CN110828843A - A fuel cell bipolar plate - Google Patents
A fuel cell bipolar plate Download PDFInfo
- Publication number
- CN110828843A CN110828843A CN201910888528.XA CN201910888528A CN110828843A CN 110828843 A CN110828843 A CN 110828843A CN 201910888528 A CN201910888528 A CN 201910888528A CN 110828843 A CN110828843 A CN 110828843A
- Authority
- CN
- China
- Prior art keywords
- plane
- plate
- flow channel
- fuel cell
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 40
- 239000000110 cooling liquid Substances 0.000 claims abstract description 26
- 239000011229 interlayer Substances 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 18
- 230000007704 transition Effects 0.000 claims abstract description 8
- 238000007789 sealing Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002826 coolant Substances 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0265—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
一种燃料电池双极板包括极板一和极板二,所述极板一和极板二,结构相同;两块极板均包括气体流道、肋、第一平面、第二平面和第三平面;第一平面为金属极板的基准面,所述第一平面上包括气体过渡区域和密封圈平面,第二平面为气体流道底部平面,第二平面高于第一平面,气体从过渡区域进入流道的入口处呈阶梯状;当两个极板扣合后,两个气体流道底部平面之间形成夹层,所述夹层为冷却液提供流动通道;所述极板的每一条气体流道上还包括有圆柱凹陷、半球状凸起,圆柱凹陷、半球状凸起的圆心间隔均匀分布在气体流道的中轴线上。
A fuel cell bipolar plate includes a first plate and a second plate, the first plate and the second plate have the same structure; the two plates both include a gas flow channel, a rib, a first plane, a second plane and a second plane. Three planes; the first plane is the reference plane of the metal plate, the first plane includes the gas transition area and the sealing ring plane, the second plane is the bottom plane of the gas flow channel, the second plane is higher than the first plane, and the gas flows from The entrance of the transition area into the flow channel is stepped; when the two polar plates are buckled, an interlayer is formed between the bottom planes of the two gas channels, and the interlayer provides a flow channel for the cooling liquid; each of the polar plates The gas flow channel also includes cylindrical depressions and hemispherical protrusions, and the centers of the cylindrical depressions and hemispherical protrusions are evenly distributed on the central axis of the gas flow channel.
Description
技术领域technical field
本发明属于燃料电池领域,具体涉及一种燃料电池电堆中的金属双极板结构和该燃料电池中的冷却液通道领域。The invention belongs to the field of fuel cells, in particular to the field of a metal bipolar plate structure in a fuel cell stack and a cooling liquid channel in the fuel cell.
背景技术Background technique
从工业革命开始,清洁、廉价的能源逐渐成为了世界日益繁华和经济发展的动力。石油、煤炭以及天然气等传统的能源在使用的过程中对环境的影响日益显著,并且这些能源属于有限能源,无限制的使用会加快地球能源的枯竭。面对这些问题,燃料电池技术的发展在近些年有了突破性的发展,全球对燃料电池的使用也进入了一个新的阶段,汽车、航天等领域都应用了燃料电池进行供电。Since the Industrial Revolution, clean and cheap energy has gradually become the driving force behind the increasingly prosperous world and economic development. Traditional energy sources such as oil, coal and natural gas have an increasingly significant impact on the environment in the process of use, and these energy sources are limited energy sources. Unrestricted use will accelerate the depletion of the earth's energy sources. Faced with these problems, the development of fuel cell technology has made breakthroughs in recent years, and the global use of fuel cells has also entered a new stage. Fuel cells are used for power supply in automotive, aerospace and other fields.
双极板是燃料电池的核心部件之一,占据了电池组质量的80%和成本的45%。双极板具有传导电流、支撑膜电极、均匀输送并隔离反应气体、流通冷却液、快速散热等多种重要功能。The bipolar plate is one of the core components of the fuel cell, accounting for 80% of the mass of the battery pack and 45% of the cost. The bipolar plate has many important functions such as conducting current, supporting membrane electrodes, uniformly transporting and isolating reactive gases, circulating coolant, and rapidly dissipating heat.
目前,双极板的流场形式也有很多种,包括平行流道、交指型流道、蛇形流道,网状流场、点状流场等。双极板中合适的流道结构有利于水的排出而改善水淹情况,使反应物在整个流场内浓度分布均匀,避免局部过热,提高燃料电池的性能。At present, there are many types of flow fields in bipolar plates, including parallel flow channels, interdigitated flow channels, serpentine flow channels, mesh flow fields, and point flow fields. The proper flow channel structure in the bipolar plate is conducive to the discharge of water and improves the flooding situation, so that the concentration distribution of reactants in the entire flow field is uniform, local overheating is avoided, and the performance of the fuel cell is improved.
广泛应用于质子交换膜的双极板材料分为三种:石墨材料、金属材料、复合材料。石墨双极板导电性、导热性、稳定性和耐腐蚀性能较好,但机械性能相对较差、较脆、机加工困难导致成本较高,并且石墨双极板电堆的重量较重。金属双极板导电性好、质量轻、成本低,但是金属双极板复杂的结构影响装配质量和电池性能,并且受目前金属双极板成型工艺的限制,复杂结构的双极板虽然可以解决排水并且提高电池效率,但是加工难度大,同时较高的精度要求也会提高双极板的成本。There are three types of bipolar plate materials widely used in proton exchange membranes: graphite materials, metal materials, and composite materials. Graphite bipolar plates have good electrical conductivity, thermal conductivity, stability and corrosion resistance, but relatively poor mechanical properties, brittleness, high cost due to difficult machining, and heavier weight of graphite bipolar plate stacks. The metal bipolar plate has good conductivity, light weight and low cost, but the complex structure of the metal bipolar plate affects the assembly quality and battery performance, and is limited by the current metal bipolar plate forming process, although the complex structure of the bipolar plate can be solved. Drains water and improves battery efficiency, but it is difficult to process, and higher precision requirements also increase the cost of bipolar plates.
中国发明专利(申请号201910330023.1)公开了一种燃料电池极板和燃料电池,燃料电池极板包括板体,所述板体的第一面上包括第一条状凸起,所述第一条状凸起的延伸方向与气体流道的延伸方向为交叉设置,使得气体流道成为凹凸结构,增强气体流动时的扰流运行,提高反应效率,减少极板长度。专利所提出的有利于排水的前提是要求燃料电池的放置方向(反应气体的流向为竖直方向,并且流向为从上到下,如果为水平放置则容易发生水淹,流道中产生的水容易汇聚在凹凸型流道的底部);专利要求在两个方向对金属板进行加工,双流道的交叉处冲压加工会导致倒角半径偏大,影响流道结构和整体燃料电池的强度,从而影响电池性能。流道型冷却液受冷却液流道尺寸的影响,要求流速较小,冷却降温的效率较低,如果加大流速则会增大压强,由于内部结构较复杂,对金属板强度要就较高,否则会使金属板产生形变,影响电池性能。The Chinese invention patent (application number 201910330023.1) discloses a fuel cell electrode plate and a fuel cell. The fuel cell electrode plate includes a plate body, and the first surface of the plate body includes a first strip-shaped protrusion. The first stripe The extending direction of the protruding protrusion and the extending direction of the gas flow channel are arranged to cross, so that the gas flow channel has a concave-convex structure, which enhances the turbulent operation during gas flow, improves the reaction efficiency, and reduces the length of the electrode plate. The premise proposed by the patent to facilitate drainage requires the placement direction of the fuel cell (the flow direction of the reaction gas is vertical, and the flow direction is from top to bottom. Converging at the bottom of the concave-convex runner); the patent requires that the metal plate be processed in two directions, and the punching process at the intersection of the double runners will cause the chamfer radius to be too large, which will affect the runner structure and the overall strength of the fuel cell, thereby affecting battery performance. The flow channel type coolant is affected by the size of the cooling liquid flow channel, the flow rate is required to be small, and the cooling and cooling efficiency is low. If the flow rate is increased, the pressure will increase. Due to the complex internal structure, the strength of the metal plate is higher. , otherwise the metal plate will be deformed and the battery performance will be affected.
综上所述,有必要提出一种既可以增强气体流动时的扰流运行,又可以避免水淹,对双极板的放置又没有限制,以及为冷却液提供通道的简单型结构,加工难度小的多功能金属双机板。To sum up, it is necessary to propose a simple structure that can not only enhance the turbulent operation during gas flow, but also avoid water flooding, without restrictions on the placement of bipolar plates, and provide channels for cooling liquid, which is difficult to process. Small multi-purpose metal double board.
发明内容SUMMARY OF THE INVENTION
基于此,为了解决背景技术中存在的技术问题,本发明的目的在于兼顾燃料电池功率密度提升的同时改善阴极板流道的排水性能,以及在金属双极板中提供冷却液夹层的同时简化极板结构和减少金属板加工的工艺难度,提高双极板自身强度,从而达到使电堆效率更高更稳定。Based on this, in order to solve the technical problems existing in the background art, the purpose of the present invention is to improve the drainage performance of the flow channel of the cathode plate while taking into account the increase of the power density of the fuel cell, and to provide a cooling liquid interlayer in the metal bipolar plate while simplifying the polar plate. The plate structure and the process difficulty of metal plate processing are reduced, and the strength of the bipolar plate itself is improved, so as to achieve a higher and more stable stack efficiency.
本发明的目的是设计一种可以提高电流密度的流道类型并且在阴极板有利于产物水的排出,在不影响电流密度提高的同时,对流道进行设计使两个极板合为双极板的同时形成夹层供冷却液通过,来降低电堆的温度。The purpose of the present invention is to design a type of flow channel that can improve the current density and facilitate the discharge of product water in the cathode plate. The flow channel is designed so that the two plates can be combined into a bipolar plate without affecting the current density improvement. At the same time, an interlayer is formed for the cooling liquid to pass through to reduce the temperature of the stack.
一种燃料电池双极板,包括极板一和极板二,所述极板一和极板二,结构相同;两块极板均包括气体流道、肋、第一平面、第二平面和第三平面;第一平面为金属极板的基准面,所述第一平面上包括气体过渡区域和密封圈平面,第二平面为气体流道底部平面,第二平面高于第一平面,气体从过渡区域进入流道的入口处呈阶梯状;当两个极板扣合后,两个气体流道底部平面之间形成夹层,所述夹层为冷却液提供流动通道;所述极板的每一条气体流道上还包括有圆柱凹陷、半球状凸起,圆柱凹陷、半球状凸起的圆心间隔均匀分布在气体流道的中轴线上;第三平面为流道肋的顶面,同时也是极板的上端面,第三平面高于半球状凸起的上顶点,半球状凸起的球状半径小于气体流道宽度,使得阴极流道中产生的水从半球状凸起的两侧排出。A fuel cell bipolar plate, comprising a first electrode plate and a second electrode plate, the first electrode plate and the second electrode plate have the same structure; the two electrode plates include gas flow channels, ribs, a first plane, a second plane and The third plane; the first plane is the reference plane of the metal plate, the first plane includes the gas transition area and the sealing ring plane, the second plane is the bottom plane of the gas flow channel, the second plane is higher than the first plane, the gas The entrance from the transition area into the flow channel is stepped; when the two polar plates are buckled, an interlayer is formed between the bottom planes of the two gas channels, and the interlayer provides a flow channel for the cooling liquid; each of the polar plates A gas flow channel also includes cylindrical depressions and hemispherical protrusions, and the center intervals of the cylindrical depressions and hemispherical protrusions are evenly distributed on the central axis of the gas flow channel; the third plane is the top surface of the flow channel rib, which is also a pole. On the upper end face of the plate, the third plane is higher than the upper vertex of the hemispherical protrusion, and the spherical radius of the hemispherical protrusion is smaller than the width of the gas flow channel, so that the water produced in the cathode flow channel is discharged from both sides of the hemispherical protrusion.
优选地,第二平面与第一平面的高度差设置为极板一整体厚度的1/10。Preferably, the height difference between the second plane and the first plane is set to be 1/10 of the overall thickness of the pole plate.
优选地,所述气体流道中的半球状的凸起高度略低于所述气体流道肋的高度。Preferably, the height of the hemispherical protrusion in the gas flow channel is slightly lower than the height of the gas flow channel rib.
优选地,所述气体流道中圆柱凹陷的底端平面第三平面与所述进口处的第一平面平行。Preferably, the third plane of the bottom end plane of the cylindrical recess in the gas flow channel is parallel to the first plane at the inlet.
优选地,所述气体流道中的半球状突起和圆柱凹陷的圆心位于流道宽度的中心线上。Preferably, the centers of the hemispherical protrusions and the cylindrical recesses in the gas flow channel are located on the center line of the width of the flow channel.
优选地,所述气体流道中的圆柱凹陷的圆柱形直径小于流道宽度的3/4并且大于流道宽度的1/2。Preferably, the cylindrical diameter of the cylindrical recess in the gas flow channel is less than 3/4 of the width of the flow channel and greater than 1/2 of the width of the flow channel.
优选地,所述两块相同结构极板一和极板二,极板一绕长边旋转后,与极板二叠加重合,两块极板的圆柱凹陷结构底部相互接触并且重合。Preferably, for the first and second pole plates of the same structure, after the first pole plate rotates around the long side, it overlaps with the second pole plate, and the bottoms of the cylindrical recessed structures of the two pole plates are in contact with each other and overlap.
优选地,两个相邻所述进气口为间隔设置,两个相邻所述出气口为间隔设置。Preferably, two adjacent air inlets are arranged at intervals, and two adjacent air outlets are arranged at intervals.
优选地,所述极板是用厚度小于0.5mm的金属或者合金薄板通过压力加工的方法制作成型。Preferably, the pole plate is formed by a metal or alloy sheet with a thickness of less than 0.5 mm by a method of press working.
本发明提供的燃料电池极板,所述极板的第一平面和第二平面的高度差使两块极板合成双极板后形成中间的夹层,夹层的区域供冷却液通过,流道中的圆柱凹陷结构为夹层提供结构支撑,避免夹层空间引起的极板形变。流道中的半球状凸起增加了扰流作用,使气体在流道中的反应更充分,提高功率密度,与此同时,阴极板侧生成的产物水会从半球状凸起的两侧间隙中流走,有利于水的排出,从而避免水淹。冷却液的流向截面,并且流道呈面积型流向,与反应气体流道和充分接触,并且接触面积大,水流量大带走的热量高,冷却效果优异,并且圆柱凹陷使冷却液在夹层中的压强更加均匀,在冷却液通道中对冷却液起到了流体扰动的作用,同时温度分布更加均匀。In the fuel cell pole plate provided by the present invention, the height difference between the first plane and the second plane of the pole plate makes the two pole plates synthesize a bipolar plate to form an interlayer in the middle. The concave structure provides structural support for the interlayer and avoids the plate deformation caused by the interlayer space. The hemispherical bulge in the flow channel increases the turbulence effect, which makes the gas react more fully in the flow channel and improves the power density. At the same time, the product water generated on the cathode plate side will flow from the gap on both sides of the hemispherical bulge Walk, which is conducive to the discharge of water, thereby avoiding flooding. The flow direction of the cooling liquid is cross-section, and the flow channel is in an area-type flow direction, which is in full contact with the reaction gas flow channel, and the contact area is large, the water flow is large, the heat taken away is high, and the cooling effect is excellent, and the cylindrical depression makes the cooling liquid in the interlayer The pressure is more uniform, which acts as a fluid disturbance to the coolant in the coolant passage, and the temperature distribution is more uniform.
附图说明Description of drawings
图1是本发明的燃料电池极板的立体结构示意图;1 is a schematic three-dimensional structure diagram of a fuel cell electrode plate of the present invention;
图2是本发明的燃料电池极板图1中A部分的局部放大图;Fig. 2 is a partial enlarged view of part A in Fig. 1 of the fuel cell electrode plate of the present invention;
图3是本发明的燃料电池双极板的结构爆炸图;3 is an exploded view of the structure of the fuel cell bipolar plate of the present invention;
图4是本发明的燃料电池双极板的立体剖视图;Figure 4 is a perspective cross-sectional view of the fuel cell bipolar plate of the present invention;
图5是图4中B部分的局部放大图;Fig. 5 is a partial enlarged view of part B in Fig. 4;
图6是燃料电池双极板的正视图;6 is a front view of a fuel cell bipolar plate;
图7是图6中燃料电池双极板C-C方向的剖视图;FIG. 7 is a cross-sectional view of the fuel cell bipolar plate C-C in FIG. 6;
图8是图7中的局部放大图E;Fig. 8 is a partial enlarged view E in Fig. 7;
图9是图6中燃料电池双极板D-D方向的剖视图;FIG. 9 is a cross-sectional view of the fuel cell bipolar plate D-D in FIG. 6;
图10是图9中的局部放大图F;Fig. 10 is a partial enlarged view F in Fig. 9;
图11是图9中的局部放大图G;Fig. 11 is a partial enlarged view G in Fig. 9;
图12是图9中的局部放大图H;Fig. 12 is a partial enlarged view H in Fig. 9;
图13是图6中的局部放大图I。FIG. 13 is a partial enlarged view I in FIG. 6 .
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully hereinafter with reference to the related drawings. The preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that a thorough and complete understanding of the present disclosure is provided.
本发明提供一种双极板,包括两块单极板,单极板的一侧是流场流道,另一侧通过阶梯结构使双极板合成后中间存在夹层,并且圆柱凹陷在两块极板合成双极板后为极板的中间区域提供支撑作用,保证双极板强度,防止极板形变;在极板的流道中间设置半球状的凸起,增加反应气体的扰流作用,提高反应效率,并且使阴极板中形成的产物水从半球状凸起的两边流走,防止水淹,对燃料电池电堆的放置没有限制。The invention provides a bipolar plate, comprising two unipolar plates, one side of the unipolar plate is a flow field flow channel, the other side of the bipolar plate is synthesized by a stepped structure, and there is an interlayer in the middle, and the cylinder is recessed in the two After the bipolar plate is synthesized by the polar plate, it provides support for the middle area of the polar plate to ensure the strength of the bipolar plate and prevent the deformation of the polar plate; a hemispherical protrusion is arranged in the middle of the flow channel of the polar plate to increase the turbulence of the reaction gas. The reaction efficiency is improved, and the product water formed in the cathode plate can flow away from the two sides of the hemispherical bulge to prevent flooding, and there is no restriction on the placement of the fuel cell stack.
本发明提供一种双极板,其单极板的一侧是流场流道,另一侧通过阶梯结构使双极板合成后中间存在夹层,并且圆柱凹陷在两块极板合成双极板后为极板的中间区域提供支撑作用,保证双极板强度,防止极板形变;在极板的流道中间设置半球状的凸起,增加反应气体的扰流作用,提高反应效率,并且使阴极板中形成的产物水从半球状凸起的两边流走,防止水淹,对燃料电池电堆的放置没有限制。The invention provides a bipolar plate, one side of the monopolar plate is a flow field flow channel, and the other side of the monopolar plate is formed by a stepped structure to form an interlayer in the middle after the bipolar plate is synthesized, and the cylinder is recessed in the two polar plates to synthesize the bipolar plate Afterwards, it provides support for the middle area of the polar plate to ensure the strength of the bipolar plate and prevent the deformation of the polar plate; a hemispherical protrusion is arranged in the middle of the flow channel of the polar plate to increase the turbulent effect of the reaction gas, improve the reaction efficiency, and make the The product water formed in the cathode plate flows away from both sides of the hemispherical bulge to prevent flooding, and there is no restriction on the placement of the fuel cell stack.
如图1-2所示,其为本发明的实施例,本发明提供一种燃料电池双极板,包括极板1和极板2,所述极板1和极板2结构相同;两块极板均包括气体流道 25、肋26、第一面11、第二面12和第三面13;第一面11为金属极板的基准面,所述第一平面11上包括气体过渡区域24和密封圈平面23,第二平面12为气体流道底部平面,第二平面12高于第一平面11,第二面12与第一平面11的高度差设置为极板1整体厚度的1/10,气体从过渡区域24进入流道的入口处呈阶梯状;当两个极板扣合后,两个气体流道底部平面之间形成夹层,所述夹层27为冷却液提供流动通道;所述极板的每一条气体流道25上还包括有圆柱凹陷15、半球状凸起14,圆柱凹陷15、半球状凸起14的圆心间隔均匀分布在气体流道 25的中轴线上;第三平面13为流道肋的顶面,同时也是极板的上端面,第三平面13高于半球状凸起14的上顶点,半球状凸起14的球状半径小于气体流道25 宽度,使得阴极流道中产生的水从半球状凸起14的两侧排出。As shown in Fig. 1-2, which is an embodiment of the present invention, the present invention provides a fuel cell bipolar plate, including a pole plate 1 and a
如图3所示,两块相同的极板1和极板2,其中一块绕极板长边旋转180°后,两块极板重合,并且两极板进口18相互错开,阴极板进口通入氧气,阳极板进口通入氢气,并且气体出口19也相互错开;与此同时,两极板之间冷却液通道结构配合形成完整通道。As shown in Figure 3, two identical
如图4所示,由于第二平面12高于第一平面11,当两个极板合并后,中间存在间隙,间隙高度为第二平面12与第一平面11高度差的2倍,并且间隙高度可以通过阶梯高度进行调整,与此同时,可以减少冷却液通过冷却液流道的压强,避免由于压力过大使金属板产生形变。As shown in FIG. 4 , since the
如图5所示,两块极板合并后,圆柱凹陷15相互重合并且接触,增加了两块极板之间的支撑力,同时也加强了燃料电池甚至电堆的整体强度,在装配过程中避免金属双极板由于挤压发成形变,对质子交换膜的受力不均,加大拉扯力使得质子交换膜破损;圆柱凹陷15对其起到了受力均匀,保护质子交换膜,增加燃料电池整体结构强度的作用。As shown in Fig. 5, after the two pole plates are combined, the
如图5所示,圆柱凹陷15和半球状凸起14呈错开分布,错开分布可以使得气体浓度分布更加均匀,增加气体流动长度,增加反应效率。As shown in FIG. 5 , the
如图6所示,进气口18与出气口19呈错开布置,可以延长气体的路程,增加反应效率,气体走向为竖直方向(途中所示),现实案例由于流道的特殊设计,所以对流道的放置无限制,可竖直放置也可水平放置。As shown in FIG. 6 , the
如图6所示,冷却液进口16和冷却液出口17在双极板的两端,与气体流道呈交叉分布,气体流向与冷却液流向相互垂直。As shown in FIG. 6 , the cooling
如图7和图8所示,冷却液的流向截面20,并且流道呈面积型流向,与反应气体流道21和22充分接触,并且接触面积大,水流量大带走的热量高,冷却效果优异,并且圆柱凹陷使冷却液在夹层中的压强更加均匀,在冷却液通道中对冷却液起到了流体扰动的作用,同时温度分布更加均匀。As shown in Fig. 7 and Fig. 8, the flow direction of the cooling liquid is
如图8所示,流道中的半球状凸起14的高度略低于流道肋的顶面第三平面 13,从而不与质子交换膜接触,增加燃料气体与膜的反应面积;箭头运动方向为气体在流道中的局部运动轨迹,当遇到半球状凸起14时,气体流动发生变化,气体需要越过半球状凸起14或者从两侧流过,增加气体的扰动性,从而提高反应效率,增强电池性能。As shown in Fig. 8, the height of the
如图8所示,流道中的半球状凸起14与圆柱凹陷15呈对称位置,圆柱凹陷15相互重合并且接触,两块极板中间区域的支撑面为圆柱凹陷15的圆形底面。As shown in FIG. 8 , the
如图9所示,箭头方向为冷却液D-D方向的流动方向,冷却液从冷却液进口16进入双极板的夹层中,在双极板的夹层中呈箭头指向流动,最后从出口17 排出;特别说明,冷却液进入入口和排出出口的方向可以为同向,也可以为异向。As shown in Figure 9, the direction of the arrow is the flow direction of the cooling liquid D-D direction, the cooling liquid enters the interlayer of the bipolar plate from the cooling
如图10所示,箭头方向为冷却液在入口部分的流动方向。As shown in FIG. 10 , the direction of the arrow is the flow direction of the cooling liquid in the inlet portion.
如图11所示,箭头方向为冷却液在双极板夹层中的流动方向。As shown in FIG. 11 , the direction of the arrow is the flow direction of the cooling liquid in the bipolar plate interlayer.
如图12所示,箭头方向为冷却液在出口部分的流动方向。As shown in FIG. 12 , the direction of the arrow is the flow direction of the cooling liquid in the outlet portion.
如图13所示,阴极板中产生的水如箭头所指方向流动排出,产物水平行通过圆柱凹陷15,然后从半球状凸起14两侧通过,在增加扰流的同时又有利于产物水的排出,并且如果在半球状凸起14的表面产生水,由于半球状的圆弧形结构,水也会从半球状的圆弧面滑下流道底部,从而流出。As shown in Figure 13, the water generated in the cathode plate flows and discharges in the direction indicated by the arrow, and the product horizontally passes through the
本发明提供的一种燃料电池双极板经过专业仿真软件证实,有利于燃料电池的性能提升,相比于传统直流道性能提升近10%,并且从产物水的极板分布情况,水浓度整体分布也低于传统直流,温度分布相对于传统直流道更加均匀。The fuel cell bipolar plate provided by the present invention has been proved by professional simulation software, which is beneficial to the performance improvement of the fuel cell. Compared with the performance of the traditional straight channel, the performance is improved by nearly 10%, and from the distribution of the product water, the overall water concentration The distribution is also lower than that of traditional direct current, and the temperature distribution is more uniform than that of traditional direct current.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910888528.XA CN110828843A (en) | 2019-09-19 | 2019-09-19 | A fuel cell bipolar plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910888528.XA CN110828843A (en) | 2019-09-19 | 2019-09-19 | A fuel cell bipolar plate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110828843A true CN110828843A (en) | 2020-02-21 |
Family
ID=69548147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910888528.XA Pending CN110828843A (en) | 2019-09-19 | 2019-09-19 | A fuel cell bipolar plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110828843A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113241458A (en) * | 2021-03-27 | 2021-08-10 | 上海氢晨新能源科技有限公司 | Proton exchange membrane fuel cell bipolar plate |
CN113921845A (en) * | 2020-07-10 | 2022-01-11 | 未势能源科技有限公司 | Bipolar plate for fuel cell, fuel cell with bipolar plate and vehicle |
FR3116660A1 (en) * | 2020-11-26 | 2022-05-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Bipolar plate for electrochemical reactor |
CN115627492A (en) * | 2022-12-21 | 2023-01-20 | 上海治臻新能源股份有限公司 | Electrode plate of electrolysis equipment and electrolysis equipment |
CN117410515A (en) * | 2023-10-26 | 2024-01-16 | 国创氢能科技有限公司 | Single polar plate and bipolar plate of fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017162658A (en) * | 2016-03-09 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Fuel battery |
CN109301280A (en) * | 2018-09-30 | 2019-02-01 | 上海重塑能源科技有限公司 | Conductive plate for fuel cell |
CN109962258A (en) * | 2019-04-23 | 2019-07-02 | 珠海格力电器股份有限公司 | Fuel cell plate and fuel cell |
CN210379269U (en) * | 2019-09-19 | 2020-04-21 | 湖南理工学院 | A fuel cell bipolar plate |
-
2019
- 2019-09-19 CN CN201910888528.XA patent/CN110828843A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017162658A (en) * | 2016-03-09 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Fuel battery |
CN109301280A (en) * | 2018-09-30 | 2019-02-01 | 上海重塑能源科技有限公司 | Conductive plate for fuel cell |
CN109962258A (en) * | 2019-04-23 | 2019-07-02 | 珠海格力电器股份有限公司 | Fuel cell plate and fuel cell |
CN210379269U (en) * | 2019-09-19 | 2020-04-21 | 湖南理工学院 | A fuel cell bipolar plate |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113921845A (en) * | 2020-07-10 | 2022-01-11 | 未势能源科技有限公司 | Bipolar plate for fuel cell, fuel cell with bipolar plate and vehicle |
FR3116660A1 (en) * | 2020-11-26 | 2022-05-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Bipolar plate for electrochemical reactor |
EP4007019A1 (en) * | 2020-11-26 | 2022-06-01 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Bipolar plate for electrochemical reactor |
US12203181B2 (en) | 2020-11-26 | 2025-01-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Bipolar plate for an electrochemical reactor |
CN113241458A (en) * | 2021-03-27 | 2021-08-10 | 上海氢晨新能源科技有限公司 | Proton exchange membrane fuel cell bipolar plate |
CN115627492A (en) * | 2022-12-21 | 2023-01-20 | 上海治臻新能源股份有限公司 | Electrode plate of electrolysis equipment and electrolysis equipment |
CN117410515A (en) * | 2023-10-26 | 2024-01-16 | 国创氢能科技有限公司 | Single polar plate and bipolar plate of fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110828843A (en) | A fuel cell bipolar plate | |
CN105870477B (en) | Fuel battery double plates | |
CN112909282B (en) | Fuel cell bipolar plate and manufacturing method thereof | |
CN101465435B (en) | Duel-electrode plate multi-channel hunting flow field structure for proton exchange membrane fuel cell | |
CN107507993B (en) | Metal bipolar plate of proton exchange membrane fuel cell | |
CN107658480A (en) | A kind of fuel-cell single-cell and pile of the enhancing of humiture uniformity | |
CN106571472A (en) | Fuel cell metal dual pole plate assembly for enhancing fluid uniformity | |
CN113690458B (en) | Proton exchange membrane fuel cell bipolar plate | |
CN115064722B (en) | Heat dissipation metal stamping bipolar plate of air-cooled proton exchange membrane fuel cell | |
CN104821407B (en) | Vein shape fuel cell flow field structure, fuel battery double plates and fuel cell | |
CN107634241B (en) | Flow frame for flow battery | |
TW201820692A (en) | Bipolar plate structure with optimized gas flow path | |
CN109904480A (en) | A bipolar plate with a novel flow field structure | |
CN107634240A (en) | A kind of small fuel cell metal double polar plates | |
CN110474065A (en) | Fuel battery pole board, bipolar plates and hydrogen fuel cell | |
CN107968211B (en) | A flow field plate structure for proton exchange membrane fuel cells | |
CN113823809A (en) | Flow field structure of fuel cell bipolar plate | |
CN107785595A (en) | One proton exchanging film fuel battery | |
WO2020228131A1 (en) | Bipolar plate, fuel cell stack containing bipolar plate, and power generation system | |
TW201312844A (en) | Polar plate and polar plate unit using the same | |
CN113381038B (en) | Metal bipolar plate with Z-shaped flow field area distribution | |
CN113130931A (en) | Bipolar plate for hydrogen fuel cell | |
CN206789622U (en) | A kind of flow battery or fuel cell used metal electrode plate | |
CN210379269U (en) | A fuel cell bipolar plate | |
CN112909284A (en) | Bipolar plate for fuel cell with isosceles triangle area and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |