CN110832195A - 用于风电场的监视系统和相关方法 - Google Patents

用于风电场的监视系统和相关方法 Download PDF

Info

Publication number
CN110832195A
CN110832195A CN201880043607.4A CN201880043607A CN110832195A CN 110832195 A CN110832195 A CN 110832195A CN 201880043607 A CN201880043607 A CN 201880043607A CN 110832195 A CN110832195 A CN 110832195A
Authority
CN
China
Prior art keywords
drones
bird
birds
wind farm
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880043607.4A
Other languages
English (en)
Inventor
G·K·S·派得森
C·S·弗雷德里克森
G·拉尔森
I·J·B·K·延森
K·L·彼得森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Publication of CN110832195A publication Critical patent/CN110832195A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/10Arrangements for warning air traffic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/06Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like
    • A01M29/10Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like using light sources, e.g. lasers or flashing lights
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/16Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/16Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves
    • A01M29/18Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves using ultrasonic signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • B64F1/362Installations for supplying conditioned air to parked aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0088Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

在第一方面,本发明的实施方式提供了用于风电场的监视系统,该监视系统包括:检测系统,其被配置成检测正在飞行的鸟并且发出检测信号;一个或更多个无人机;以及控制系统,其被配置成基于检测到在所述风电场附近飞行的鸟,命令部署所述无人机中的一个或更多个。本发明扩展到包括多个风力涡轮机和如上所限定的系统的风电场。本发明还包括一种对风电场中的监视系统进行操作的方法,该方法包括以下步骤:使用监视系统对接近风电场的地理区域进行扫描,以检测鸟;在检测到风电场附近存在鸟时,自动命令部署一个或更多个无人机,以用作对检测到的鸟的威慑。

Description

用于风电场的监视系统和相关方法
技术领域
本发明涉及用于在风电场中提供监视以监测鸟和蝙蝠的存在的系统和方法。可以采取合适的措施在风电场附近检测鸟,以便减少风电场中的风力涡轮机的旋转叶片对鸟造成的危险。
背景技术
风电场常常安装在经受相对高的平均风速的开阔区域中。这些区域常常经受鸟和蝙蝠(不太常见)的频繁活动。特别的问题是成群的迁徙鸟。
已知提供频繁的鸟活动的早期预警的雷达系统,例如,该雷达系统会获知迁徙的鸟群以及较小的鸟群。迄今为止,这种系统常常依赖于风电场中的风力涡轮机的缩减操作,或者完全关闭风力涡轮机,以便减小风力涡轮机的旋转叶片对鸟造成的危险。
在这种背景下,设计出了本发明的实施方式,以提供更有效的方法来检测鸟并实现危险减轻措施。
发明内容
在第一方面,本发明的实施方式提供了用于风电场的监视系统,该监视系统包括:
检测系统,其被配置成检测正在飞行的鸟并且发出检测信号;
一个或更多个无人机(drone);以及
控制系统,其被配置成基于检测到在所述风电场附近飞行的鸟,命令部署所述无人机中的一个或更多个。
本发明扩展到包括多个风力涡轮机和如上所限定的系统的风电场。
本发明还包括一种对风电场中的监视系统进行操作的方法,该方法包括以下步骤:
使用监视系统对接近风电场的地理区域进行扫描,以检测鸟;
在检测到所述风电场附近存在鸟时,自动命令部署一个或更多个无人机,以用作对检测到的鸟的威慑。
所述检测系统可以包括探鸟雷达系统。所述检测系统可以被配置成,一旦检测到鸟,就发出检测信号或触发检测事件,或者在另一实施方式中,当在所述检测系统的预定范围内检测到鸟时,所述检测系统可以触发检测事件。事件信号可以向所述控制系统提供与检测到的鸟的数量有关的信息,并且还可以提供与鸟群的大小、范围数据和鸟群的地理分布有关的进一步信息。所述事件信号甚至能够对鸟的类型做出预测,该类型可能影响所使用的威慑方法的类型。
在能够获得与检测到的鸟的数量有关的信息/数据的情况下,所述控制系统可以被配置成命令部署选定无人机组,该选定无人机组的大小取决于检测到的鸟的数量。
所述无人机中的至少一个无人机可以配备有用于向鸟发射能够听见的威慑的音频发射器。例如,音频发射器可以是超声波发射器,但也可以被配置成发射人类可听范围中的声音(例如捕食者声音或痛苦的鸟叫声)。在其它实施方式中,所述无人机中的至少一个无人机配备有用于向鸟发射视觉威慑的视觉发射器。视觉发射器可以包括白色或彩色灯,稳定的或闪烁的并且可选地按图案布置。
所述一个或更多个无人机可以配备有自动飞行控制系统,以使得能够自主飞行。所述控制系统可以引导所述一个或更多个无人机朝着所检测到的鸟飞行。
所述一个或更多个无人机可以从操作基地起飞,该操作基地在所述无人机不飞行时为其提供环境保护。所述操作基地还可以提供用于为所述一个或更多个无人机充电的充电系统。
附图说明
现在将参照附图通过示例的方式描述本发明,其中:
图1是在本发明的实施方式中使用的示例性无人驾驶飞行器系统的示意图;
图2是与图1的无人驾驶飞行器或“无人机”系统一起使用的监视系统的示意图;
图3是示出了用于风电场的监视系统的示例的图;
图4是示出了监视系统的操作原理的流程图;
图5是监视系统的操作原理的图形表示;
图6示出了针对监视系统检测到鸟的响应动作;
图7示出了针对监视系统检测到鸟的进一步响应动作;以及
图8至图10示出了针对监视系统检测到鸟的进一步响应动作。
具体实施方式
本发明的实施方式提供了无人飞行器系统(UAS)和无人驾驶飞行器(UAV),以便提供有效的方法来对正在飞行的鸟群进行检测并使得该鸟群不与风电场相互影响。为简便起见,本讨论将把“无人机”称为任何类型的无人驾驶飞行器。
总体上,本发明的实施方式提供了用于减轻一些环境活动家团体认为的风电场对鸟类野生动物(尤其是迁徙的鸟群)造成的危险的新方法。从广义上讲,实施方式涉及监视系统,该监视系统被配置成使用合适的检测手段来对正在飞行的野生动物进行检测并生成威慑响应,以阻止所检测到的野生动物接近风电场。尽管其它系统是可能的,但原则上认为雷达系统目前是对正在飞行的鸟进行检测的可行手段。一旦发生鸟检测事件,监视系统就能够对该事件所需的适当响应动作做出判断。响应动作可能受到稍后将详细讨论的多个因素影响。然而,值得注意的是,监视系统可以触发一个或更多个无人机的部署,以便阻止鸟朝着风电场继续前进。对于鸟群,可以部署机群形式的多个无人机,该多个无人机可以采取适当的动作来挡住鸟并使鸟的飞行路径转向。
为了将本发明置于上下文中,图1示出了可以在本发明的实施方式的实现中使用的无人机20的典型系统架构平台的系统图。总的来说,无人机20或“无人机系统”包括:控制系统22、一个或更多个推进单元24、电力系统26、通信系统27、传感器套件28、任务计划系统29以及导航系统30。无人机20可以与地面或基站计算机系统31(以下称为“地面站”)结合地进行操作,稍后将参照图2对其进行更详细的描述。各种电子部件可以通过合适的数据和电力连接来连接,该数据和电力连接是直接连接,或通过联网的数据和电力总线,诸如作为技术人员可以理解的通用互连架构的CAN总线(控制器局域网)。
控制系统22是主计算单元,该主计算单元通过基于来自传感器套件28和导航系统30的输入对推进单元24进行控制来控制无人机20的飞行。控制系统22可以实现以下操作:基于从基于地面的控制器接收的控制输入的远程控制飞行;基于该控制系统的内部任务计划算法的自主飞行;或半自主飞行,在半自主飞行中,使用机载任务计划和基于地面的方向的混合。控制系统22的主要职责是作为下层控制器,该下层控制器负责基于远程控制动作或基于自生成的飞行方向进行无人机的位置控制(高度和横向位置)、姿态控制(俯仰、翻滚和偏航)以及速度控制(水平和竖直速度)。控制系统22包括合适的处理环境,该处理环境具有处理器32和存储器34,该处理器32和存储器34具有相关联的机载通信功能(诸如数据总线),因此该控制系统22能够与其它机载系统进行通信。
为了直接控制飞行轮廓(flight profile),控制系统22与一个或更多个推进单元24进行通信。这里示出了四个推进单元24,这与无人机系统20是四旋翼机是一致的。然而,更多或更少推进单元也是合适的。例如,自主直升机可以具有单个推进单元,并且通常,已知具有多于或少于四个旋翼的远程控制且自主多旋翼系统。有时,这些统称为空中机器人系统。推进单元可以是用于为无人机提供可控制飞行的任何合适单元,并且可以是对合适旋翼叶片进行驱动的电动机,如在典型的具有变化大小和上升能力的所谓四旋翼机(更一般地称为多旋翼机)中那样。然而,推进单元24也可以例如是燃气轮机或内燃机。
机载电力系统26被选择成适于推进单元24。例如,对于电动机,机载电力系统26可以是电池组、燃料电池或甚至是外部电源插头,以便从外部源接收电力。相反,在推进单元是燃气轮机或ICE的情况下,电力系统26可以是机载燃料箱。
通信系统27提供了向无人机20外部的系统发送数据和从该系统接收数据的手段。例如,无人机20可以将遥测数据发送给地面站31,并且可以将位置、姿态和速度数据发送给在该区域中操作的作为无人机机群的一部分或独立操作的其它无人机。通信系统27还可以从外部系统接收数据,并且在这种背景下,如果无人机20以远程控制飞行模式操作,则其可以从地面站31接收远程控制命令。这种控制可以采取飞行路径信息或无人机遵循的航路点的形式,而不是与推进单元24有关的直接控制命令。另选地,可以从地面站加载任务数据。通信系统27还准许与其它无人机的进出(双向)通信,使得可以与其它无人机协调飞行路径和任务目的,以实现共同的目标。通信系统27可以通过本领域中已知的任何手段来引导信号,该手段包括但不限于蜂窝网络或其它基于电话的网络、通过远程控制射频链路、UHF或L波段频率链路、微波频率链路或其它适当的数据链路、网络或通信路径。
传感器套件28在工作上连接至控制系统22并提供适当传感器数据以协助无人机的操作。例如,举一些例子,传感器套件可以包括近程检测器、用于定位控制的全球导航卫星系统/全球定位系统(GNSS/GPS)单元、用于执行检查和引导任务的光学照相机和摄像机、惯性导航单元。通常,这种传感器套件28将适于携带特定任务所需的更多个或更少个传感器。注意,在这种背景下,GPS单元可以直接从卫星接收信号以便固定无人机的位置,尽管另一选项将是实现差分GPS系统(本领域已知),该差分GPS系统从基于地面的差分GPS信标接收信号,以便与直接GPS相比提供更高的定位准确度。注意,这里示出的GPS单元36与导航系统30一体形成。
任务计划系统29提供到地面站31的链路,以存储已在该任务计划系统上生成且无人机在使用中遵循的任务。任务计划系统29可以包括合适的存储器和算法,以实时存储、提供和生成适当的任务目的、航路点、操作包络等。
导航系统30向飞行控制系统22提供与基于来自GPS数据和/或来自传感器套件28的输入的路径跟踪有关的控制输入。在无人机飞行是自动的实施方式中,导航系统30可以沿着由地面站31为其生成或者由无人机实时生成的预定飞行路径执行预定任务。另选地,导航系统30可以被远程控制并且可能需要诸如转向命令的用户输入。
已经描述了无人机20的功能部件,现在讨论将转向如图2所示的地面站31。地面站31为一个或更多个无人机20提供基于地面的控制集线器,并适当地配备有计算平台40,该计算平台40是具有适当的处理模块42和存储器44的控制器。计算平台40实现适当的地面站软件包46,以提供用于对一个或更多个无人机进行控制和协调的适当的地面站工具。例如,软件包46可以包括遥测馈送、状态信息更新、第一人称视角(FPV)馈送、任务计划界面和算法等。提供用户界面48,以使得用户/操作者能够查看与无人机系统有关的数据并将控制和参数数据输入地面站中。用户界面48可以包括显示屏和音频输出以及用户输入装置(诸如键盘、操纵杆、鼠标、屏幕上按钮或这些的组合)。地面站还具有通信系统50,以便向一个或更多个无人机发送数据并从其接收数据。
在本发明的上下文中,地面站31负责配置将触发鸟检测事件的参数以及应该在鸟检测事件后实现的响应动作。为此,提供了适当的软件以供操作者设置这些参数和配置。
为了提供用于对距风电场一定距离处的鸟进行检测的功能,地面站连接至为雷达系统50形式的检测系统。地面站31和雷达系统50一起形成监视系统52,该监视系统52可以操作用于监测鸟在风电场附近存在或者确定鸟可能在可能被风电场拦截或与风电场相互影响的飞行路径上,并且采取适当的响应动作。
雷达系统50包括能够对接近风电场或在风电场附近的一个或更多个鸟进行识别的任何合适的雷达装置。可以设想,雷达系统50可以包括以L波段或X波段频率操作的脉冲多普勒雷达系统。一些这种探鸟雷达系统是商业上可用的,例如Robin Radar Systems BV、来自Kelvin Hughes Limited的SharpEyeTM探鸟雷达系统以及从De-Tect Inc获得的MerlinTM探鸟雷达系统。雷达系统50可操作用于提供检测到鸟的指示。在该实施方式中,由生成鸟检测事件信号54的雷达系统50提供指示。然而,应当注意,其它指示手段也是可能的。除了指示在特定地理位置处检测到一只或更多只鸟外,信号还可以包括其它有用信息,诸如检测到的鸟的数量、鸟群的地理分布、检测到的单独鸟群的数量、与检测到的鸟群有关的跟踪信息以及一个或更多个鸟群的预测飞行路径信息。将理解,这里对“鸟”的提及包括对其它鸟类生物(诸如蝙蝠)的提及。
如图2所示,地面站31和雷达系统50是单独的单元。这些单元可以是配置监视系统52的一种适当方式,但也可以设想将地面站31和雷达系统50集成到单个单元中。
应当理解,无人机系统20的以上描述旨在仅作为自主飞行器的主要部件的示例,并且其它部件也可以被包括在一般系统中。通常,应当注意,在本发明的实施方式中使用的无人机是已知的,并且能够以远程控制飞行模式、半自主和全自主飞行模式执行,并且能够以与其它无人机的固定编队的协调方式执行操纵。
对于该应用的合适无人机是来自DJI的Matrice系列(例如M200或M600)。其它无人机(优选商业级的)也将是合适的。考虑的重要特征是飞行耐久性、稳健性、机群的适用性、自主控制以及与地面站交互以进行任务计划、控制、遥测数据等的能力。
以上的讨论集中在包括可以用于给出本发明上下文的合适无人机架构的监视系统的示例。现在,将参照图3至图10将讨论集中于监视系统的特定功能。
首先参照图3,监视系统52被示出位于风电场60中,被风力涡轮机62的阵列围绕。原则上,监视系统52可以位于风电场60中的任何地方,并且甚至在其外部,只要监视系统52的有效检测范围足以提供风电场60的适当地理覆盖范围,使得可以在鸟通过飞行接近或穿过风电场而与该风电场相互影响前检测到鸟即可。风电场60内的近似中心位置的优点在于,该近似中心位置为监视系统52提供了以一致方式绕风电场延伸的有效范围。这可以在图5中看出,其中,雷达系统的地理覆盖范围的圆形区域以大致位于风电场中间的监视系统52为中心。
如上所述,图3所示的监视系统52包括地面站31、雷达系统50和一队无人机20。舱体形式的操作基地64提供了用于存储无人机20和监视系统52的部件的位置。操作基地64可以配备有适当的充电点66(这里示出了其中的两个),当需要重新充电时,无人机20能够与该充电点自主地对接。这里,操作基地64被示出成运输集装箱,但这仅是示例。任何适当大小的结构将是合适的。操作基地64可以是永久打开的,以便为无人机提供从该操作基地飞出以及飞回该操作基地中的开阔区域,因此该操作基地用作无人机的停靠舱。然而,在该实施方式中,操作基地64具有可打开的顶部66,以向该操作基地内的部件提供较好的环境保护。因为无人机在部署期间可能会竖直向上飞行并且在被召回基地时竖直向下下降,所以可打开的顶部是有益的。然而,代替或除了可打开的顶部66外,可以在操作基地的侧面上设置可打开的门。注意,操作基地64的侧壁被示出为半透明的,使得可以看到内部部件。
尽管这里未示出,但是应当理解,因为风电场60内的风力涡轮机62和其它结构可能在位于中心的雷达系统52上引起阴影,所以监视系统52可以包括位于风电场60周围的多个雷达系统50,以确保良好的覆盖范围。现在还将参照图4,图4是示出了监视系统52的操作过程100的总体概览的流程图。
最初,在步骤102处启动监视。可以设想,监视系统52可以在风电场试运转时通电,并且无论风电场何时进行操作,该监视系统都将处于操作状态,以为鸟提供保护。然而,可选地,监视系统52可以替代地被配置成仅在高度危险时段期间(例如在预期鸟迁徙的时间期间)操作。
然后,该过程移动到监测例程104,在监测例程104中,雷达系统50在代表其有效操作范围的边界内对鸟进行扫描。这在图5中被示出为标记为‘105’的外圆。有效操作范围105可以取决于为此目的而选择的雷达系统50的能力。在其它实施方式中,系统可以被配置成沿所选角度方向具有预定范围。例如,范围边界105的轮廓不必如所示实施方式中那样是圆形的,而是可以是不规则的,使得其被配置成与其它方向相比沿一个方向进一步延伸。在可以预期大多数鸟迁徙来自特定方向的情况下,这可能是有用的。
雷达系统50继续其监测例程104,并在检测到鸟的情况下发出鸟检测事件信号54。在移动到该过程的后续步骤前,将更详细地讨论鸟检测事件信号。
雷达系统50可以被配置成在其检测到一个或更多个鸟时生成鸟检测事件信号54。触发事件信号所需的鸟的数量可能受系统灵敏度影响。例如,系统可能仅足够灵敏地检测十只或更多只鸟的组,使得十只鸟是将触发信号生成的组中的鸟的最小数量。雷达系统50也可以足够灵敏地检测单只鸟。在这种情况下,认为将雷达系统50配置成仅在检测到预定数量的鸟时生成鸟检测事件信号54是有用的。该方法试图平衡给单只鸟带来的小危险以及无人机队的过于频繁的部署。
如图5所示,一旦雷达系统50检测到已侵入了监视系统52的有效操作范围105的外部界线内的鸟(例如鸟群108),就可以生成鸟检测事件信号。这在图5中由第一警报符号106指示。这提供了正在接近的鸟群108的早期预警,并且如果雷达系统50的最大范围相对受限,则这确实可能是需要的。
一种另选方法是,一旦鸟群108越过了外部范围界线,就对该鸟群进行识别,并且然后基于雷达系统50生成的数据来跟踪该鸟群的前进。如果该鸟群朝着风电场60继续其飞行航向而经过预定边界110,则这将触发雷达系统50生成鸟检测事件信号。这在图5中由第二警报符号112指示。有用的是,因为仅当鸟群经过为此目的配置的预定接近性边界时才触发事件信号,所以该方法可以引起无人机部署数量的减少。因此,如果鸟群在最初被检测到后将其飞行路径转向并且没有经过内边界110,则将没有危险并且将不生成鸟检测事件信号。
鸟检测事件信号54可以仅仅是已检测到鸟群的通知信号,并且作为响应,地面站将执行基于无人机部署的响应动作。然而,由雷达系统50生成的鸟检测事件信号可以被配置成包括有用的数据,地面系统可以使用该有用的数据来提供更复杂的响应动作。例如,鸟检测事件信号可以包括有用的信息内容,诸如检测到的鸟的数量、鸟群的地理分布、检测到的单独鸟群的数量、与检测到的鸟群有关的跟踪信息(包括速度、高度和航向)以及一个或更多个鸟群的预测飞行路径信息。
事件信号的这种技术内容将在很大程度上取决于雷达系统50的能力。
一旦检测到鸟,监视系统52(在该实施方式中更具体地是地面站31)就将基于该信号来决定起飞或部署无人机(步骤114)。在图6中示出了无人机的部署,其中,一组无人机20通过一组打开的双门66从操作基地64竖直向上飞行。应当理解,这种上部门配置允许无人机的快速部署,因为无人机非常适合这种飞行操纵。
监视系统52可以采取用于对无人机进行部署的多种不同方法。例如,所有无人机都可以被部署成标准位置或默认位置,或者可以基于包括在鸟检测事件信号中的信息来决定部署选定数量的无人机队。例如,部署的无人机的精确数量可以基于检测到的鸟群中的鸟的估计数量。
一旦由监视系统52部署了无人机,该无人机就可以彼此协调地起作用以阻拦鸟群接近风电场。为此,无人机可以基于地面站31加载到其上的预定任务简档来自主地操作。例如,该任务简档可以指示无人机飞行到拦截检测到的鸟群的飞行路径的预定地理位置和高度。以该方式,无人机可以被动地作用并且仅遵循监视系统52的命令。这在图4中通过导致“守卫”118和“驱逐(herd)”120的两个示例性选项的“选择机群管理例程116”的步骤来指示。而在守卫例程118中,无人机可以保持相对于风电场固定的位置和高度坐标,在驱逐模式120中,可以命令无人机以预定飞行队形一起朝着监视系统正在跟踪的鸟群移动,以试图驱赶该鸟群远离风电场。
图8和图9示出了这样的示例。在图8中,示出了风电场60,在其上方以几何队形安置有无人机20的机群。这里,这种队形像圆顶,使得由于风电场60被为无人机的帽部掩护而制止鸟在接近风电场60的任何地方飞行。其它几何配置是可能的—例如,无人机可以采用类似于具有预定形状(例如椭圆形或矩形)的被设计成使得风电场60远离接近的鸟的平面竖直壁的队形。无人机也可以被配置成以具有圆顶形或碟形轮廓的相对于风电场是凸形或凹形的队形飞行。图9示出了这种情况的一个示例,其中,无人机20墙采用了凹形队形,使得在无人机队形的中间更深地靠近鸟群。因此,无人机队形的外边缘进一步朝着鸟群延伸,这制止了鸟向上飞行并飞过无人机队形。在图9中,无人机被示出为使鸟群80前进,其目的是驱赶鸟远离风电场60。
设想在一个实施方式中,无人机可以对鸟群的移动做出响应,这将提高无人机队的驱逐能力。为此,监视系统52可以将与鸟群的地理位置和高度有关以及与鸟群的大小有关的数据传送给无人机队。然后,无人机队能够将其飞行队形调整成与鸟群的大小相匹配,以减少鸟群被分开的可能性。
如果鸟群的确分开成使得多组鸟沿不同的方向飞行,则监视系统52被配置成经由雷达系统50提供的跟踪信息对此进行检测,并在“追寻及找回”任务中改变无人机的选定数量。这在图10中示出,其中,无人机组90与无人机20的主要组分隔开,以便追寻已与主要鸟群80分开的一组鸟82。在所示实施方式中,一组鸟84可以返回到主要鸟群80,但这不是必需的,而是无人机组90可以被配置成沿不同方向驱逐或引领该组鸟84远离风电场60。
尽管无人机本身提供了合适的威慑,以驱使鸟群远离风电场,但通过为无人机的一部分或全部配备合适的鸟威慑装置80(参见图1),可以增强无人机的作用。
一种类型的威慑装置80是音频或声波威慑装置。这种装置是商业上可用的并且可以安装在合适的无人机平台上。声波鸟威慑装置被配置成发射击退鸟的声音,并且这可能是捕食者声音、特定物种的痛苦叫声或超声波声音的形式。这在图7中以图形方式示出,其中,一组无人机20朝着鸟群80沿直线前进,同时发射音频信号83以便驱赶鸟远离风电场60。
超声波装置将具有以下益处:人耳听不到该声音,如果监视系统52接近居民区定位,则这将是有利的。
威慑装置80还可以包括视觉威慑。例如,无人机可以配备有视觉发射器。这可以采取被配置成以预定频率闪烁的一个或更多个高功率LED装置的形式。
上面已经描述了本发明的多种实施方式。然而,技术人员将理解,可以以不脱离如权利要求所限定的发明构思的方式来改变或调整所示实施方式。

Claims (22)

1.一种用于风电场的监视系统(52),所述监视系统包括:
检测系统(50),所述检测系统被配置成检测正在飞行的鸟并且发出检测信号;
一个或更多个无人机(20);
控制系统(31),所述控制系统被配置成基于检测到在所述风电场附近飞行的鸟,命令部署所述无人机中的一个或更多个。
2.根据权利要求1所述的系统,其中,所述检测系统(50)包括探鸟雷达系统。
3.根据权利要求1或2所述的系统,其中,所述检测系统(50)响应于检测到鸟而发出检测信号(106)。
4.根据权利要求1或2所述的系统,其中,当在所述检测系统的预定范围内检测到鸟时,所述检测系统发出检测信号(112)。
5.根据权利要求1至4中的任一项所述的系统,其中,所述检测信号向所述控制系统提供与检测到的鸟的数量有关的信息。
6.根据权利要求4所述的系统,其中,所述控制系统被配置成在接收到检测信号时,命令部署(114)选定无人机组,所述选定无人机组的大小取决于所述检测到的鸟的数量。
7.根据权利要求1至6中的任一项所述的系统,其中,所述无人机中的至少一个无人机配备有用于向鸟发射能够听见的威慑的音频发射器(80)。
8.根据权利要求7所述的系统,其中,所述音频发射器是超声波发射器。
9.根据权利要求1至8中的任一项所述的系统,其中,所述无人机中的至少一个无人机配备有用于向鸟发射视觉威慑的视觉发射器(80)。
10.根据权利要求1至9中的任一项所述的系统,其中,所述一个或更多个无人机配备有自动飞行控制系统,以使得能够自主飞行。
11.根据权利要求1至10中的任一项所述的系统,其中,所述控制系统引导所述一个或更多个无人机朝着所述检测到的鸟飞行。
12.根据权利要求1至11中的任一项所述的系统,其中,所述一个或更多个无人机从操作基地(64)起飞,所述操作基地(64)在所述无人机不飞行时为所述无人机提供环境保护。
13.根据权利要求12所述的系统,其中,所述操作基地(64)包括用于为所述一个或更多个无人机充电的充电系统。
14.根据权利要求12或13所述的系统,其中,所述操作基地(64)包括能够由所述控制系统操作的门(66)。
15.一种风电场(60),所述风电场包括多个风力涡轮机以及根据权利要求1至14中的任一项所述的系统。
16.一种对风电场(60)中的监视系统(52)进行操作的方法,所述方法包括以下步骤:
使用监视系统(52)对接近风电场的地理区域进行扫描(102),以检测鸟;
在检测到所述风电场附近存在鸟时,自动命令(114)部署一个或更多个无人机(20),以用作对检测到的鸟的威慑。
17.根据权利要求16所述的方法,其中,一旦所述监视系统检测到(106)鸟,就进行一个或更多个无人机的部署。
18.根据权利要求17所述的方法,其中,一旦所述检测到的鸟进入所述风电场的预定距离(112)内,就进行所述无人机的部署。
19.根据权利要求16至18所述的方法,所述方法包括以下步骤:收集与使用所述监视系统检测到的鸟的数量有关的信息。
20.根据权利要求19所述的方法,所述方法包括以下步骤:根据检测到的无人机的数量来部署预定数量的无人机。
21.根据权利要求16至20所述的方法,所述方法包括以下步骤:跟踪检测到的鸟的飞行路径。
22.根据权利要求16至21所述的方法,所述方法包括以下步骤:朝向检测到鸟的区域引导所述一个或更多个无人机。
CN201880043607.4A 2017-06-30 2018-06-21 用于风电场的监视系统和相关方法 Pending CN110832195A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201770529 2017-06-30
DKPA201770529 2017-06-30
PCT/DK2018/050154 WO2019001663A1 (en) 2017-06-30 2018-06-21 MONITORING SYSTEM FOR WIND FARM, AND ASSOCIATED METHOD

Publications (1)

Publication Number Publication Date
CN110832195A true CN110832195A (zh) 2020-02-21

Family

ID=62904214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880043607.4A Pending CN110832195A (zh) 2017-06-30 2018-06-21 用于风电场的监视系统和相关方法

Country Status (4)

Country Link
US (1) US20200201332A1 (zh)
EP (1) EP3645875A1 (zh)
CN (1) CN110832195A (zh)
WO (1) WO2019001663A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359604B2 (en) * 2017-06-30 2022-06-14 Vestas Wind Systems A/S Method for reducing oscillations in wind turbine blades
US11801937B2 (en) * 2018-07-26 2023-10-31 California Institute Of Technology Systems and methods for avian flock flight path modification using UAVs
CN112088869A (zh) * 2020-09-08 2020-12-18 孙喜杰 一种无人机用超声波驱虫装置及其使用方法
CN112483330B (zh) * 2020-11-13 2021-09-10 江苏科技大学 一种匹配在役风力机状态的无人巡检轨迹程控方法
PL437718A1 (pl) * 2021-04-26 2022-10-31 Hexited Spółka Z Ograniczoną Odpowiedzialnością Autonomiczny system odstraszania ptaków z obszaru strzeżonego
US20220380042A1 (en) * 2021-05-06 2022-12-01 Board Of Regents, The University Of Texas System Intercepting or surrounding a group of hostile uavs with a net

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140148978A1 (en) * 2012-11-27 2014-05-29 Elwha Llc Methods and systems for directing birds away from equipment
US20140144390A1 (en) * 2012-11-27 2014-05-29 Elwha Llc Methods and systems for directing birds away from equipment
WO2014085327A1 (en) * 2012-11-27 2014-06-05 Wood, Lowell L., Jr. Methods and systems for directing birds away from equipment
CN103914043A (zh) * 2014-03-24 2014-07-09 山东师范大学 智能可编程群体驱鸟电子炮阵网络控制系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140148978A1 (en) * 2012-11-27 2014-05-29 Elwha Llc Methods and systems for directing birds away from equipment
US20140144390A1 (en) * 2012-11-27 2014-05-29 Elwha Llc Methods and systems for directing birds away from equipment
WO2014085327A1 (en) * 2012-11-27 2014-06-05 Wood, Lowell L., Jr. Methods and systems for directing birds away from equipment
CN103914043A (zh) * 2014-03-24 2014-07-09 山东师范大学 智能可编程群体驱鸟电子炮阵网络控制系统及方法

Also Published As

Publication number Publication date
WO2019001663A1 (en) 2019-01-03
US20200201332A1 (en) 2020-06-25
EP3645875A1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
CN110832195A (zh) 用于风电场的监视系统和相关方法
US20210295722A1 (en) Adaptive sense and avoid system
US11370540B2 (en) Context-based flight mode selection
US10745127B2 (en) Systems and methods for execution of recovery actions on an unmanned aerial vehicle
EP3735380B1 (en) Adjusting flight parameters of an aerial robotic vehicle based on presence of propeller guard(s)
US10403161B1 (en) Interface for accessing airspace data
US11249494B2 (en) Systems and methods for sensing and avoiding external objects for aircraft
KR101142737B1 (ko) 조류 대응 시스템
US20190110461A1 (en) Method and apparatus for identifying, locating and scaring away birds
US20190152595A1 (en) Apparatus for Sustained Surveillance and Deterrence with Unmanned Aerial Vehicles (UAV)
CN111316121A (zh) 用于调制航空器上lidar传感器范围的系统及方法
CN109696920B (zh) 作业设备及其控制方法和装置
US20240010336A1 (en) Steerable dependent vehicle for unmanned aerial vehicles
JP2006121997A (ja) 無人ヘリコプタ及びその制御方法
WO2022221916A1 (en) System infrastructure for manned vertical take-off and landing aerial vehicles
CN116339357A (zh) 无人机的控制方法、装置、无人机系统及计算机存储介质
CN111766893A (zh) 飞行器定位辅助系统、包括这样的系统的飞行组装件以及相关联的定位辅助方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination