CN110835218A - 一种缓解污泥高温厌氧消化氨抑制的方法 - Google Patents

一种缓解污泥高温厌氧消化氨抑制的方法 Download PDF

Info

Publication number
CN110835218A
CN110835218A CN201911162997.XA CN201911162997A CN110835218A CN 110835218 A CN110835218 A CN 110835218A CN 201911162997 A CN201911162997 A CN 201911162997A CN 110835218 A CN110835218 A CN 110835218A
Authority
CN
China
Prior art keywords
sludge
anaerobic digestion
temperature
ammonia
temperature anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911162997.XA
Other languages
English (en)
Other versions
CN110835218B (zh
Inventor
王天烽
曾莉媛
张庆芳
付欣
朱胤
徐倩
潘峰
彭俊琳
吴宇凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiujiang University
Original Assignee
Jiujiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiujiang University filed Critical Jiujiang University
Priority to CN201911162997.XA priority Critical patent/CN110835218B/zh
Publication of CN110835218A publication Critical patent/CN110835218A/zh
Application granted granted Critical
Publication of CN110835218B publication Critical patent/CN110835218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/006Electrochemical treatment, e.g. electro-oxidation or electro-osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了一种缓解污泥高温厌氧消化氨抑制的方法,采用微生物电解池+高温厌氧消化法的方法处理污泥,所述微生物电解池的外加电压为0.7v,厌氧消化温度为55℃,污泥停留时间为14天。本发明采用微生物电解池+高温厌氧消化法的方法处理污泥,可以增加生物膜的生物量,缓解高温厌氧条件下氨对产甲烷过程的抑制,提高污泥的水解效率、甲烷产量及厌氧消化反应器的稳定性。

Description

一种缓解污泥高温厌氧消化氨抑制的方法
技术领域
本发明涉及剩余活性污泥处理领域,具体涉及一种缓解污泥高温厌氧消化氨抑制的方法。
背景技术
厌氧消化法(AD)是一种可行的污水处理厂剩余活性污泥处理方法。污泥经厌氧消化后,可减少其有机物的数量、臭味和环境负担,同时产生甲烷。然而,传统污泥厌氧消化存在有机负荷率(OLR)低和水力停留时间(HRT)较长的缺点。
由于提高了消化池的OLR,高含固率(TS>5%)污泥的AD越来越受到关注。TS高达20%的污泥中温AD污泥可以支持6倍于传统消化池的OLR,并且在相同的HRT下可获得相近似的沼气产率(单位有机质的沼气产量)。污泥中温产气率随TS的增加先增加后降低,在TS为8%时最大产气量为246.8mL g-1-VS。在中温条件下添加高固体份污泥,可显著提高消化反应器的OLR。污泥中温厌氧消化的HRT长及消化污泥高致病菌残留等问题限制了其应用。
与中温条件相比,高温条件下的生物/化学反应速率和病原体去除率均会显著增加,但产甲烷菌的活性在高温条件下更加容易受到抑制物(尤其是氨)的抑制。调节底物pH或碳氮比、稀释底物、外部添加化合物(如生物炭)可以缓解或恢复厌氧消化对氨氮的抑制作用。但上述方法会降低消化污泥的土地利用可能性、厌氧反应器的可操作性或OLR。为了提高消化污泥土地利用的可能性,厌氧消化反应器的改进可能优于底物特性的调整。
发明内容
为解决上述问题,本发明提供了一种缓解污泥高温厌氧消化氨抑制的方法。
为实现上述目的,本发明采取的技术方案为:
一种缓解污泥高温厌氧消化氨抑制的方法,采用微生物电解池+高温厌氧消化法的方法处理污泥,所述微生物电解池的外加电压为0.7v,温度为55℃,污泥停留时间为14天。
本发明具有以下有益效果:
本发明采用微生物电解池+高温厌氧消化法的方法处理污泥,可以增加生物膜的生物量,缓解高温厌氧条件下氨对产甲烷过程的抑制,提高污泥的水解效率,甲烷产量及厌氧消化反应器的稳定性。
附图说明
图1为不同作用电压下对模拟基质厌氧降解过程中pH和游离氨的变化。
图2为不同作用电压下对模拟基质厌氧降解过程中DOC(溶解性有机碳)和沼气产量的变化。
图3为不同作用电压下对模拟基质厌氧降解过程中氢气和甲烷含量的变化。
图4为对照反应器(无外加电解池)和实验反应器(外加电解池)中pH、氨氮和游离氨的变化。
图5为对照反应器(无外加电解池)和实验反应器(外加电解池)中溶解性有机碳、沼气产量和甲烷含量的变化。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实验例
以下实施例中:
接种颗粒污泥来某啤酒厂污水处理设施。合成底物:1.0g L-1氨浓度(氯化铵),5.0g L-1COD(葡萄糖),4.2g L-1NaHCO3和其它营养物质(Saleem等,2016)。合成底物接种20/1的厌氧颗粒污泥(合成底物/厌氧颗粒污泥,体积比)。然后,在具有橡胶塞的1000mL试剂瓶中以分批操作在55±2℃下消化500mL混合物。消化后,将消化产物以2000rpm离心,得到的上清液用作接种物。
反应器所用的污泥来自某污水处理厂,污泥的pH,总悬浮固体(TSS),挥发性悬浮物(VSS),氨和总凯氏氮(TKN)分别为7.35±0.03,12.64±0.1g L-1,6.44±0.1g L-1,2830±120mg L-1和113±15mg L-1。污泥在使用前储存在4℃的冰箱中。
实验时,取10个厌氧消化反应器耦合单室微生物电解池,每个反应器的有效容积为400毫升。放置在每个反应器中的两个电极夹分别为作阳极和阴极。阳极和阴极的电极夹材料分别是铂和不锈钢。碳布(50mm×50mm×0.36mm)分别用两个电极夹固定。每个消化有一个出气口和一个取样口。反应器在半连续模式下运行,水力停留时间为14天(反应器中的200mL消化物在21天后每7天用相应的底物替换一次)并在55±2℃下培养。
施加电压的影响:使用稳压直流电源(DH1718E-4,大华,中国)向ADMEC施加五种不同的恒定直流(DC)电压(0V,0.3V,0.7V,1.2V和1.8V),每个电压条件有两个平行的反应器。200mL合成底物和200mL接种物在消化开始时加入反应器中。
氨浓度的影响:在两种外加电压(0V和0.7V)下将污泥(污泥+0.5g L-1-氨)加入到反应器中。
用万用表(中国,UNI-T,UT136A)测电流,21天后每隔7天用蠕动泵从取样口采集一次消化样品,消化样品用2000rpm离心后,上清液通过0.45um微纤维过滤器进行过滤,过滤后的液体作为样品进行分析。用TOC分析仪(日本岛津TOC-VCSN)测定溶解有机碳(DOC),用标准法测定液体样品中总氨氮(TAN),游离氨氮(FAN)按Bycalli等人描述的相同方法计算(2005年)。采用水置换法测量沼气量。沼气的组成由气相色谱仪(Varian 490-GC,AgilentTechnology,USA)测量。厌氧消化结束后,用蒸馏水清洗碳布,洗涤水中的总固体用于表示碳布上的生物量。
实验结果电压对微生物电解池高温厌氧消化的影响
在高温条件下,研究了微生物电解池在不同外加电压(0V、0.3V、0.7V、1.2V和1.8V)作用下对模拟基质的厌氧降解情况。在0.3V和0.7V的外加电压条件下,基质降解率和沼气产率较高;但0.7V的外加电压条件下,沼气中甲烷含量最高。研究结果表明在合适的外加电压(0.7V)下,微生物电解池能提高高温厌氧消化效率。
反应器类型对污泥厌氧消化的影响
在高温条件下,研究了微生物电解池(0V和0.7V)作用下对污泥(添加氨氮)的厌氧消化情况。相对空白反应器(0V),微生物电解池能提高污泥水解效率、沼气产量及甲烷含量。相对空白反应器,微生物电解池能提高生物膜的生物量,其中阳极生物膜生物量提高约40%,阴极生物膜提高约380%。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (1)

1.一种缓解污泥高温厌氧消化氨抑制的方法,其特征在于:采用微生物电解池+高温厌氧消化法的方法处理污泥,所述微生物电解池的外加电压为0.7v,温度为55℃,污泥停留时间为14天。
CN201911162997.XA 2019-11-22 2019-11-22 一种缓解污泥高温厌氧消化氨抑制的方法 Active CN110835218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911162997.XA CN110835218B (zh) 2019-11-22 2019-11-22 一种缓解污泥高温厌氧消化氨抑制的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911162997.XA CN110835218B (zh) 2019-11-22 2019-11-22 一种缓解污泥高温厌氧消化氨抑制的方法

Publications (2)

Publication Number Publication Date
CN110835218A true CN110835218A (zh) 2020-02-25
CN110835218B CN110835218B (zh) 2022-06-10

Family

ID=69577165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911162997.XA Active CN110835218B (zh) 2019-11-22 2019-11-22 一种缓解污泥高温厌氧消化氨抑制的方法

Country Status (1)

Country Link
CN (1) CN110835218B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478178A (zh) * 2014-12-05 2015-04-01 哈尔滨工业大学 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
CN105621826A (zh) * 2016-01-19 2016-06-01 辽宁大学 一种预处理联合电化学技术促进剩余活性污泥厌氧消化产甲烷的方法
CA3041431A1 (en) * 2016-10-26 2018-05-03 Fluence Water Products And Innovation Ltd Process and system for wastewater treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478178A (zh) * 2014-12-05 2015-04-01 哈尔滨工业大学 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
CN105621826A (zh) * 2016-01-19 2016-06-01 辽宁大学 一种预处理联合电化学技术促进剩余活性污泥厌氧消化产甲烷的方法
CA3041431A1 (en) * 2016-10-26 2018-05-03 Fluence Water Products And Innovation Ltd Process and system for wastewater treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王星等: "《分类有机垃圾的终端厌氧处理技术》", 31 January 2018, 冶金工业出版社 *

Also Published As

Publication number Publication date
CN110835218B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Li et al. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency
Yuan et al. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems
Antwi et al. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB
Maspolim et al. Comparison of single-stage and two-phase anaerobic sludge digestion systems–Performance and microbial community dynamics
Chen et al. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure
Meng et al. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses
Martín-González et al. Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant: reactor performance and microbial community monitoring
Xiao et al. Acetic acid inhibition on methanogens in a two-phase anaerobic process
Calli et al. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia
Qiao et al. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas
Colleran et al. Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters
Baek et al. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time
Yang et al. Comparison of three biomass-retaining reactors of the ASBR, the UBF and the USR treating swine wastewater for biogas production
Feng et al. Influence of neutralization in acidic distillery wastewater on direct interspecies electron transfer for methane production in an upflow anaerobic bioelectrochemical reactor
Chen et al. An anaerobic dynamic membrane bioreactor for enhancing sludge digestion: Impact of solids retention time on digestion efficacy
Vu et al. Enhanced methane fermentation of municipal sewage sludge by microbial electrochemical systems integrated with anaerobic digestion
Barua et al. Shaping microbial communities with conductive carbon fibers to enhance methane productivity and kinetics
Qin et al. Fungal dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors
Hu et al. Comparation of thermophilic bacteria (TB) pretreated primary and secondary waste sludge carbon sources on denitrification performance at different HRTs
Yuan et al. Kinetics and microbial community analysis of sludge anaerobic digestion based on micro-direct current treatment under different initial pH values
Jo et al. The effects of ammonia acclimation on biogas recovery and the microbial population in continuous anaerobic digestion of swine manure
Chen et al. Acclimation improves methane production from molasses wastewater with high salinity in an upflow anaerobic filter reactor: performance and microbial community dynamics
Zhang et al. Enhanced sludge thermophilic anaerobic digestion performance by single-chambered microbial electrolysis cells under ammonia inhibition
Joicy et al. Influence of applied voltage and conductive material in DIET promotion for methane generation
Sasaki et al. Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant