3 gas-sensing materials is too high. Above 300 ℃ (see document 1); Zhang Meng of Taiyuan University of Technology and others proposed that noble metal modified indium oxide microstructure gas-sensing material has good sensitivity and response recovery speed to test gas at about 200 ℃ (see document 2); Shanghai University of Technology Second University The nano-indium oxide and composite materials proposed by Chen Yang et al. can effectively improve the gas sensing performance at low temperature, but the working temperature is still above 150 °C when detecting NO 2 gas (see Reference 3). The operating temperature of these gas sensors, which can reach hundreds of degrees Celsius, requires extremely high power requirements of the instruments and equipment, which limits the practical application of indium oxide in the field of gas sensors.
现有文献:Existing literature:
文献1:邓妮,金属元素掺杂介孔氧化铟的制备及其气敏性能的研究[D],中国计量大学,2016年。Literature 1: Deng Ni, Preparation of metal element-doped mesoporous indium oxide and its gas sensing properties [D], China Jiliang University, 2016.
文献2:张萌,氧化铟微结构的制备、改性及其敏特性研究[D],太原理工大学,2017年。Literature 2: Zhang Meng, Preparation, modification and sensitivity of indium oxide microstructure [D], Taiyuan University of Technology, 2017.
文献3:陈扬,纳米In2O3及其复合物的制备及气敏性能研究[D],上海第二工业大学,2018年。Literature 3: Chen Yang, Preparation and gas sensing properties of nano-In 2 O 3 and its composites [D], Shanghai Second Polytechnic University, 2018.
发明内容SUMMARY OF THE INVENTION
针对氧化铟对低浓度二氧化氮气体检测的灵敏度低、选择性差以及工作温度过高等方面的不足,本发明旨在提供一种铁掺杂多孔氧化铟气敏材料及制备方法与应用,该方法采用铁掺杂多孔氧化铟气敏材料制备的气敏元件对包括低浓度在内的NO2气体在低温下具有高的灵敏度、优异的选择性等优点,同时具有快的响应恢复速度。Aiming at the shortcomings of low sensitivity, poor selectivity and high working temperature of indium oxide for low-concentration nitrogen dioxide gas detection, the present invention aims to provide an iron-doped porous indium oxide gas sensing material and a preparation method and application thereof. The gas sensing element prepared with iron-doped porous indium oxide gas sensing material has the advantages of high sensitivity and excellent selectivity to NO gas including low concentration at low temperature, and also has a fast response recovery speed.
本发明第一目的:提供一种铁掺杂多孔氧化铟气敏材料。The first objective of the present invention is to provide an iron-doped porous indium oxide gas-sensing material.
本发明第二目的:提供一种铁掺杂多孔氧化铟气敏材料的制备方法。The second object of the present invention is to provide a preparation method of an iron-doped porous indium oxide gas-sensing material.
本发明第三目的:提供所述铁掺杂多孔氧化铟气敏材料的应用。The third object of the present invention is to provide the application of the iron-doped porous indium oxide gas-sensing material.
为实现上述发明目的,本发明采用的技术手段为:For realizing the above-mentioned purpose of the invention, the technical means adopted in the present invention are:
首先,本发明公开一种铁掺杂多孔氧化铟气敏材料,由基体相和掺杂相组成,所述基体相为多孔氧化铟,其为单分散的多孔纳米棒,所述多孔纳米棒由具有孔道结构的颗粒组成;所述掺杂相为铁离子,掺杂相以铁离子的形式掺杂于基体相晶格内部。First, the present invention discloses an iron-doped porous indium oxide gas sensing material, which is composed of a matrix phase and a doping phase, the matrix phase is porous indium oxide, which is a monodisperse porous nanorod, and the porous nanorod is composed of Particle composition with pore structure; the doped phase is iron ions, and the doped phase is doped inside the lattice of the matrix phase in the form of iron ions.
本发明铁掺杂多孔氧化铟气敏材料的特点之一为:由于所述气敏材料为单分散的多孔纳米棒,其具有极高的比表面积;而高的比表面积为气体在材料表面的吸附提供更多的活性位置,而多孔结构为气体在材料表面的扩散提供丰富的通道,这些有利于提高In2O3材料对NO2气体的灵敏度和响应恢复速度。One of the characteristics of the iron-doped porous indium oxide gas-sensing material of the present invention is: because the gas-sensing material is a monodispersed porous nanorod, it has a very high specific surface area; The adsorption provides more active sites, and the porous structure provides abundant channels for gas diffusion on the surface of the material, which are beneficial to improve the sensitivity and response recovery speed of the In2O3 material to NO2 gas.
本发明铁掺杂多孔氧化铟气敏材料的特点之二为:在铁掺杂的多孔氧化铟气敏材料中,金属铁(Fe)的掺杂一方面可以提高多孔氧化铟材料表面的氧空位浓度,改善材料在低温下的电学性能,增加NO2气体在低温下材料表面的吸附数量和参与气敏反应的分子数量;另一方面利用掺杂元素作为表面催化剂和吸附剂,提高材料在低温下的表面活性,增加了In2O3材料低温下对NO2气体的灵敏度,从而实现了In2O3材料在低温下对NO2气体的检测。The second characteristic of the iron-doped porous indium oxide gas-sensing material of the present invention is that in the iron-doped porous indium oxide gas-sensing material, the doping of metal iron (Fe) can increase the oxygen vacancies on the surface of the porous indium oxide material on the one hand. concentration, improve the electrical properties of the material at low temperature, increase the number of NO 2 gas adsorbed on the surface of the material at low temperature and the number of molecules participating in the gas-sensing reaction; The surface activity at low temperature increases the sensitivity of In 2 O 3 material to NO 2 gas at low temperature, thus realizing the detection of NO 2 gas of In 2 O 3 material at low temperature.
其次,本发明公开一种铁掺杂多孔氧化铟气敏材料的制备方法,包括如下步骤:Secondly, the present invention discloses a preparation method of an iron-doped porous indium oxide gas-sensing material, comprising the following steps:
(1)将基体原料、掺杂相原料和有机配体溶于有机溶剂中,经溶剂热制备成铟铁的配位聚合物;所述基体原料为铟盐,所述掺杂相原料为铁盐;(1) Dissolving the matrix raw material, the doped phase raw material and the organic ligand in an organic solvent, and solvothermally prepares a coordination polymer of indium iron; the matrix raw material is indium salt, and the doped phase raw material is iron Salt;
(2)将所述铟铁的配位聚合物进行煅烧,即得。(2) calcining the coordination polymer of indium-iron to obtain.
最后,本发明公开所述铁掺杂多孔氧化铟气敏材料在气体检测中的应用。Finally, the present invention discloses the application of the iron-doped porous indium oxide gas sensing material in gas detection.
与现有技术相比,本发明取得了以下有益效果:Compared with the prior art, the present invention has achieved the following beneficial effects:
(1)本发明的铁掺杂多孔氧化铟气敏材料有效提高了纯氧化铟作为气敏材料对低浓度NO2灵敏度低、选择性差和响应恢复时间长的问题。经过测试,采用本发明气敏材料制备的气敏元件针对NO2气体有优异的选择性,对低浓度NO2气体具有高的灵敏度,而且工作温度降至80℃以下,显著降低了对仪器设备的功率要求。(1) The iron-doped porous indium oxide gas-sensing material of the present invention effectively improves the problems of low sensitivity, poor selectivity and long response recovery time to low-concentration NO 2 when pure indium oxide is used as a gas-sensing material. After testing, the gas-sensing element prepared by using the gas-sensing material of the invention has excellent selectivity for NO 2 gas, high sensitivity to low-concentration NO 2 gas, and the working temperature drops below 80°C, which significantly reduces the need for instruments and equipment. power requirements.
(2)本发明的铁掺杂多孔氧化铟气敏材料为尺寸均匀、单一分散的纳米棒,分散性好,能够避免气敏元件的制备过程中因团聚而造成涂抹不均匀的问题。(2) The iron-doped porous indium oxide gas-sensing material of the present invention is a nanorod with uniform size and monodispersity, and has good dispersibility, which can avoid the problem of uneven coating caused by agglomeration during the preparation of the gas-sensing element.
(3)本发明制备方法为一步合成气敏材料,这是因为在溶剂热条件下基体相和掺杂相同时生成,由于基体原料比例高于掺杂相原料,结晶时基体相成为主体,因此一步法不仅直接合成了气敏材料,而且操作简捷省时,效果更好。(3) The preparation method of the present invention is a one-step synthesis of gas-sensitive materials. This is because the matrix phase and the doping are generated under the same solvothermal conditions. Since the ratio of the matrix raw materials is higher than that of the doping phase raw materials, the matrix phase becomes the main body during crystallization. Therefore, The one-step method not only directly synthesizes the gas-sensitive material, but also has a simple and time-saving operation, and the effect is better.
(4)本发明提供了一种安全有效的方法制备的针对NO2气体的铁掺杂多孔氧化铟气敏元件,制备方法安全有效,以及所需设备简单,易操作,工艺参数便于控制,原料及仪器设备使用成本低等。(4) The present invention provides an iron-doped porous indium oxide gas sensing element for NO2 gas prepared by a safe and effective method. The preparation method is safe and effective, and the required equipment is simple and easy to operate, the process parameters are easy to control, and the raw materials and low cost of equipment and equipment.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention.
图1是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料的扫描电子显微镜(SEM)照片。FIG. 1 is a scanning electron microscope (SEM) photograph of the iron-doped porous indium oxide gas-sensing material prepared in Example 1 of the present invention.
图2是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料的透射电子显微镜(TEM)照片。2 is a transmission electron microscope (TEM) photograph of the iron-doped porous indium oxide gas-sensitive material prepared in Example 1 of the present invention.
图3是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料的BET比表面积谱图。3 is a BET specific surface area spectrum of the iron-doped porous indium oxide gas sensing material prepared in Example 1 of the present invention.
图4是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料的能量色散谱图。4 is an energy dispersive spectrum diagram of the iron-doped porous indium oxide gas-sensing material prepared in Example 1 of the present invention.
图5是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料和对比例制备的未掺杂铁的多孔氧化铟的XRD图谱。FIG. 5 is the XRD patterns of the iron-doped porous indium oxide gas sensing material prepared in Example 1 of the present invention and the iron-doped porous indium oxide without iron prepared in the comparative example.
图6是本发明是实施例1制备的铁掺杂多孔氧化铟气敏材料的X射线光电子衍射的O1s峰能谱图。6 is the O1s peak energy spectrum of the X-ray photoelectron diffraction of the iron-doped porous indium oxide gas sensitive material prepared in Example 1 of the present invention.
图7是本发明对比例所制备的未掺杂铁的多孔氧化铟的X射线光电子衍射的O1s峰能谱图。FIG. 7 is the O1s peak energy spectrum of the X-ray photoelectron diffraction of the iron-undoped porous indium oxide prepared by the comparative example of the present invention.
图8是本发明实施例中旁热式传感器的示意图。图中,1代表氧化铝陶瓷基片;2代表测试的金电极;3,4代表测试的铂电极;5代表加热电极;6,7代表Ni-Cr电极;8代表气敏材料层。FIG. 8 is a schematic diagram of a bypass heat sensor in an embodiment of the present invention. In the figure, 1 represents the alumina ceramic substrate; 2 represents the tested gold electrode; 3, 4 represents the tested platinum electrode; 5 represents the heating electrode; 6, 7 represents the Ni-Cr electrode; 8 represents the gas-sensing material layer.
图9是本发明实施例1、2制备的铁掺杂的多孔氧化铟纳米棒和对比例所制备的未掺杂铁的多孔氧化铟在80℃下对2ppm NO2气体的响应值。9 shows the response values of the iron-doped porous indium oxide nanorods prepared in Examples 1 and 2 of the present invention and the undoped iron-doped porous indium oxide prepared in the comparative example to 2 ppm NO 2 gas at 80°C.
图10是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料针对不同浓度下NO2气体在80℃下的气敏性能测试图。10 is a graph showing the gas sensing performance of the iron-doped porous indium oxide gas sensing material prepared in Example 1 of the present invention for NO 2 gas at different concentrations at 80°C.
图11是本发明实施例1制备的铁掺杂多孔氧化铟气敏材料及对比例制备的未掺杂铁的多孔氧化铟在80℃下对2ppm不同气体的响应值柱状图。11 is a bar graph of the response values of the iron-doped porous indium oxide gas sensing material prepared in Example 1 of the present invention and the undoped iron-doped porous indium oxide prepared in the comparative example to 2 ppm of different gases at 80°C.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the invention. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
正如前文所述,单一的In2O3气敏材料的气敏性能受控于材料的形貌、结构、晶型、比表面积、能带结构等因素,在低浓度NO2气体检测时表现出灵敏度低、选择性差等缺点。同时,现有的一些多孔In2O3气敏材料的工作所需的温度过高。为此,本发明提出了一种铁掺杂多孔氧化铟气敏材料及其制备方法。As mentioned above, the gas sensing performance of a single In 2 O 3 gas sensing material is controlled by the material's morphology, structure, crystal form, specific surface area, energy band structure and other factors. Disadvantages such as low sensitivity and poor selectivity. At the same time, the temperature required for the operation of some existing porous In 2 O 3 gas-sensing materials is too high. To this end, the present invention provides an iron-doped porous indium oxide gas sensing material and a preparation method thereof.
在一些典型的实施方式中,所述铁离子的掺杂量为0.5-20mol%;优选为3-20mol%,更优选为5-10mol%。对于铁掺杂多孔氧化铟气敏材料而言,随着铁掺杂含量的增加,促使气敏材料表面氧空位的增加,利于NO2气体在材料表面的吸附并参与气敏反应,提高材料对NO2气体的灵敏度,然而,过量的铁掺杂,造成氧化铟晶格结构的破坏,不利于其电学性能的优化,使得其电子迁移效率降低,抑制其气敏性能的提高。In some typical embodiments, the doping amount of the iron ions is 0.5-20 mol%; preferably 3-20 mol%, more preferably 5-10 mol%. For iron-doped porous indium oxide gas-sensing materials, with the increase of iron doping content, the increase of oxygen vacancies on the surface of gas-sensing materials is conducive to the adsorption of NO 2 gas on the surface of the material and participating in the gas-sensing reaction, improving the material's ability to The sensitivity of NO2 gas, however, excessive iron doping causes the destruction of the lattice structure of indium oxide, which is not conducive to the optimization of its electrical properties, which reduces its electron transfer efficiency and inhibits the improvement of its gas sensing properties.
在一些典型的实施方式中,所述多孔纳米棒的直径为0.5-3μm,长度为1-9μm。In some typical embodiments, the porous nanorods have a diameter of 0.5-3 μm and a length of 1-9 μm.
在一些典型的实施方式中,所述掺杂相原料与基体相原料的摩尔比为0.5-20mol%;优选为3-10mol%,测试结果显示,当选择上述范围内的铁离子掺杂量时,得到的气敏材料对低浓度NO2具有更好的灵敏度。In some typical embodiments, the molar ratio of the doping phase raw materials to the matrix phase raw materials is 0.5-20 mol %; preferably 3-10 mol %. The test results show that when the iron ion doping amount within the above range is selected , the obtained gas - sensing material has better sensitivity to low concentrations of NO.
在一些典型的实施方式中,所述有机配体是基体原料摩尔量的0.5-2倍。In some typical embodiments, the organic ligand is 0.5-2 times the molar amount of the base material.
在一些典型的实施方式中,所述铟盐包括氯化铟、硝酸铟、硫酸铟中的一种或几种。In some typical embodiments, the indium salt includes one or more of indium chloride, indium nitrate, and indium sulfate.
在一些典型的实施方式中,所述铁盐包括硝酸铁、氯化铁、乙酰丙酮铁中的一种或几种。In some typical embodiments, the iron salt includes one or more of ferric nitrate, ferric chloride, and ferric acetylacetonate.
在一些典型的实施方式中,所述有机配体为对苯二甲酸,在溶剂热的反应过程中,以铟、铁为中心的八面体基团(InO4(OH)2、FeO4(OH)2)经对苯二甲酸为有机链相互耦合生长成六边形具有纳米棒的纳米结构的铟铁配位聚合物。In some typical embodiments, the organic ligand is terephthalic acid, and in the solvothermal reaction process, octahedral groups (InO 4 (OH) 2 , FeO 4 (OH) centered on indium and iron ) 2 ) through terephthalic acid, the organic chains are coupled to each other and grow into a hexagonal indium-iron coordination polymer with nano-rod nanostructures.
在一些典型的实施方式中,所述有机溶剂为N,N-二甲基乙酰胺。所述溶剂的添加量能使基体原料、掺杂相原料和有机配体充分溶解即可。In some typical embodiments, the organic solvent is N,N-dimethylacetamide. The added amount of the solvent can fully dissolve the matrix raw materials, the doping phase raw materials and the organic ligands.
在一些典型的实施方式中,所述溶剂热法的温度为80-150℃,反应时间为5-20min。In some typical embodiments, the temperature of the solvothermal method is 80-150° C., and the reaction time is 5-20 min.
在一些典型的实施方式中,所述煅烧温度为450-540℃,煅烧时间为1.5-2.5h。In some typical embodiments, the calcination temperature is 450-540° C., and the calcination time is 1.5-2.5 h.
在一些典型的实施方式中,本发明将制备的铁掺杂多孔氧化铟气敏材料用于制备成NO2气敏元件;包括陶瓷基片1和气敏材料层8;所述气敏材料层8附着在陶瓷基片1表面。In some typical embodiments, the present invention uses the prepared iron-doped porous indium oxide gas-sensing material for preparing a NO 2 gas-sensing element; including a
在一些典型的实施方式中,所述NO2气敏元件的制备方法为:将气敏材料浆料涂覆在陶瓷基片表面,干燥后获得NO2气敏元件。In some typical embodiments, the preparation method of the NO 2 gas sensing element is as follows: coating the gas sensing material slurry on the surface of the ceramic substrate, and drying to obtain the NO 2 gas sensing element.
在一些典型的实施方式中,所述气敏材料浆料的制备方法为:将铁掺杂多孔氧化铟气敏材料加入乙基纤维素与松油醇的混合液中,搅拌均匀,即得。In some typical embodiments, the preparation method of the gas-sensing material slurry is as follows: adding the iron-doped porous indium oxide gas-sensing material to the mixed solution of ethyl cellulose and terpineol, and stirring it evenly.
可选地,所述乙基纤维素与松油醇的比例为1:5-10,优选为1:9。Optionally, the ratio of the ethyl cellulose to terpineol is 1:5-10, preferably 1:9.
在一些典型的实施方式中,所述NO2气敏元件被用于制备旁热式传感器,所述NO2气敏元件的一面设置有测试电极和铂丝,NO2气敏元件的另一面设置有加热电极和Ni-Cr电极。In some typical embodiments, the NO 2 gas sensing element is used to prepare a bypass heat sensor, one side of the NO 2 gas sensing element is provided with a test electrode and a platinum wire, and the other side of the NO 2 gas sensing element is provided There are heating electrodes and Ni-Cr electrodes.
进一步地,所述陶瓷基片材质为氧化铝,氧化硅中的任意一种;所述测试电极和加热电极的材质均为金。Further, the material of the ceramic substrate is any one of aluminum oxide and silicon oxide; the materials of the test electrode and the heating electrode are both gold.
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,现结合说明书附图和具体实施方式对本发明进一步进行说明。In order to enable those skilled in the art to understand the technical solutions of the present invention more clearly, the present invention will now be further described with reference to the accompanying drawings and specific embodiments of the description.
第一实施例,一种铁掺杂多孔氧化铟气敏材料的制备方法,包括如下步骤: The first embodiment , a preparation method of an iron-doped porous indium oxide gas sensing material, includes the following steps:
(1)将0.39g基体材料In(NO3)3·4.5H2O、0.0175g掺杂相原料Fe(C15H21O6)、0.18g有机配体H2BDC加入到75ml有机溶剂N,N-二甲基乙酰胺中搅拌至溶解;(1) Add 0.39g base material In(NO 3 ) 3 ·4.5H 2 O, 0.0175g doped phase raw material Fe(C 15 H 21 O 6 ), 0.18g organic ligand H 2 BDC to 75ml organic solvent N , stir in N-dimethylacetamide until dissolved;
(2)将步骤(1)搅拌后的澄清液体置于100℃的油浴中反应10min,使原料发生配位聚合反应,得到铟铁的配位聚合物,然后将该聚合物经离心分离出,甲醇清洗5次,80℃烘箱烘干。(2) The clear liquid stirred in step (1) is placed in an oil bath at 100° C. for 10 min to react, so that the raw materials undergo a coordination polymerization reaction to obtain a coordination polymer of indium iron, and then the polymer is centrifuged to separate out , washed with methanol for 5 times, and dried in an oven at 80 °C.
(3)将干燥好的铟铁的配位聚合物在马弗炉中在500℃下煅烧2h,得到粉末状的铁掺杂多孔氧化铟气敏材料。(3) The dried coordination polymer of indium iron is calcined in a muffle furnace at 500° C. for 2 hours to obtain a powdery iron-doped porous indium oxide gas sensing material.
第二实施例,一种铁掺杂多孔氧化铟气敏材料的制备方法,同实施例1,区别在于:步骤(1)中掺杂相与基体材料的摩尔比为3mol%、10mol%,20mol%。 The second embodiment , a preparation method of an iron-doped porous indium oxide gas sensing material, is the same as the
第三实施例,一种铁掺杂多孔氧化铟气敏材料的制备方法,包括如下步骤: The third embodiment , a preparation method of an iron-doped porous indium oxide gas sensing material, includes the following steps:
(1)将0.39g基体材料氯化铟、0.0175g掺杂相原料Fe(NO3)3、0.09g有机配体H2BDC加入到75ml有机溶剂N,N-二甲基乙酰胺中搅拌至溶解;(1) Add 0.39g base material indium chloride, 0.0175g doped phase raw material Fe(NO 3 ) 3 and 0.09g organic ligand H 2 BDC into 75ml organic solvent N,N-dimethylacetamide and stir until dissolve;
(2)将步骤(1)搅拌后的澄清液体置于80℃的油浴中反应20min,使原料发生配位聚合反应,得到铟铁的配位聚合物,然后将该聚合物经离心分离出,甲醇清洗5次,80℃烘箱烘干。(2) The clear liquid stirred in step (1) is placed in an oil bath at 80° C. for 20 min to react, so that the raw material undergoes a coordination polymerization reaction to obtain a coordination polymer of indium iron, and then the polymer is centrifuged to separate out , washed with methanol for 5 times, and dried in an oven at 80 °C.
(3)将干燥好的铟铁的配位聚合物在马弗炉中在450℃下煅烧2.5h,得到粉末状的铁掺杂多孔氧化铟气敏材料。(3) calcining the dried indium-iron coordination polymer at 450° C. for 2.5 hours in a muffle furnace to obtain a powdered iron-doped porous indium oxide gas sensing material.
第四实施例,一种铁掺杂多孔氧化铟气敏材料的制备方法,包括如下步骤: The fourth embodiment , a preparation method of an iron-doped porous indium oxide gas sensing material, includes the following steps:
(1)将0.39g基体材料In2(SO3)3、0.0175g掺杂相原料FeCl3、0.36g有机配体H2BDC加入到75ml有机溶剂N,N-二甲基乙酰胺中搅拌至溶解;(1) Add 0.39g base material In 2 (SO 3 ) 3 , 0.0175g doped phase raw material FeCl 3 and 0.36g organic ligand H 2 BDC into 75ml organic solvent N,N-dimethylacetamide and stir until dissolve;
(2)将步骤(1)搅拌后的澄清液体置于150℃的油浴中反应5min,使原料发生配位聚合反应,得到铟铁的配位聚合物,然后将该聚合物经离心分离出,甲醇清洗5次,80℃烘箱烘干。(2) The clear liquid stirred in step (1) is placed in an oil bath at 150° C. for 5 min to react, so that the raw material undergoes a coordination polymerization reaction to obtain a coordination polymer of indium iron, and then the polymer is centrifuged to separate out , washed with methanol for 5 times, and dried in an oven at 80 °C.
(3)将干燥好的铟铁的配位聚合物在马弗炉中在540℃下煅烧1.5h,得到粉末状的铁掺杂多孔氧化铟气敏材料。(3) The dried coordination polymer of indium iron is calcined in a muffle furnace at 540° C. for 1.5 hours to obtain a powdered iron-doped porous indium oxide gas sensing material.
对比例,未掺杂相的多孔氧化铟气敏材料的制备方法,包括如下步骤:In the comparative example, the preparation method of the undoped porous indium oxide gas sensing material includes the following steps:
(1)将0.39g基体材料In(NO3)3·4.5H2O、0.18g有机配体H2BDC加入到75ml有机溶剂N,N-二甲基乙酰胺中搅拌至溶解;(1) 0.39g of base material In(NO 3 ) 3 ·4.5H 2 O and 0.18g of organic ligand H 2 BDC were added to 75ml of organic solvent N,N-dimethylacetamide and stirred until dissolved;
(2)将步骤(1)搅拌后的澄清液体置于100℃的油浴中反应10min,使原料发生配位聚合反应,得到铟铁的配位聚合物,然后将该聚合物经离心分离出,甲醇清洗5次,80℃烘箱烘干。(2) The clear liquid stirred in step (1) is placed in an oil bath at 100° C. for 10 min to react, so that the raw materials undergo a coordination polymerization reaction to obtain a coordination polymer of indium iron, and then the polymer is centrifuged to separate out , washed with methanol for 5 times, and dried in an oven at 80 °C.
(3)将干燥好的铟铁的配位聚合物在马弗炉中在500℃下煅烧2h,得到粉末状的铁掺杂多孔氧化铟气敏材料。(3) The dried coordination polymer of indium iron is calcined in a muffle furnace at 500° C. for 2 hours to obtain a powdery iron-doped porous indium oxide gas sensing material.
性能测试:Performance Testing:
图1为实施例1制备的铁掺杂多孔氧化铟气敏材料的SEM图像,可以看出,掺杂后的气敏材料为单分散的纳米棒,纳米棒的直径大约在0.5-3μm之间,长度大约在1-9μm之间。Figure 1 is the SEM image of the iron-doped porous indium oxide gas-sensing material prepared in Example 1. It can be seen that the doped gas-sensing material is a monodisperse nanorod, and the diameter of the nanorod is about 0.5-3 μm. , the length is about 1-9 μm.
图2为实施例1制备的铁掺杂多孔氧化铟气敏材料的TEM图像,从可以看出,所述铁掺杂的多孔氧化铟纳米棒是由小颗粒组成的多孔纳米棒,表现出丰富的孔道结构。Figure 2 is a TEM image of the iron-doped porous indium oxide gas-sensing material prepared in Example 1. It can be seen that the iron-doped porous indium oxide nanorods are porous nanorods composed of small particles, showing abundant pore structure.
图3为实施例1制备的铁掺杂多孔氧化铟气敏材料的BET比表面结果,表明铁掺杂的多孔氧化铟的比表面积高达52.7m2/g。相较于块体的氧化铟气敏材料而言,大的比表面积,为气体的吸附与脱附提供了有利通道和活性表面,利于材料灵敏度及响应恢复速度的提高。FIG. 3 is the BET specific surface area result of the iron-doped porous indium oxide gas sensing material prepared in Example 1, which shows that the specific surface area of the iron-doped porous indium oxide is as high as 52.7 m 2 /g. Compared with bulk indium oxide gas sensing materials, the large specific surface area provides favorable channels and active surfaces for gas adsorption and desorption, which is beneficial to the improvement of material sensitivity and response recovery speed.
图4是实施例1制备的铁掺杂多孔氧化铟气敏材料的能量色散谱图,结果表明,经溶剂热然后煅烧得到的铁掺杂的多孔氧化铟纳米棒,包含In,Fe,O三种元素,且三种元素均匀分布在材料的表面。Fig. 4 is the energy dispersive spectrum of the iron-doped porous indium oxide gas-sensing material prepared in Example 1. The results show that the iron-doped porous indium oxide nanorods obtained by solvothermal calcination include In, Fe, O elements, and the three elements are uniformly distributed on the surface of the material.
图5是实施例1所制备的铁掺杂多孔氧化铟气敏材料和对比例1所制备的多孔氧化铟纳米棒的X射线图谱,由图可见,在对多孔氧化铟掺杂处理之后,并没有出现其他的晶相,但是其衍射峰均有向高角度偏移的趋向;此外,对多孔氧化铟掺杂处理之后,其衍射峰的强度降低和峰宽变宽。以上的结果表明了金属铁以离子的形态成功地进入了纯多孔氧化铟的晶格内部,并对材料表面的氧空位浓度进行调控。5 is the X-ray spectrum of the iron-doped porous indium oxide gas sensing material prepared in Example 1 and the porous indium oxide nanorod prepared in Comparative Example 1. It can be seen from the figure that after doping the porous indium oxide, and No other crystal phases appeared, but their diffraction peaks tended to shift to high angles; in addition, after the doping treatment of porous indium oxide, the intensity of its diffraction peaks decreased and the peak width became wider. The above results show that metallic iron successfully enters the lattice of pure porous indium oxide in the form of ions, and regulates the oxygen vacancy concentration on the surface of the material.
图6、7分别为实施例1制备的铁掺杂多孔氧化铟气敏材料和对比例制备的未掺杂铁的多孔氧化铟X射线光电子衍射的O1s峰能谱图,可以看出,对纯的多孔氧化铟进行金属铁掺杂后,其表面的氧空位浓度从24.6%升高到了25.4%,氧空位浓度的显著提高有利于二氧化氮气体在气敏材料表面的吸附,能够提高气敏材料对二氧化氮气体的灵敏度。Figures 6 and 7 are the O1s peak energy spectra of the X-ray photoelectron diffraction of the iron-doped porous indium oxide gas sensing material prepared in Example 1 and the undoped iron-doped porous indium oxide prepared in the comparative example, respectively. After the porous indium oxide was doped with metal iron, the oxygen vacancy concentration on its surface increased from 24.6% to 25.4%. The significant increase in the oxygen vacancy concentration was conducive to the adsorption of nitrogen dioxide gas on the surface of the gas sensing material, which could improve the gas sensitivity Sensitivity of materials to nitrogen dioxide gas.
将实施例1、2制备的铁掺杂多孔氧化铟气敏材料制备成气敏元件,制备方法如下:The iron-doped porous indium oxide gas-sensing materials prepared in Examples 1 and 2 are prepared into gas-sensing elements, and the preparation method is as follows:
1、气敏元件制备:1. Preparation of gas sensor:
(1)将按照实施例1方法制备的粉末状铁掺杂多孔氧化铟气敏材料加入到乙基纤维素与松油醇的混合溶液(质量比1:9)中,搅拌均匀,得到的气敏材料浆料,所述气敏材料与混合溶液的质量比为1:4。(1) Add the powdered iron-doped porous indium oxide gas-sensing material prepared according to the method of Example 1 into a mixed solution of ethyl cellulose and terpineol (mass ratio 1:9), stir evenly, and the obtained gas Sensitive material slurry, the mass ratio of the gas-sensitive material to the mixed solution is 1:4.
(2)将步骤(1)的气敏材料浆料涂抹在氧化铝陶瓷基片1的表面形成亲气敏材料层8,干燥后得到气敏元件。(2) Apply the gas-sensitive material slurry of step (1) on the surface of the
2、旁热式传感器制备:其结构示意图如图8所示,其中,右图为左图的背面,以氧化铝陶瓷基片1为载体,其两面敷有金电极分别为测试电极2和加热电极5,并引出测试的铂电极3,4和加热的Ni-Cr电极6,7,氧化铝陶瓷基片1敷有测试电极2的一面涂覆有气敏材料层8。2. Preparation of the side-heating sensor: its schematic diagram is shown in Figure 8. The right picture is the back of the left picture. The
同时,按照上述方法将对比例制备的未掺杂铁的多孔氧化铟也制成气敏元件,将得到的五组气敏元件组装成旁热式传感器,并于80℃、2ppm NO2气体条件下测试其气敏性能,检测结果如图9所示,可以看出,改变掺杂相浓度后,铁掺杂多孔氧化铟的气敏性能有一定的变化,但相较于纯的氧化铟仍表现出高的灵敏度,尤其是掺杂相为5mol%时,其响应值达到掺杂相为零的9倍。At the same time, the non-iron-doped porous indium oxide prepared in the comparative example was also made into a gas sensor according to the above method, and the obtained five groups of gas sensors were assembled into a side-heat sensor, and were heated at 80 °C and 2 ppm NO 2 gas conditions. The gas-sensing properties of iron-doped porous indium oxide have a certain change after changing the doping phase concentration, but the gas-sensing properties of iron-doped porous indium oxide have a certain change. It exhibits high sensitivity, especially when the doping phase is 5 mol%, and its response value reaches 9 times that of the doping phase zero.
图10是实施例1制备的铁掺杂的多孔氧化铟气敏材料制备的传感器在80℃下对不同浓度NO2气体的响应值。由图可见,在80℃的工作温度下,材料的响应值随气体浓度的提高呈稳步升高的趋势。当NO2气体浓度为2ppm时,铁掺杂的多孔氧化铟纳米棒表现出高的响应值(82)和快的响应恢复时间(75/60s),所述响应值为材料处于气体环境中的电阻与其在空气中的电阻的比值;同时,也说明了本发明的铁掺杂多孔氧化铟气敏材料能够将传感器工作温度降至100℃以下,仍然对低浓度NO2气体有优异的灵敏度;另外,其他的试验测试结果显示,本发明方法制备的铁掺杂多孔氧化铟气敏材料在低至80℃的工作温度下仍然能够实现对低浓度NO2气体的良好检测。10 is the response value of the sensor prepared by the iron-doped porous indium oxide gas sensing material prepared in Example 1 to different concentrations of NO 2 gas at 80°C. It can be seen from the figure that at the working temperature of 80 °C, the response value of the material increases steadily with the increase of gas concentration. Iron-doped porous indium oxide nanorods exhibit high response values (82) and fast response recovery times (75/60s) when the NO gas concentration is 2 ppm, the response values of the material in the gas environment The ratio of resistance to its resistance in air; at the same time, it also shows that the iron-doped porous indium oxide gas sensing material of the present invention can reduce the working temperature of the sensor to below 100 °C, and still has excellent sensitivity to low-concentration NO 2 gas; In addition, other experimental test results show that the iron-doped porous indium oxide gas-sensing material prepared by the method of the present invention can still achieve good detection of low-concentration NO 2 gas at a working temperature as low as 80°C.
图11是实施例1制备的铁掺杂的多孔氧化铟气敏材料和对比例制备未掺杂铁的多孔氧化铟制成的传感器在80℃下对2ppm不同气体的响应值;可以看出,相对于对未掺杂铁的多孔氧化铟,铁掺杂的多孔氧化铟气敏材料对NO2气体表现出更高的响应值(82),其响应值是纯多孔氧化铟纳米棒对2ppm NO2气体响应值(9)的9倍。而对其他气体的响应值接近于1,也意味着几乎没有响应,这说明铁掺杂多孔氧化铟气敏材料显著提高了纯多孔氧化铟纳米棒对NO2气体的选择性,并表现出优异的选择性。Figure 11 shows the response values of the iron-doped porous indium oxide gas sensing material prepared in Example 1 and the sensor made of the undoped iron-doped porous indium oxide prepared in the comparative example to 2 ppm different gases at 80 °C; it can be seen that, Compared with the undoped porous indium oxide, the iron-doped porous indium oxide gas-sensing material exhibits a higher response to NO gas (82), which is the response of pure porous indium oxide nanorods to 2 ppm NO. 29 times the gas response value ( 9 ). The response value for other gases is close to 1, which means almost no response, which indicates that the iron-doped porous indium oxide gas sensing material significantly improves the selectivity of pure porous indium oxide nanorods to NO gas and exhibits excellent of selectivity.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911071873.0A CN110836913A (en) | 2019-11-05 | 2019-11-05 | Iron-doped porous indium oxide gas-sensitive material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911071873.0A CN110836913A (en) | 2019-11-05 | 2019-11-05 | Iron-doped porous indium oxide gas-sensitive material and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110836913A true CN110836913A (en) | 2020-02-25 |
Family
ID=69576289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911071873.0A Pending CN110836913A (en) | 2019-11-05 | 2019-11-05 | Iron-doped porous indium oxide gas-sensitive material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110836913A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113447531A (en) * | 2021-05-21 | 2021-09-28 | 西安电子科技大学芜湖研究院 | Indium oxide-based gas sensor manufacturing method and method for detecting methanol |
CN113671010A (en) * | 2021-08-18 | 2021-11-19 | 吉林大学 | In based on mesoporous2O3Triethylamine gas sensor of-NiO sensitive material and preparation method thereof |
CN113740390A (en) * | 2021-09-01 | 2021-12-03 | 山东大学 | A kind of nickel-doped indium oxide nanoparticles and preparation method and application thereof |
CN116273017A (en) * | 2023-03-24 | 2023-06-23 | 南通职业大学 | Preparation method and application of doped modified indium oxide-based composite material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5926041A (en) * | 1982-08-04 | 1984-02-10 | Fuigaro Giken Kk | Gas detection element |
CN107032389A (en) * | 2017-06-16 | 2017-08-11 | 宁波大学 | A kind of porous oxidation indium nano material and preparation method thereof |
CN108760831A (en) * | 2018-03-29 | 2018-11-06 | 宁波大学 | A kind of preparation method of indium oxide gas sensor |
CN106093140B (en) * | 2016-07-19 | 2019-10-25 | 山东大学 | Composite structure doped gas-sensing material for NO2 gas, gas-sensing element and its manufacturing method and application |
CN110398520A (en) * | 2019-06-28 | 2019-11-01 | 安徽大学 | A kind of preparation method of Pr doped In2O3 nanometer gas sensitive material |
-
2019
- 2019-11-05 CN CN201911071873.0A patent/CN110836913A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5926041A (en) * | 1982-08-04 | 1984-02-10 | Fuigaro Giken Kk | Gas detection element |
CN106093140B (en) * | 2016-07-19 | 2019-10-25 | 山东大学 | Composite structure doped gas-sensing material for NO2 gas, gas-sensing element and its manufacturing method and application |
CN107032389A (en) * | 2017-06-16 | 2017-08-11 | 宁波大学 | A kind of porous oxidation indium nano material and preparation method thereof |
CN108760831A (en) * | 2018-03-29 | 2018-11-06 | 宁波大学 | A kind of preparation method of indium oxide gas sensor |
CN110398520A (en) * | 2019-06-28 | 2019-11-01 | 安徽大学 | A kind of preparation method of Pr doped In2O3 nanometer gas sensitive material |
Non-Patent Citations (2)
Title |
---|
JING ZHAO 等: "Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3", 《SENSORS AND ACTUATORS B: CHEMICAL》 * |
MENGDI DING 等: "Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures", 《SENSORS AND ACTUATORS B: CHEMICAL》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113447531A (en) * | 2021-05-21 | 2021-09-28 | 西安电子科技大学芜湖研究院 | Indium oxide-based gas sensor manufacturing method and method for detecting methanol |
CN113447531B (en) * | 2021-05-21 | 2024-04-16 | 西安电子科技大学芜湖研究院 | Indium oxide-based gas sensor manufacturing method and methanol detection method |
CN113671010A (en) * | 2021-08-18 | 2021-11-19 | 吉林大学 | In based on mesoporous2O3Triethylamine gas sensor of-NiO sensitive material and preparation method thereof |
CN113671010B (en) * | 2021-08-18 | 2022-04-01 | 吉林大学 | A kind of triethylamine gas sensor based on mesoporous In2O3-NiO sensitive material and preparation method thereof |
CN113740390A (en) * | 2021-09-01 | 2021-12-03 | 山东大学 | A kind of nickel-doped indium oxide nanoparticles and preparation method and application thereof |
CN116273017A (en) * | 2023-03-24 | 2023-06-23 | 南通职业大学 | Preparation method and application of doped modified indium oxide-based composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110836913A (en) | Iron-doped porous indium oxide gas-sensitive material and preparation method and application thereof | |
Gao et al. | Porous corundum-type In 2 O 3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism | |
Wang et al. | Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties | |
Zhao et al. | A room temperature sub-ppm NO 2 gas sensor based on WO 3 hollow spheres | |
Zhang et al. | Surfactant-free solution phase synthesis of monodispersed SnO 2 hierarchical nanostructures and gas sensing properties | |
CN108663417B (en) | A Novel In2O3/Sb2O3 Composite Hollow Nanotube Gas Sensing Material for Low Concentration NO2 Gas | |
CN108455659B (en) | A kind of preparation method of nano-rod-shaped indium oxide gas sensing material | |
Zhang et al. | Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures | |
Wei et al. | Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance | |
Li et al. | High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide | |
Wang et al. | Enhanced triethylamine sensing performance of metal–organic framework derived nest-type Fe-doped NiO nanostructure | |
CN110217759B (en) | Oxygen vacancy-modified metal oxide gas-sensing material for low-concentration NO2 gas detection at low temperature and preparation method thereof | |
Wang et al. | Special nanostructure control of ethanol sensing characteristics based on Au@ In 2 O 3 sensor with good selectivity and rapid response | |
CN108715457A (en) | Based on MOF template controlledly synthesis nano structure of zinc oxide gas sensors | |
CN113740390B (en) | A kind of nickel-doped indium oxide nanoparticle and its preparation method and application | |
Zhang et al. | CuO-based gas sensor decorated by polyoxometalates electron acceptors: From constructing heterostructure to improved sensitivity and fast response for ethanol detection | |
Hoa et al. | Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocomposite monoliths | |
Kundu et al. | Low concentration ammonia sensing performance of Pd incorporated indium tin oxide | |
Yin et al. | Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes | |
CN101718733B (en) | Boron-nitrogen nanowire/semiconductor oxide composite and preparation method thereof | |
Xu et al. | High efficiency triethylamine gas sensor based on SmVO4 nano octahedron granules | |
Wang et al. | Synthesis of Bi2MoO6/Bi2O3 hollow microspheres for ultrafast triethylamine detection | |
Wang et al. | Construction of ZnCo 2 O 4 decorated ZnO heterostructure materials for sensing triethylamine with dramatically enhanced performance | |
CN110642288B (en) | Nitrogen-doped metal oxide gas-sensitive material, gas-sensitive element, and preparation method and application thereof | |
Yao et al. | A high sensitivity and selectivity n-butanol sensor based on monodispersed Pd-doped SnO2 nanoparticles mediated by glucose carbonization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200225 |
|
RJ01 | Rejection of invention patent application after publication |