CN110831314A - Cyclotron ionizing radiation self-shielding device of magnet yoke external isotope target system - Google Patents
Cyclotron ionizing radiation self-shielding device of magnet yoke external isotope target system Download PDFInfo
- Publication number
- CN110831314A CN110831314A CN201911123374.1A CN201911123374A CN110831314A CN 110831314 A CN110831314 A CN 110831314A CN 201911123374 A CN201911123374 A CN 201911123374A CN 110831314 A CN110831314 A CN 110831314A
- Authority
- CN
- China
- Prior art keywords
- cyclotron
- side shield
- ionizing radiation
- shielding
- shield body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005865 ionizing radiation Effects 0.000 title claims abstract description 43
- 239000010410 layer Substances 0.000 claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 claims abstract description 50
- 238000005253 cladding Methods 0.000 claims abstract description 46
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052796 boron Inorganic materials 0.000 claims abstract description 38
- 239000004698 Polyethylene Substances 0.000 claims abstract description 24
- -1 polyethylene Polymers 0.000 claims abstract description 24
- 229920000573 polyethylene Polymers 0.000 claims abstract description 24
- 239000011247 coating layer Substances 0.000 claims abstract description 9
- 239000000872 buffer Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- 239000004567 concrete Substances 0.000 claims description 6
- 230000033001 locomotion Effects 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 4
- 238000000576 coating method Methods 0.000 claims 4
- 238000005267 amalgamation Methods 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 238000009434 installation Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011210 fiber-reinforced concrete Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005467 cyclotron radiation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F3/00—Shielding characterised by its physical form, e.g. granules, or shape of the material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/005—Cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2277/00—Applications of particle accelerators
- H05H2277/10—Medical devices
- H05H2277/11—Radiotherapy
- H05H2277/116—Isotope production
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Particle Accelerators (AREA)
Abstract
本发明涉及回旋加速器技术领域,公开了一种磁轭外同位素靶系统的回旋加速器电离辐射自屏蔽装置,包括有同位素生产靶室、加速器包覆层以及驱动装置,加速器包覆层包覆于回旋加速器的侧向、顶部,加速器包覆层分为拼合而成的左侧屏蔽体、右侧屏蔽体,驱动装置驱动左侧屏蔽体与右侧屏蔽体作相向或反向直线移动以关闭或开合加速器包覆层,左侧屏蔽体、右侧屏蔽体的内侧面均嵌设有贴近于回旋加速器磁轭的同位素生产靶室,且回旋加速器的生产靶位于同位素生产靶室内,同位素生产靶室外围置有铅屏蔽层、含硼聚乙烯屏蔽层,本发明实现了对回旋加速器产生的电离辐射场进行有效屏蔽,提高了医疗装置的安全可靠性,保证工作人员的安全。
The invention relates to the technical field of cyclotrons, and discloses a cyclotron ionizing radiation self-shielding device of a magnetic yoke outer isotope target system, comprising an isotope production target chamber, an accelerator coating layer and a driving device. The accelerator coating layer is coated on the cyclotron. The side and top of the accelerator, the accelerator cladding is divided into a left shield body and a right shield body, and the driving device drives the left shield body and the right shield body to move in a straight line in the opposite or reverse direction to close or open. The isotope production target chamber close to the yoke of the cyclotron is embedded in the inner side of the left shield body and the right shield body, and the cyclotron production target is located in the isotope production target chamber, the isotope production target chamber A lead shielding layer and a boron-containing polyethylene shielding layer are arranged on the periphery, and the invention realizes effective shielding of the ionizing radiation field generated by the cyclotron, improves the safety and reliability of the medical device, and ensures the safety of the staff.
Description
技术领域technical field
本发明涉及回旋加速器技术领域,尤其涉及用于医用同位素生产设备中的磁轭外同位素靶系统的回旋加速器电离辐射自屏蔽装置。The invention relates to the technical field of cyclotrons, in particular to a cyclotron ionizing radiation self-shielding device used in a magnetic yoke outer isotope target system in medical isotope production equipment.
背景技术Background technique
目前,在医用中短寿命同位素生产回旋加速器中,同位素生产靶系统及加速器本体在运行时会产生中子及光子电离辐射。根据中国现行法规和标准要求需要对电离辐射进行防护,并降低到标准要求的剂量率限值,保证放射性工作人员及公众的安全。对于同位素生产用加速器的电离辐射屏蔽通常需要大厚度的混凝土进行防护,防护手段通常采用屏蔽墙等建筑结构完成。大厚度的屏蔽墙体存在施工困难、占地面积大、造价高的缺点。为了降低同位素生产用回旋加速建筑的屏蔽厚度,并合理利用加速器房间的空间,亟需设计一种多层复合屏蔽材料的自屏蔽装置用于加速器的电离辐射屏蔽。At present, in the cyclotron for the production of medium and short-lived isotopes for medical use, the isotope production target system and the accelerator body will generate neutron and photon ionizing radiation during operation. According to the current regulations and standards in China, it is necessary to protect against ionizing radiation and reduce the dose rate limit required by the standard to ensure the safety of radioactive workers and the public. The shielding of ionizing radiation of accelerators for isotope production usually requires a large thickness of concrete for protection, and the protection measures are usually completed by building structures such as shielding walls. The large-thickness shielding wall has the disadvantages of difficult construction, large area and high cost. In order to reduce the shielding thickness of the cyclotron building for isotope production and rationally utilize the space of the accelerator room, it is urgent to design a self-shielding device of multilayer composite shielding material for ionizing radiation shielding of the accelerator.
国内外的各种同位素生产靶通常安装在加速器磁轭内,加速器自屏蔽通常不需要设计独立的同位素靶室。对于多靶位的同位素生产靶系统需要较大的安装检修空间,更适合安装在带屏蔽结构的厂房内。因此设计研发一种在磁轭外侧给出独立的同位素靶室的自屏蔽装置,可以提供多靶位同位素生产靶系统的安装以降低厂房的屏蔽需求。Various isotope production targets at home and abroad are usually installed in the yoke of the accelerator, and the self-shielding of the accelerator usually does not require the design of an independent isotope target chamber. The multi-target isotope production target system requires a large installation and maintenance space, and is more suitable for installation in a workshop with a shielded structure. Therefore, a self-shielding device is designed and developed that provides an independent isotope target chamber outside the magnetic yoke, which can provide the installation of a multi-target isotope production target system to reduce the shielding requirement of the workshop.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的不足,本发明的目的在于提供一种磁轭外同位素靶系统的回旋加速器电离辐射自屏蔽装置,实现了对回旋加速器产生的电离辐射场进行有效屏蔽,提高了医疗装置的安全可靠性,保证工作人员的安全。In view of the deficiencies in the prior art, the purpose of the present invention is to provide a cyclotron ionizing radiation self-shielding device of a magnetic yoke outer isotope target system, which realizes effective shielding of the ionizing radiation field generated by the cyclotron and improves the performance of the medical device. Safety and reliability to ensure the safety of staff.
本发明的上述技术目的是通过以下技术方案得以实现的:The above-mentioned technical purpose of the present invention is achieved through the following technical solutions:
一种磁轭外同位素靶系统的回旋加速器电离辐射自屏蔽装置,包括有同位素生产靶室、加速器包覆层以及驱动装置,加速器包覆层包覆于回旋加速器的侧向、顶部,所述加速器包覆层分为拼合而成的左侧屏蔽体、右侧屏蔽体,驱动装置驱动左侧屏蔽体与右侧屏蔽体作相向或反向直线移动以关闭或开合加速器包覆层,左侧屏蔽体、右侧屏蔽体的内侧面均嵌设有贴近于回旋加速器磁轭的同位素生产靶室,且回旋加速器的生产靶位于同位素生产靶室内,同位素生产靶室外围置有铅屏蔽层、含硼聚乙烯屏蔽层,铅屏蔽层、含硼聚乙烯屏蔽层均镶装于加速器包覆层内。A cyclotron ionizing radiation self-shielding device for an isotope target system outside a magnetic yoke, comprising an isotope production target chamber, an accelerator cladding layer and a driving device, the accelerator cladding layer is clad on the side and top of the cyclotron, and the accelerator The cladding layer is divided into a left shield body and a right shield body which are assembled. The driving device drives the left shield body and the right shield body to move in a straight line in the opposite or reverse direction to close or open the accelerator cladding layer. The shielding body and the inner side of the right shielding body are embedded with an isotope production target chamber close to the yoke of the cyclotron, and the production target of the cyclotron is located in the isotope production target chamber. The boron polyethylene shielding layer, the lead shielding layer and the boron-containing polyethylene shielding layer are all inlaid in the accelerator cladding layer.
通过采用上述技术方案,加速器包覆层分为拼合而成的左侧屏蔽体、右侧屏蔽体,左侧屏蔽体、右侧屏蔽体可分别通过驱动装置作相向或反向直线移动,实现关闭或开合的功能。加速器包覆层开合时用于提供回旋加速器的维护检修空间,加速器包覆层关闭时实现对回旋加速器的电离辐射屏蔽。通过同位素生产靶室外围置有铅屏蔽层、含硼聚乙烯屏蔽层,含硼聚乙烯屏蔽层将同位素生产靶产生的中子电离辐射进行慢化并吸收,并通过铅屏蔽层对同位素生产靶产生的光子电离辐射屏蔽,合理化设计同位素生产靶室空间;同时加速器包覆层的含硼混凝土对加速器内部产生的杂散束流损失引起的电离辐射进行屏蔽。该屏蔽装置合理利用回旋加速器安装大厅空间,并降低回旋加速器安装大厅屏蔽需求,确保整个系统的使用安全性。By adopting the above technical solution, the accelerator cladding layer is divided into a left shield body and a right shield body which are assembled together. The left shield body and the right shield body can be moved in opposite or opposite directions through the driving device respectively, so as to realize the closing or opening and closing function. When the accelerator cladding layer is opened and closed, it is used to provide a maintenance and inspection space for the cyclotron, and when the accelerator cladding layer is closed, the ionizing radiation shielding of the cyclotron is realized. A lead shielding layer and a boron-containing polyethylene shielding layer are arranged outside the isotope production target chamber. The boron-containing polyethylene shielding layer moderates and absorbs the neutron ionizing radiation generated by the isotope production target, and the isotope production target is protected by the lead shielding layer. The generated photon ionizing radiation is shielded, and the space of the isotope production target chamber is rationally designed; at the same time, the boron-containing concrete of the accelerator coating layer shields the ionizing radiation caused by the stray beam loss generated inside the accelerator. The shielding device reasonably utilizes the space of the cyclotron installation hall, reduces the shielding requirements of the cyclotron installation hall, and ensures the safety of the entire system.
本发明进一步设置为,所述左侧屏蔽体、右侧屏蔽体内分别开设有用于容置回旋加速器的容置腔,容置腔的上部为包覆于回旋加速器顶部的顶盖,左侧屏蔽体的顶盖的内边缘可与右侧屏蔽体的顶盖的内边缘相拼合。According to the present invention, the left shield body and the right shield body are respectively provided with accommodating cavities for accommodating the cyclotron, the upper part of the accommodating cavity is a top cover covering the top of the cyclotron, and the left shield body The inner edge of the top cover can be combined with the inner edge of the top cover of the right shield.
通过采用上述技术方案,加速器包覆层根据回旋加速器产生的辐射场空间分布特点而采用非均匀厚度的模式,对侧向及顶部的屏蔽厚度进行合理优化,以提高加速器包覆层的空间利用率及降低自屏蔽装置的重量。By adopting the above technical solution, the accelerator cladding layer adopts a non-uniform thickness mode according to the spatial distribution characteristics of the radiation field generated by the cyclotron, and reasonably optimizes the lateral and top shielding thickness to improve the space utilization rate of the accelerator cladding layer. And reduce the weight of the self-shielding device.
本发明进一步设置为,所述左侧屏蔽体、右侧屏蔽体的顶盖的内边缘分别设有相互配合的台阶面,且顶盖的内边缘的边沿线为凸凹状。The present invention further provides that the inner edges of the top covers of the left shield body and the right shield body are respectively provided with mutually matched stepped surfaces, and the edge lines of the inner edges of the top cover are convex and concave.
通过采用上述技术方案,加速器包覆层的左侧屏蔽体、右侧屏蔽体的结合部位采用台阶面的拼合结构,且顶盖的内边缘的边沿线为凸凹状,用于防止电离辐射通过直通缝隙泄漏。By adopting the above technical solution, the joint part of the left shield body and the right shield body of the accelerator cladding adopts a stepped surface splicing structure, and the edge line of the inner edge of the top cover is convex and concave, which is used to prevent ionizing radiation from passing through Gap leaks.
本发明进一步设置为,所述加速器包覆层的左侧屏蔽体、右侧屏蔽体的材质均为含硼的钢纤维混凝土,且硼的质量百分比为5%。According to the present invention, the materials of the left shield body and the right shield body of the accelerator coating layer are both steel fiber concrete containing boron, and the mass percentage of boron is 5%.
通过采用上述技术方案,采用硼含量为5%并掺钢纤维的非标准混凝土材料制成加速器包覆层实现电离辐射屏蔽,该屏蔽材料既提高了加速器包覆层的屏蔽效率,又提高加速器包覆层的整体强度。By adopting the above technical scheme, a non-standard concrete material with a boron content of 5% and steel fibers is used to make the accelerator cladding layer to achieve ionizing radiation shielding. The shielding material not only improves the shielding efficiency of the accelerator cladding layer, but also improves the accelerator cladding. Overall strength of the cladding.
本发明进一步设置为,所述含硼聚乙烯屏蔽层材质为含硼聚乙烯复合材料,且硼的质量百分比为3~5%;所述铅屏蔽层材质为铅。According to the present invention, the material of the boron-containing polyethylene shielding layer is a boron-containing polyethylene composite material, and the mass percentage of boron is 3-5%; the material of the lead shielding layer is lead.
通过采用上述技术方案,含硼聚乙烯屏蔽层材质为含硼聚乙烯复合材料,且硼的质量百分比为3~5%,铅屏蔽层材质为铅,含硼聚乙烯屏蔽层将同位素生产靶产生的中子电离辐射进行慢化并吸收,铅屏蔽层对同位素生产靶产生的光子电离辐射屏蔽,合理化设计同位素生产靶室空间。By adopting the above technical solution, the boron-containing polyethylene shielding layer is made of boron-containing polyethylene composite material, and the mass percentage of boron is 3-5%, the lead shielding layer is made of lead, and the boron-containing polyethylene shielding layer produces the isotope production target. The neutron ionizing radiation is moderated and absorbed, the lead shielding layer shields the photon ionizing radiation generated by the isotope production target, and the space of the isotope production target room is rationally designed.
本发明进一步设置为,所述左侧屏蔽体、右侧屏蔽体均通过驱动装置驱动沿铺设于基础地面的轨道作直线移动,驱动装置包括有安装于左侧屏蔽体或右侧屏蔽体底部的驱动电机、主动轮组、从动轮组,驱动电机与主动轮组相传动连接,驱动电机驱动主动轮组、从动轮组沿轨道同步滚动。The present invention further provides that the left shield body and the right shield body are both driven by a driving device to move linearly along a track laid on the basic ground, and the driving device includes a bottom shield mounted on the left shield body or the right shield body. The driving motor, the driving wheel group and the driven wheel group are connected in a transmission manner with the driving wheel group, and the driving motor drives the driving wheel group and the driven wheel group to roll synchronously along the track.
通过采用上述技术方案,左侧屏蔽体、右侧屏蔽体可分别通过驱动装置驱动沿铺设于基础地面的轨道作相向或反向直线移动,实现关闭或开合加速器包覆层的功能。By adopting the above technical solution, the left shield body and the right shield body can be driven by the driving device to move in opposite or opposite directions along the track laid on the foundation ground respectively, so as to realize the function of closing or opening the accelerator cladding layer.
本发明进一步设置为,所述基础地面上铺设有三条相互平行的轨道,左侧屏蔽体、右侧屏蔽体底部均安装有一组主动轮组、两组从动轮组,主动轮组沿中间的一条轨道滚动,两组从动轮组分别沿前、后侧的两条轨道滚动,三条轨道均为P43重轨,主动轮组、从动轮组均为承重滚轮,所述驱动电机为变频电机。In the present invention, three parallel tracks are laid on the basic ground, and a set of driving wheel sets and two sets of driven wheel sets are installed on the bottom of the left shield body and the right shield body. Track rolling, two sets of driven wheel sets roll along the two tracks on the front and rear respectively, the three tracks are P43 heavy rails, the driving wheel set and the driven wheel set are load-bearing rollers, and the drive motor is a frequency conversion motor.
通过采用上述技术方案,基础地面上铺设有三条相互平行的轨道,三条轨道均为P43重轨,主动轮组、从动轮组均为承重滚轮,驱动电机为变频电机,驱动轮组采用变频电机驱动左侧屏蔽体、右侧屏蔽体实现直线运动,满足回旋加速器的安装、使用和维护,同时满足加速器包覆层的运行需求。By adopting the above technical solution, three parallel rails are laid on the foundation ground, all of which are P43 heavy rails, the driving wheel set and the driven wheel set are load-bearing rollers, the driving motor is a variable frequency motor, and the driving wheel set is driven by a variable frequency motor The left shield body and the right shield body realize linear motion, which meets the installation, use and maintenance of the cyclotron, as well as the operation requirements of the accelerator cladding layer.
本发明进一步设置为,靠近所述轨道两端端部的位置分别设有与左侧屏蔽体、右侧屏蔽体相对应的限位缓冲器和限位开关,限位开关与变频电机的控制器相连接,限位开关为光电限位开关或机械限位开关。The present invention is further provided that limit buffers and limit switches corresponding to the left shield body and the right shield body are respectively provided near the ends of the two ends of the track, and the limit switches and the controller of the variable frequency motor are respectively provided. The limit switch is a photoelectric limit switch or a mechanical limit switch.
通过采用上述技术方案,在左侧屏蔽体、右侧屏蔽体运行的终点位置增加限位缓冲器,确保左侧屏蔽体、右侧屏蔽体运行至设定位置,安全可靠地停车。左侧屏蔽体、右侧屏蔽体采用变频电机进行驱动,设定缓冲启动和停止的过渡过程,避免硬性冲撞对设备带来损坏。左侧屏蔽体、右侧屏蔽体运行的终点位置设置光电限位开关或机械限位开关,在进行控制左侧屏蔽体、右侧屏蔽体运动的同时,为整体系统提供加速器包覆层的开关状态信息,实现回旋加速器的安全联锁控制。By adopting the above technical scheme, limit buffers are added at the end positions of the left shield body and the right shield body, so as to ensure that the left shield body and the right shield body run to the set position and stop safely and reliably. The left shield body and the right shield body are driven by variable frequency motors, and the transition process of buffer start and stop is set to avoid damage to the equipment caused by hard collision. Photoelectric limit switches or mechanical limit switches are set at the end positions of the left and right shields. While controlling the movement of the left and right shields, they provide a switch for the accelerator cladding for the overall system. Status information to realize the safety interlock control of the cyclotron.
本发明进一步设置为,所述限位缓冲器的缓冲部材质为聚氨酯材料,限位缓冲器的限位支架采用钢板焊接而成。According to the present invention, the buffer part of the limit buffer is made of polyurethane material, and the limit bracket of the limit buffer is welded with steel plates.
通过采用上述技术方案,限位缓冲器用于确保左侧屏蔽体、右侧屏蔽体在设定位置安全可靠地停车,设定缓冲启动和停止的过渡过程,避免硬性冲撞对设备带来损坏。By adopting the above technical solution, the limit buffer is used to ensure that the left shield body and the right shield body can stop safely and reliably at the set position, and the transition process of buffer start and stop is set to avoid damage to the equipment caused by hard collision.
本发明进一步设置为,所述左侧屏蔽体、右侧屏蔽体顶部均设有吊钩。The present invention further provides that hooks are provided on the tops of the left shielding body and the right shielding body.
通过采用上述技术方案,加速器包覆层顶部的吊钩便于加速器包覆层的运输、安装、使用和维护。By adopting the above technical solution, the hook on the top of the accelerator cladding layer facilitates the transportation, installation, use and maintenance of the accelerator cladding layer.
综上所述,本发明的有益技术效果为:To sum up, the beneficial technical effects of the present invention are:
本发明的加速器包覆层分为拼合而成的左侧屏蔽体、右侧屏蔽体,左侧屏蔽体、右侧屏蔽体可分别通过驱动装置作相向或反向直线移动,实现关闭或开合的功能。加速器包覆层开合时用于提供回旋加速器的维护检修空间,加速器包覆层关闭时实现对回旋加速器的电离辐射屏蔽。通过同位素生产靶室外围置有铅屏蔽层、含硼聚乙烯屏蔽层,含硼聚乙烯屏蔽层将同位素生产靶产生的中子电离辐射进行慢化并吸收,并通过铅屏蔽层对同位素生产靶产生的光子电离辐射屏蔽,合理化设计同位素生产靶室空间;The accelerator cladding layer of the present invention is divided into a left shield body and a right shield body formed by splicing. The left shield body and the right shield body can be moved toward or in opposite directions by a driving device respectively, so as to realize closing or opening and closing. function. When the accelerator cladding layer is opened and closed, it is used to provide a maintenance and inspection space for the cyclotron, and when the accelerator cladding layer is closed, the ionizing radiation shielding of the cyclotron is realized. A lead shielding layer and a boron-containing polyethylene shielding layer are arranged outside the isotope production target chamber. The boron-containing polyethylene shielding layer moderates and absorbs the neutron ionizing radiation generated by the isotope production target, and the isotope production target is protected by the lead shielding layer. The generated photon ionizing radiation is shielded, and the space of the target chamber for isotope production is rationally designed;
本发明的加速器包覆层根据回旋加速器产生的辐射场空间分布特点而采用非均匀厚度的模式,对侧向及顶部的屏蔽厚度进行合理优化,以提高加速器包覆层的空间利用率及降低自屏蔽装置的重量;采用硼含量为5%并掺钢纤维的非标准混凝土材料制成加速器包覆层实现电离辐射屏蔽,该屏蔽材料既提高了加速器包覆层的屏蔽效率,又提高加速器包覆层的整体强度;含硼聚乙烯屏蔽层将同位素生产靶产生的中子电离辐射进行慢化并吸收,铅屏蔽层对同位素生产靶产生的光子电离辐射屏蔽。合理化设计同位素生产靶室空间,根据回旋加速器辐射场分布特点,对加速器包覆层的尺寸进行优化设计,实现了对回旋加速器产生的电离辐射场进行有效屏蔽,提高了医疗装置的安全可靠性,保证工作人员的安全;The accelerator cladding layer of the present invention adopts a non-uniform thickness mode according to the spatial distribution characteristics of the radiation field generated by the cyclotron, and reasonably optimizes the shielding thickness of the lateral and top layers, so as to improve the space utilization rate of the accelerator cladding layer and reduce the self-contained thickness. The weight of the shielding device; the non-standard concrete material with a boron content of 5% and steel fibers is used to make the accelerator cladding layer to achieve ionizing radiation shielding, which not only improves the shielding efficiency of the accelerator cladding layer, but also improves the accelerator cladding. The overall strength of the layer; the boron-containing polyethylene shielding layer moderates and absorbs the neutron ionizing radiation generated by the isotope production target, and the lead shielding layer shields the photon ionizing radiation generated by the isotope production target. The space of the isotope production target chamber is rationally designed, and the size of the accelerator cladding layer is optimized according to the distribution characteristics of the cyclotron radiation field, which realizes the effective shielding of the ionizing radiation field generated by the cyclotron, and improves the safety and reliability of medical devices. ensure the safety of staff;
本发明在左侧屏蔽体、右侧屏蔽体运行的终点位置增加限位缓冲器,确保左侧屏蔽体、右侧屏蔽体运行至设定位置,安全可靠地停车。左侧屏蔽体、右侧屏蔽体采用变频电机进行驱动,设定缓冲启动和停止的过渡过程,避免硬性冲撞对设备带来损坏。左侧屏蔽体、右侧屏蔽体运行的终点位置设置光电限位开关或机械限位开关,在进行控制左侧屏蔽体、右侧屏蔽体运动的同时,为整体系统提供加速器包覆层的开关状态信息,实现回旋加速器的安全联锁控制。The invention adds limit buffers at the end positions of the left shield body and the right shield body running to ensure that the left shield body and the right shield body run to the set positions and stop safely and reliably. The left shield body and the right shield body are driven by variable frequency motors, and the transition process of buffer start and stop is set to avoid damage to the equipment caused by hard collision. Photoelectric limit switches or mechanical limit switches are set at the end positions of the left and right shields. While controlling the movement of the left and right shields, they provide a switch for the accelerator cladding for the overall system. Status information to realize the safety interlock control of the cyclotron.
本发明提供了一个较大的同位素生产靶的安装空间,能够实现容纳较多的靶位,采用了铅屏蔽层与含硼聚乙烯屏蔽层复合屏蔽结构,实现专用的大空间紧凑同位素生产靶室;同时采用特殊配比的含硼的钢纤维混凝土材料作为加速器包覆层,降低了自屏蔽装置的整体屏蔽厚度,同时提高了屏蔽结构的机械性能,采用非均匀厚度的屏蔽结构最大程度利用了回旋加速器大厅的空间。The invention provides a larger installation space for the isotope production target, can accommodate more target positions, adopts the composite shielding structure of the lead shielding layer and the boron-containing polyethylene shielding layer, and realizes a special large-space compact isotope production target room ; At the same time, a special ratio of boron-containing steel fiber reinforced concrete material is used as the accelerator cladding layer, which reduces the overall shielding thickness of the self-shielding device and improves the mechanical properties of the shielding structure. The space in the cyclotron hall.
附图说明Description of drawings
图1是本发明回旋加速器电离辐射自屏蔽装置的整体结构示意图;Fig. 1 is the overall structure schematic diagram of cyclotron ionizing radiation self-shielding device of the present invention;
图2为图1所示加速器包覆层的右侧屏蔽体的结构示意图;FIG. 2 is a schematic structural diagram of the right shield body of the accelerator cladding layer shown in FIG. 1;
图3为图1所示加速器包覆层的左侧屏蔽体的结构示意图;FIG. 3 is a schematic structural diagram of the left shield body of the accelerator cladding layer shown in FIG. 1;
图4是本发明的加速器包覆层闭合状态的示意图;4 is a schematic diagram of the closed state of the accelerator cladding layer of the present invention;
图5为图4所示的回旋加速器电离辐射自屏蔽装置水平方向的剖视图。FIG. 5 is a horizontal cross-sectional view of the cyclotron ionizing radiation self-shielding device shown in FIG. 4 .
附图标记:1、回旋加速器;2、铅屏蔽层;3、含硼聚乙烯屏蔽层;4、加速器包覆层;5、左侧屏蔽体;6、右侧屏蔽体;7、同位素生产靶室;8、主动轮组;9、从动轮组;10、限位缓冲器;11、吊钩;12、轨道;13、基础地面;14、顶盖;15、内边缘;16、边沿线;17、生产靶。Reference numerals: 1. Cyclotron; 2. Lead shielding layer; 3. Boron-containing polyethylene shielding layer; 4. Accelerator cladding layer; 5. Left shielding body; 6. Right shielding body; 7. Isotope production target Room; 8. Driving wheel set; 9. Driven wheel set; 10. Limit buffer; 11. Hook; 12. Track; 13. Foundation ground; 14. Top cover; 15. Inner edge; 16. Edge line; 17. Production of targets.
具体实施方式Detailed ways
以下结合附图对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings.
如图1、5所示,本发明公开了一种磁轭外同位素靶系统的回旋加速器电离辐射自屏蔽装置,包括有同位素生产靶室7、加速器包覆层4以及驱动装置,加速器包覆层4包覆于回旋加速器1的侧向、顶部,加速器包覆层4分为拼合而成的左侧屏蔽体5、右侧屏蔽体6,驱动装置驱动左侧屏蔽体5与右侧屏蔽体6作相向或反向直线移动以关闭或开合加速器包覆层4,左侧屏蔽体5、右侧屏蔽体6的内侧面均嵌设有贴近于回旋加速器1磁轭的同位素生产靶室7,且回旋加速器1的生产靶17位于同位素生产靶室7内,同位素生产靶室7外围置有铅屏蔽层2、含硼聚乙烯屏蔽层3,铅屏蔽层2、含硼聚乙烯屏蔽层3均镶装于加速器包覆层4内;As shown in Figures 1 and 5, the present invention discloses a cyclotron ionizing radiation self-shielding device of a magnetic yoke outer isotope target system, including an isotope
如图2、3所示,左侧屏蔽体5、右侧屏蔽体6内分别开设有用于容置回旋加速器1的容置腔,容置腔的上部为包覆于回旋加速器1顶部的顶盖14,左侧屏蔽体5的顶盖14的内边缘15可与右侧屏蔽体6的顶盖14的内边缘15相拼合;左侧屏蔽体5、右侧屏蔽体6的顶盖14的内边缘15分别设有相互配合的台阶面,且顶盖14的内边缘15的边沿线16为凸凹状;左侧屏蔽体5、右侧屏蔽体6顶部均设有吊钩11;加速器包覆层4的左侧屏蔽体5、右侧屏蔽体6的材质均为含硼的钢纤维混凝土,且硼的质量百分比为5%;含硼聚乙烯屏蔽层3材质为含硼聚乙烯复合材料,且硼的质量百分比为3~5%;铅屏蔽层2材质为铅;As shown in FIGS. 2 and 3 , the
如图4、5所示,基础地面13上铺设有三条相互平行的轨道12,左侧屏蔽体5、右侧屏蔽体6均通过驱动装置驱动沿三条相互平行的轨道12作直线移动,驱动装置包括有安装于左侧屏蔽体5或右侧屏蔽体6底部的驱动电机、一组主动轮组8、两组从动轮组9,驱动电机与主动轮组8相传动连接,驱动电机驱动主动轮组8、从动轮组9沿轨道12同步滚动,主动轮组8沿中间的一条轨道12滚动,两组从动轮组9分别沿前、后侧的两条轨道12滚动,三条轨道12均为P43重轨,主动轮组8、从动轮组9均为承重滚轮,驱动电机为变频电机;靠近轨道12两端端部的位置分别设有与左侧屏蔽体5、右侧屏蔽体6相对应的限位缓冲器10和限位开关,限位开关与变频电机的控制器相连接,限位开关为光电限位开关或机械限位开关,限位缓冲器10的缓冲部材质为聚氨酯材料,限位缓冲器10的限位支架采用钢板焊接而成。As shown in Figures 4 and 5, three mutually
本实施例在使用时,When this embodiment is used,
加速器包覆层4的左侧屏蔽体5、右侧屏蔽体6均通过驱动装置驱动沿三条相互平行的轨道12作相向或反向直线移动,以关闭或开合加速器包覆层4,运行的终点位置增加限位缓冲器10,确保左侧屏蔽体5、右侧屏蔽体6运行至设定位置,安全可靠地停车。加速器包覆层4开合时用于提供回旋加速器1的维护检修空间,加速器包覆层4关闭时实现对回旋加速器1的电离辐射屏蔽,回旋加速器1的生产靶17位于同位素生产靶室7内,同位素生产靶室7外围置有铅屏蔽层2、含硼聚乙烯屏蔽层3形成复合屏蔽结构,生产靶17产生的中子电离辐射进行慢化并吸收,铅屏蔽层2对生产靶17产生的光子电离辐射屏蔽。加速器包覆层4的左侧屏蔽体5、右侧屏蔽体6的结合部位采用台阶面的拼合结构,且顶盖14的内边缘15的边沿线16为凸凹状,用于防止电离辐射通过直通缝隙泄漏。The
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911123374.1A CN110831314B (en) | 2019-11-16 | 2019-11-16 | Cyclotron ionizing radiation self-shielding device of magnetic yoke external isotope target system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911123374.1A CN110831314B (en) | 2019-11-16 | 2019-11-16 | Cyclotron ionizing radiation self-shielding device of magnetic yoke external isotope target system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110831314A true CN110831314A (en) | 2020-02-21 |
CN110831314B CN110831314B (en) | 2024-07-19 |
Family
ID=69555895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911123374.1A Active CN110831314B (en) | 2019-11-16 | 2019-11-16 | Cyclotron ionizing radiation self-shielding device of magnetic yoke external isotope target system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110831314B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114189975A (en) * | 2021-12-30 | 2022-03-15 | 苏州曼德克光电有限公司 | An air-cooled cyclotron shielding device |
WO2022228304A1 (en) * | 2021-04-30 | 2022-11-03 | 中硼(厦门)医疗器械有限公司 | Neutron capture therapy system |
CN115460758A (en) * | 2022-11-08 | 2022-12-09 | 合肥中科离子医学技术装备有限公司 | Radiation protection shielding device and cyclotron using same |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200383151Y1 (en) * | 2005-01-04 | 2005-05-03 | 김준수 | A shield door for cyclotron room |
JP2007047096A (en) * | 2005-08-12 | 2007-02-22 | Hitachi Ltd | Radioisotope production apparatus and installation method thereof |
CN101447241A (en) * | 2008-12-25 | 2009-06-03 | 西北核技术研究所 | Gamma ray intense source irradiator |
CN101863641A (en) * | 2010-05-07 | 2010-10-20 | 武汉理工大学 | A kind of anti-radiation concrete based on environment-friendly functional aggregate and its preparation method |
CN101913828A (en) * | 2010-08-19 | 2010-12-15 | 武汉理工大学 | A high-crack-resistant large-volume radiation-proof concrete and its construction technology |
US20120223254A1 (en) * | 2011-03-02 | 2012-09-06 | Sumitomo Heavy Industries, Ltd. | Ri manufacturing apparatus |
CN103276254A (en) * | 2013-05-14 | 2013-09-04 | 四川材料与工艺研究所 | Composite shielding material and preparation method thereof |
CN103997844A (en) * | 2009-06-26 | 2014-08-20 | 通用电气公司 | Isotope production system with separated shielding |
CN204087827U (en) * | 2014-06-23 | 2015-01-07 | 中国科学院等离子体物理研究所 | Twoly open neutron shield door radiation protective layer structure |
KR20160066377A (en) * | 2014-12-02 | 2016-06-10 | 한국과학기술원 | Dual Layered Concrete for High-level Neutron Shielding Method for Manufacturing the Same |
CN106338531A (en) * | 2016-10-11 | 2017-01-18 | 吉林大学 | Detection structure for analyzing elementary components in flow liquid slurry based on PGNAA technique |
CN108010596A (en) * | 2018-01-19 | 2018-05-08 | 中国科学院合肥物质科学研究院 | A kind of anti-radiation shield device suitable for strong nuclear radiation environment |
JP2019160462A (en) * | 2018-03-08 | 2019-09-19 | 住友重機械工業株式会社 | Self-shielded cyclotron system, cyclotron system, and cyclotron |
CN211321603U (en) * | 2019-11-16 | 2020-08-21 | 中国原子能科学研究院 | A self-shielding device for ionizing radiation of a magnetic yoke external isotope target system |
-
2019
- 2019-11-16 CN CN201911123374.1A patent/CN110831314B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200383151Y1 (en) * | 2005-01-04 | 2005-05-03 | 김준수 | A shield door for cyclotron room |
JP2007047096A (en) * | 2005-08-12 | 2007-02-22 | Hitachi Ltd | Radioisotope production apparatus and installation method thereof |
CN101447241A (en) * | 2008-12-25 | 2009-06-03 | 西北核技术研究所 | Gamma ray intense source irradiator |
CN103997844A (en) * | 2009-06-26 | 2014-08-20 | 通用电气公司 | Isotope production system with separated shielding |
CN101863641A (en) * | 2010-05-07 | 2010-10-20 | 武汉理工大学 | A kind of anti-radiation concrete based on environment-friendly functional aggregate and its preparation method |
CN101913828A (en) * | 2010-08-19 | 2010-12-15 | 武汉理工大学 | A high-crack-resistant large-volume radiation-proof concrete and its construction technology |
US20120223254A1 (en) * | 2011-03-02 | 2012-09-06 | Sumitomo Heavy Industries, Ltd. | Ri manufacturing apparatus |
CN103276254A (en) * | 2013-05-14 | 2013-09-04 | 四川材料与工艺研究所 | Composite shielding material and preparation method thereof |
CN204087827U (en) * | 2014-06-23 | 2015-01-07 | 中国科学院等离子体物理研究所 | Twoly open neutron shield door radiation protective layer structure |
KR20160066377A (en) * | 2014-12-02 | 2016-06-10 | 한국과학기술원 | Dual Layered Concrete for High-level Neutron Shielding Method for Manufacturing the Same |
CN106338531A (en) * | 2016-10-11 | 2017-01-18 | 吉林大学 | Detection structure for analyzing elementary components in flow liquid slurry based on PGNAA technique |
CN108010596A (en) * | 2018-01-19 | 2018-05-08 | 中国科学院合肥物质科学研究院 | A kind of anti-radiation shield device suitable for strong nuclear radiation environment |
JP2019160462A (en) * | 2018-03-08 | 2019-09-19 | 住友重機械工業株式会社 | Self-shielded cyclotron system, cyclotron system, and cyclotron |
CN211321603U (en) * | 2019-11-16 | 2020-08-21 | 中国原子能科学研究院 | A self-shielding device for ionizing radiation of a magnetic yoke external isotope target system |
Non-Patent Citations (1)
Title |
---|
颜和平;: "MINItrace回旋加速器放射防护设计及探讨", 中国医疗器械信息, no. 14, 25 July 2018 (2018-07-25) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022228304A1 (en) * | 2021-04-30 | 2022-11-03 | 中硼(厦门)医疗器械有限公司 | Neutron capture therapy system |
CN114189975A (en) * | 2021-12-30 | 2022-03-15 | 苏州曼德克光电有限公司 | An air-cooled cyclotron shielding device |
CN115460758A (en) * | 2022-11-08 | 2022-12-09 | 合肥中科离子医学技术装备有限公司 | Radiation protection shielding device and cyclotron using same |
WO2024098690A1 (en) * | 2022-11-08 | 2024-05-16 | 合肥中科离子医学技术装备有限公司 | Radiation protection and shielding device and cyclotron using same |
Also Published As
Publication number | Publication date |
---|---|
CN110831314B (en) | 2024-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110831314A (en) | Cyclotron ionizing radiation self-shielding device of magnet yoke external isotope target system | |
CN108060868B (en) | A horizontal split translation neutron shielding door | |
CN108131083A (en) | A kind of suspension type translates neutron shield door | |
JP5227160B2 (en) | Radiation shielding structure | |
CN211321603U (en) | A self-shielding device for ionizing radiation of a magnetic yoke external isotope target system | |
KR20090015153A (en) | Ionizing Radiation Shield | |
CN102655029A (en) | Ri manufacturing apparatus | |
CN102661113A (en) | Fully-automatic suspension type two-dimensional electromagnetic shielding door with arc-shaped guide rails | |
CN102182387A (en) | Protective door with composite steel structure | |
JP6076005B2 (en) | Neutron beam shielding structure | |
CN108193906A (en) | A kind of nuclear island factory building arrangement | |
CN104318965B (en) | Dry-method strong-gamma source storing and driving device | |
CN202990147U (en) | Combined radiation-proof shed | |
CN206279815U (en) | A kind of half indoor substation main transformer sound-deadening and noise-reducing structure | |
CN201802268U (en) | Radiation protection door | |
JP6349574B2 (en) | Neutron shielding structure | |
CN206129083U (en) | Radiation protection door | |
CN201802196U (en) | Driving mechanism of protective door for radiographic inspection room | |
CN106211536A (en) | Can half self-shielded electron accelerator in one | |
JP2023144833A (en) | Self-shielded particle accelerator system | |
CN206418937U (en) | Biological shielding door | |
CN215581839U (en) | Cyclotron shielding device with layered structure | |
CN109898971A (en) | A kind of anti-nuclear blast protective shielding door of arch | |
CN221827590U (en) | A detachable layered shielding body | |
CN207513042U (en) | A kind of ceiling protective device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |