CN110825122A - Active anti-jamming tracking control method for circular trajectory of quadrotor UAV - Google Patents
Active anti-jamming tracking control method for circular trajectory of quadrotor UAV Download PDFInfo
- Publication number
- CN110825122A CN110825122A CN201910949039.0A CN201910949039A CN110825122A CN 110825122 A CN110825122 A CN 110825122A CN 201910949039 A CN201910949039 A CN 201910949039A CN 110825122 A CN110825122 A CN 110825122A
- Authority
- CN
- China
- Prior art keywords
- aerial vehicle
- unmanned aerial
- axis
- quad
- quadrotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 19
- 238000005312 nonlinear dynamic Methods 0.000 claims abstract description 12
- 230000006641 stabilisation Effects 0.000 claims abstract description 4
- 238000011105 stabilization Methods 0.000 claims abstract description 4
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 238000013016 damping Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000013461 design Methods 0.000 description 8
- 238000011217 control strategy Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/12—Target-seeking control
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明属于飞行控制技术领域,特别涉及了一种四旋翼无人机的控制方法。The invention belongs to the technical field of flight control, and particularly relates to a control method of a quadrotor unmanned aerial vehicle.
背景技术Background technique
四旋翼无人机是一种能够垂直起降和空中悬停的无人机,由于其结构简单、控制方便,飞行环境通用性强、维护成本低等优点,已经被广泛应用于航空侦察、高空拍摄、环境灾害监测、灾难救援等领域,具有重要的研究意义和应用前景。在控制理论研究领域,四旋翼无人机系统控制是一个典型的多输入-多输出、非线性特性明显、状态耦合严重的标杆问题。除此之外,四旋翼无人机飞行过程还会受到内部气动参数摄动、摩擦等未建模动态外界阵风干扰以及环境不确定性因素等多源干扰的影响,因此抗干扰控制成为四旋翼无人机控制系统设计急需解决的关键问题。Quadrotor UAV is a kind of UAV that can take off and land vertically and hover in the air. Due to its simple structure, convenient control, strong flight environment versatility and low maintenance cost, it has been widely used in aerial reconnaissance, high-altitude It has important research significance and application prospects in the fields of photography, environmental disaster monitoring, and disaster rescue. In the field of control theory research, quadrotor UAV system control is a typical benchmarking problem with multiple inputs and multiple outputs, obvious nonlinear characteristics and serious state coupling. In addition, the flight process of the quadrotor UAV is also affected by the unmodeled dynamic external gust interference such as internal aerodynamic parameter perturbation, friction and other multi-source interference, as well as environmental uncertainty factors. The key problems that need to be solved urgently in the design of UAV control system.
目前,针对四旋翼无人机的抗干扰控制问题,国内外学者给出了多种抗干扰控制策略,包括依靠系统鲁棒性被动地消除干扰的鲁棒控制策略和依靠扩张状态观测器对干扰进行实时观测和前馈补偿的主动抗干扰控制策略。但是现有的鲁棒控制策略的抗干扰性能是以牺牲系统标称性能为代价获取的,而基于扩张状态观测器的主动抗干扰控制策略虽然能获得很好的控制效果,但是其对干扰的假设过于苛刻,极大地限制其工程应用。因此亟需提出一种能够处理多种干扰的四旋翼无人机主动抗干扰控制方法。At present, for the anti-jamming control problem of quadrotor UAV, scholars at home and abroad have given a variety of anti-jamming control strategies, including the robust control strategy that relies on the robustness of the system to passively eliminate the interference and the expansion state observer to control the interference. Active anti-jamming control strategy with real-time observation and feed-forward compensation. However, the anti-jamming performance of the existing robust control strategy is obtained at the expense of the nominal performance of the system, while the active anti-jamming control strategy based on the extended state observer can achieve good control effects, but its impact on the disturbance is limited. The assumptions are too harsh, which greatly limits its engineering application. Therefore, there is an urgent need to propose an active anti-jamming control method for quadrotor UAVs that can handle multiple disturbances.
发明内容SUMMARY OF THE INVENTION
为了解决上述背景技术提到的技术问题,本发明提出了一种四旋翼无人机圆形轨迹主动抗干扰跟踪控制方法。In order to solve the technical problems mentioned in the above-mentioned background art, the present invention proposes an active anti-jamming tracking control method for a circular trajectory of a quadrotor UAV.
为了实现上述技术目的,本发明的技术方案为:In order to realize the above-mentioned technical purpose, the technical scheme of the present invention is:
一种四旋翼无人机圆形轨迹主动抗干扰跟踪控制方法,包括以下步骤:An active anti-jamming tracking control method for a circular trajectory of a quadrotor unmanned aerial vehicle, comprising the following steps:
(1)建立四旋翼无人机位置系统模型,将四旋翼无人机的轨迹跟踪问题转化为位置环跟踪误差的镇定问题;(1) Establish a quadrotor UAV position system model, and transform the quadrotor UAV trajectory tracking problem into the stabilization problem of the position loop tracking error;
(2)引入虚拟控制量,建立四旋翼无人机位置子系统高阶滑模干扰观测器;(2) Introduce virtual control variables and establish a high-order sliding mode interference observer for the position subsystem of the quadrotor UAV;
(3)建立四旋翼无人机复合非线性动态逆控制器,保证受扰的四旋翼无人机位置系统动态渐进跟踪其参考轨迹;(3) Establish a composite nonlinear dynamic inverse controller of the quadrotor UAV to ensure that the disturbed quadrotor UAV position system dynamically and progressively tracks its reference trajectory;
(4)通过代数转换,将虚拟控制量转化为四旋翼无人机的真实控制量。(4) Through algebraic transformation, the virtual control quantity is converted into the real control quantity of the quadrotor UAV.
进一步地,在步骤(1)中,所述四旋翼无人机位置系统模型如下:Further, in step (1), the four-rotor unmanned aerial vehicle position system model is as follows:
其中,x表示四旋翼无人机x轴向位移,y表示四旋翼无人机y轴向位移,z表示四旋翼无人机z轴向位移,字母上方一点表示其一阶微分,字母上方两点表示其二阶微分;x轴正向定义为沿当地经线的切向方向,指向正北方;y轴正向定义为沿当地纬线切向方向,指向正东方;z轴正向定义为垂直于当地水平面,指向地心方向;Dx,Dy,Dz表示三个轴向的集总干扰;φ表示四旋翼无人机的滚转角,θ表示四旋翼无人机的俯仰角,ψ表示四旋翼无人机的偏航角;m表示四旋翼无人机的质量,g表示重力加速度,UP表示由四旋翼无人机产生的总升力,kd表示空气阻尼系数;Among them, x represents the x-axis displacement of the quad-rotor drone, y represents the y-axis displacement of the quad-rotor drone, z represents the z-axis displacement of the quad-rotor drone, the point above the letter represents its first-order differential, and the two points above the letter The point represents its second-order differential; the positive x-axis is defined as the tangential direction along the local longitude, pointing to the north; the positive y-axis is defined as the tangential direction along the local latitude, pointing to the east; the positive z-axis is defined as perpendicular to the The local horizontal plane, pointing to the center of the earth; D x , D y , D z represent the aggregated interference in three axial directions; φ represents the roll angle of the quadrotor UAV, θ represents the pitch angle of the quadrotor UAV, ψ represents The yaw angle of the quad-rotor drone; m represents the mass of the quad-rotor drone, g represents the acceleration of gravity, U P represents the total lift generated by the quad-rotor drone, and k d represents the air damping coefficient;
定义位置跟踪误差:Define the position tracking error:
ex=x-xd,ey=y-yd,ez=z-zd e x =xx d , e y =yy d , e z =zz d
其中,ex,ey,ez为三轴向位置跟踪误差,xd,yd,zd为三轴向轨迹参考信号;Among them, e x , e y , and e z are the three-axis position tracking errors, and x d , y d , and z d are the three-axis trajectory reference signals;
建立位置环跟踪误差子系统:Build the position loop tracking error subsystem:
则位置环跟踪误差子系统的控制输入为φ、θ、ψ和UP。Then the control inputs of the position loop tracking error subsystem are φ, θ, ψ and U P .
进一步地,在步骤(2)中,引入三轴虚拟控制量:Further, in step (2), a three-axis virtual control quantity is introduced:
建立x轴向高阶滑模观测器:Create an x-axis high-order sliding mode observer:
v2=-1.5L1/2|z2-v1|1/2sign(z2-v1)+z3 v 2 =-1.5L 1/2 |z 2 -v 1 | 1/2 sign(z 2 -v 1 )+z 3
建立y轴向高阶滑模观测器:Create a higher-order sliding-mode observer in the y-axis:
v2=-1.5L1/2|z2-v1|1/2sign(z2-v1)+z3 v 2 =-1.5L 1/2 |z 2 -v 1 | 1/2 sign(z 2 -v 1 )+z 3
建立z轴向高阶滑模观测器:Create a higher-order sliding mode observer in the z-axis:
v2=-1.5L1/2|z2-v1|1/2sign(z2-v1)+z3 v 2 =-1.5L 1/2 |z 2 -v 1 | 1/2 sign(z 2 -v 1 )+z 3
其中,z1,z2,z3为高阶滑模观测器动态;表示三轴向集总干扰的估计值;L为高阶滑模观测器增益;sign表示符号函数。Among them, z 1 , z 2 , z 3 are high-order sliding mode observer dynamics; represents the estimated value of the three-axis lumped interference; L is the gain of the high-order sliding mode observer; sign represents the sign function.
进一步地,在步骤(3)中,针对三个轴向分别建立复合非线性动态逆控制器:Further, in step (3), a composite nonlinear dynamic inverse controller is established for the three axial directions respectively:
其中,KXP、KXD、KYP、KYD、KZP、KZD为控制器参数,且均为正值常数。Among them, K XP , K XD , K YP , K YD , K ZP , and K ZD are controller parameters, and they are all positive constants.
进一步地,在步骤(4)中,将偏航角指令ψd直接设置为0,滚转角指令φd、俯仰角指令θd和总升力指令UP d根据虚拟控制量反解求得:Further, in step (4), the yaw angle command ψ d is directly set to 0, the roll angle command φ d , the pitch angle command θ d and the total lift command U P d are obtained according to the inverse solution of the virtual control quantity:
采用上述技术方案带来的有益效果:The beneficial effects brought by the above technical solutions:
(1)本发明采用高阶滑模干扰观测器对四旋翼无人机位置系统中多源干扰进行估计,显著扩展了控制器能够抑制干扰的类型,并且保证了干扰在有限时间内精确估计;(1) the present invention adopts the high-order sliding mode interference observer to estimate the multi-source interference in the quadrotor unmanned aerial vehicle position system, which significantly expands the types of interference that the controller can suppress, and ensures that the interference can be accurately estimated within a limited time;
(2)本发明充分利用系统非线性特性,在反馈通道将标称非线性以反馈的形式抵消,大大减少了控制器中基于误差的反馈部分的调节压力,显著降低了控制器参数调节难度;(2) The present invention makes full use of the nonlinear characteristics of the system, cancels the nominal nonlinearity in the form of feedback in the feedback channel, greatly reduces the adjustment pressure of the error-based feedback part in the controller, and significantly reduces the difficulty of adjusting the parameters of the controller;
(3)本发明将多源干扰估计信息纳入非线性动态逆控制器设计中,重构为复合动态逆控制器,通过对多源干扰进行动态实时的前馈补偿,显著提高了系统的抗干扰性能和鲁棒性;(3) The present invention incorporates the multi-source interference estimation information into the design of the nonlinear dynamic inverse controller, reconstructs it into a composite dynamic inverse controller, and significantly improves the anti-interference of the system by performing dynamic real-time feedforward compensation for the multi-source interference. performance and robustness;
(4)本发明不仅能够显著提高四旋翼无人机控制系统中的跟踪精度,而且所提的抗干扰控制方法可推广应用于其他飞行器的高精度控制中,具有很广阔的应用前景。(4) The present invention can not only significantly improve the tracking accuracy in the control system of the quadrotor UAV, but also the anti-jamming control method proposed can be applied to the high-precision control of other aircraft, and has a broad application prospect.
附图说明Description of drawings
图1是本发明控制策略框图;Fig. 1 is the control strategy block diagram of the present invention;
图2是传统基准非线性控制器与本发明复合控制器作用下的四旋翼无人机跟踪空间三维圆形轨迹效果图;Fig. 2 is a four-rotor UAV tracking space three-dimensional circular trajectory effect diagram under the action of the traditional benchmark nonlinear controller and the composite controller of the present invention;
图3是传统基准非线性控制器与本发明复合控制器作用下的四旋翼无人机位置三通道轨迹响应曲线图;Fig. 3 is the four-rotor UAV position three-channel trajectory response curve diagram under the action of the traditional benchmark nonlinear controller and the composite controller of the present invention;
图4是传统基准非线性控制器与本发明复合控制器作用下的四旋翼无人机位置三通道轨迹跟踪误差曲线图;Fig. 4 is a four-rotor unmanned aerial vehicle position three-channel trajectory tracking error curve diagram under the action of the traditional benchmark nonlinear controller and the composite controller of the present invention;
图5是传统基准非线性控制器与本发明复合控制器作用下的四旋翼无人机控制输入响应曲线图。FIG. 5 is a graph of the control input response curve of the quadrotor UAV under the action of the traditional benchmark nonlinear controller and the composite controller of the present invention.
具体实施方式Detailed ways
以下将结合附图,对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings.
本发明设计了一种四旋翼无人机圆形轨迹主动抗干扰跟踪控制方法,如图1所示,基本步骤如下:The present invention designs an active anti-jamming tracking control method for a circular trajectory of a quadrotor UAV, as shown in Figure 1, and the basic steps are as follows:
步骤1:建立四旋翼无人机位置系统模型,将四旋翼无人机的轨迹跟踪问题转化为位置环跟踪误差的镇定问题;Step 1: Establish a quad-rotor UAV position system model, and convert the quad-rotor UAV's trajectory tracking problem into a stabilization problem of position loop tracking error;
步骤2:引入虚拟控制量,建立四旋翼无人机位置子系统高阶滑模干扰观测器;Step 2: Introduce virtual control variables and establish a high-order sliding mode interference observer for the position subsystem of the quadrotor UAV;
步骤3:建立四旋翼无人机复合非线性动态逆控制器,保证受扰的四旋翼无人机位置系统动态渐进跟踪其参考轨迹;Step 3: Establish a composite nonlinear dynamic inverse controller of the quadrotor UAV to ensure that the disturbed quadrotor UAV position system dynamically and progressively tracks its reference trajectory;
步骤4:通过代数转换,将虚拟控制量转化为四旋翼无人机的真实控制量。Step 4: Convert the virtual control amount to the real control amount of the quadrotor UAV through algebraic transformation.
在本实施例中,采用如下优选方案实现步骤1:In the present embodiment, adopt the following preferred scheme to realize step 1:
在步骤(1)中,所述四旋翼无人机位置系统模型如下:In step (1), the four-rotor UAV position system model is as follows:
其中,x表示四旋翼无人机x轴向位移,y表示四旋翼无人机y轴向位移,z表示四旋翼无人机z轴向位移,字母上方一点表示其一阶微分,字母上方两点表示其二阶微分;x轴正向定义为沿当地经线的切向方向,指向正北方;y轴正向定义为沿当地纬线切向方向,指向正东方;z轴正向定义为垂直于当地水平面,指向地心方向;Dx,Dy,Dz表示三个轴向的集总干扰;φ表示四旋翼无人机的滚转角,θ表示四旋翼无人机的俯仰角,ψ表示四旋翼无人机的偏航角;m表示四旋翼无人机的质量,g表示重力加速度,UP表示由四旋翼无人机产生的总升力,kd表示空气阻尼系数。本实施例取m=0.8,空气阻尼系数kd=0.09。Among them, x represents the x-axis displacement of the quad-rotor drone, y represents the y-axis displacement of the quad-rotor drone, z represents the z-axis displacement of the quad-rotor drone, the point above the letter represents its first-order differential, and the two points above the letter The point represents its second-order differential; the positive x-axis is defined as the tangential direction along the local longitude, pointing to the north; the positive y-axis is defined as the tangential direction along the local latitude, pointing to the east; the positive z-axis is defined as perpendicular to the The local horizontal plane, pointing to the center of the earth; D x , D y , D z represent the aggregated interference in three axial directions; φ represents the roll angle of the quadrotor UAV, θ represents the pitch angle of the quadrotor UAV, ψ represents The yaw angle of the quad-rotor drone; m represents the mass of the quad-rotor drone, g represents the acceleration of gravity, U P represents the total lift generated by the quad-rotor drone, and k d represents the air damping coefficient. In this embodiment, m=0.8, and the air damping coefficient k d =0.09.
定义位置跟踪误差:Define the position tracking error:
ex=x-xd,ey=y-yd,ez=z-zd e x =xx d , e y =yy d , e z =zz d
其中,ed,ed,ed为三轴位置跟踪误差,xd,yd,zd为三轴轨迹参考信号;Among them, ed , ed , and ed are the three-axis position tracking errors, and x d , y d , and z d are the three-axis trajectory reference signals;
建立位置环跟踪误差子系统:Build the position loop tracking error subsystem:
由于四旋翼无人机控制系统外回路为位置回路、内回路为姿态回路,且位置回路的控制是由改变姿态角来实现的,因此位置跟踪子系统的控制输入为三轴姿态角φ、θ、ψ和总升力UP。Since the outer loop of the quadrotor UAV control system is a position loop and the inner loop is an attitude loop, and the control of the position loop is realized by changing the attitude angle, the control input of the position tracking subsystem is the three-axis attitude angle φ, θ , ψ and the total lift U P .
在本实施例中,采用如下优选方案实现步骤2:In the present embodiment, adopt the following preferred scheme to realize step 2:
对于四旋翼无人机位置系统(1)设计高阶滑模观测器,以实现三个位置通道集总干扰的有限时间估计。For the quadrotor UAV position system (1), a high-order sliding-mode observer is designed to achieve finite-time estimation of the aggregate interference of the three position channels.
对于系统(1)中的四旋翼无人机的位置子系统模型,了便于控制器设计,引入如下虚拟控制量:For the position subsystem model of the quadrotor UAV in system (1), in order to facilitate the controller design, the following virtual control quantities are introduced:
建立x轴向高阶滑模观测器:Create an x-axis high-order sliding mode observer:
建立y轴向高阶滑模观测器:Create a higher-order sliding-mode observer in the y-axis:
建立z轴向高阶滑模观测器:Create a higher-order sliding mode observer in the z-axis:
其中,z1,z2,z3为高阶滑模观测器动态;表示三轴向集总干扰的估计值;L为高阶滑模观测器增益;sign表示符号函数。在本实施例中,L取值0.1。Among them, z 1 , z 2 , z 3 are high-order sliding mode observer dynamics; represents the estimated value of the three-axis lumped interference; L is the gain of the high-order sliding mode observer; sign represents the sign function. In this embodiment, L takes a value of 0.1.
在本实施例中,采用如下优选方案实现步骤3:In the present embodiment, adopt the following preferred scheme to realize step 3:
对于四旋翼无人机位置环跟踪误差系统(2)设计非线性动态逆控制器,并结合高阶滑模观测器的集总干扰估计信息,设计复合非线性动态逆控制器,并通过李雅普诺夫函数对姿态误差系统进行稳定性分析,其设计的具体步骤包括:For the quadrotor UAV position loop tracking error system (2), a nonlinear dynamic inverse controller is designed, and combined with the lumped disturbance estimation information of the high-order sliding mode observer, a composite nonlinear dynamic inverse controller is designed. The stability analysis of the attitude error system is carried out by using the VF function, and the specific steps of its design include:
针对四旋翼无人机位置系统X轴向通道设计复合动态逆控制器:Design a composite dynamic inverse controller for the X-axis channel of the quadrotor UAV position system:
针对四旋翼无人机位置系统Y轴向通道设计复合动态逆控制器:Design a composite dynamic inverse controller for the Y-axis channel of the quadrotor UAV position system:
针对四旋翼无人机位置系统Z轴向通道设计复合动态逆控制器:Design a composite dynamic inverse controller for the Z-axis channel of the quadrotor UAV position system:
其中KXP、KXD、KYP、KYD、KZP、KZD为控制器参数,且它们均为正常数。以下对其稳定性进行分析说明:Among them, K XP , K XD , K YP , K YD , K ZP , and K ZD are controller parameters, and they are all normal numbers. Its stability is analyzed and explained as follows:
将X轴向动态逆控制器代入位置环跟踪误差系统(2)可得:Substitute the X-axis dynamic inverse controller into the position loop tracking error system (2) to obtain:
由于高阶滑模观测器(4)保证干扰估计在有限时间Te内收敛其真实值Dx,所以当t>Te时,X轴向跟踪误差闭环系统转化为如下动态:Since the higher-order sliding mode observer (4) guarantees the interference estimation Convergence its true value D x within a finite time Te, so when t>T e , the X-axis tracking error closed-loop system is transformed into the following dynamics:
定义如下Lyapunov函数:Define the following Lyapunov function:
考虑到式(10),对Lyapunov函数求导可得:Taking into account equation (10), derivation of the Lyapunov function can be obtained:
故闭环系统(10)渐进收敛,即在复合动态逆控制器(7)作用下,x轴向受扰误差跟踪系统渐进收敛;同理可以证明复合动态逆控制器(8)和(9)保证y和z轴向跟踪误差渐进收敛。即复合动态逆控制器(7)-(9)保证受扰四旋翼无人机位置系统(1)动态渐进跟踪其参考轨迹。Therefore, the closed-loop system (10) converges asymptotically, that is, under the action of the composite dynamic inverse controller (7), the x-axis disturbed error tracking system gradually converges. Similarly, it can be proved that the composite dynamic inverse controllers (8) and (9) guarantee The tracking errors in the y and z axes converge asymptotically. That is, the composite dynamic inverse controllers (7)-(9) ensure that the disturbed quadrotor UAV position system (1) dynamically and progressively tracks its reference trajectory.
针对虚拟控制量进行分析,通过代数转换,将虚拟控制量转化为四旋翼无人机的真实控制量。考虑到四旋翼无人机内环为姿态环,而且其位置控制是通过改变姿态角和升力来协调实现的。The virtual control quantity is analyzed, and the virtual control quantity is converted into the real control quantity of the quadrotor UAV through algebraic transformation. Considering that the inner ring of the quadrotor UAV is an attitude ring, and its position control is coordinated by changing the attitude angle and lift.
在实际四旋翼无人机飞行过程中,为了便于系统控制,总是希望其偏航角保持为零,即ψd=0,其余滚转角指令φd、俯仰角指令θd和总升力指令UP d根据虚拟控制量反解求得:In the actual flying process of the quadrotor UAV, in order to facilitate the system control, it is always hoped that its yaw angle is kept at zero, that is, ψ d =0, and the remaining roll angle command φ d , pitch angle command θ d and total lift command U P d is obtained according to the inverse solution of the virtual control variable:
为了验证本发明优越的抗干扰能性能,在充分考虑外部干扰存在的情况下基于MATLAB仿真环境对本发明算法和传统非线性动态逆算法进行四旋翼无人机仿真对比验证。仿真过程位置初始值设置为x(0)=0,y(0)=1,z(0)=0,期望位置设置如下:In order to verify the superior anti-interference performance of the present invention, the algorithm of the present invention and the traditional nonlinear dynamic inverse algorithm are compared and verified by the simulation of the quadrotor UAV based on the MATLAB simulation environment under the condition of fully considering the existence of external interference. The initial value of the position in the simulation process is set as x(0)=0, y(0)=1, z(0)=0, and the desired position is set as follows:
仿真过程中外界干扰设置如下:The external interference settings during the simulation process are as follows:
Dx=-1.6,Dy=-1.84,Dx=-1.6 Dx =-1.6,Dy=-1.84, Dx = -1.6
本发明设计的复合非线性动态逆控制器(Composite Nonlinear DynamicInverse Controller,CNDIC)参数设计如下:The parameters of the composite nonlinear dynamic inverse controller (CNDIC) designed by the present invention are as follows:
KXP=9,KXD=6,KYP=9,KYD=6,KZP=9,KZD=6.K XP = 9, K XD = 6, K YP = 9, K YD = 6, K ZP = 9, K ZD = 6.
用于作为仿真对比的基准非线性控制器(Baseline Nonlinear Dynamic InverseController,BNDIC)设计如下:The Baseline Nonlinear Dynamic Inverse Controller (BNDIC) used as a simulation comparison is designed as follows:
ψd=0ψ d = 0
其中控制器参数取值如下:The controller parameters take the following values:
KXP=9,KXD=6,KYP=9,KYD=6,KZP=9,KZD=6.K XP = 9, K XD = 6, K YP = 9, K YD = 6, K ZP = 9, K ZD = 6.
图2-图4是分别采用CNDIC和BNDIC的受扰四旋翼无人机轨迹跟踪效果图,可以看出本发明所提复合控制方法抗干扰性能明显优于传统动态逆控制方法。图5给出了控制输入响应曲线,包括(a)、(b)、(c)、(d)四幅子图,分别对应滚转角、俯仰角、偏航角和总升力,可以看出本发明方法控制输入(姿态角和总升力)在特定限幅范围内。综上所述,本发明可以保证四旋翼无人机具有更快的轨迹跟踪速度和更强的抗干扰性能。Figures 2 to 4 are respectively the effect diagrams of trajectory tracking of disturbed quadrotor UAV using CNDIC and BNDIC. It can be seen that the anti-interference performance of the composite control method proposed by the present invention is obviously better than that of the traditional dynamic inverse control method. Figure 5 shows the control input response curve, including (a), (b), (c), (d) four sub-graphs, corresponding to the roll angle, pitch angle, yaw angle and total lift respectively, it can be seen that the present invention The method controls the inputs (attitude angle and total lift) within certain limits. To sum up, the present invention can ensure that the quadrotor UAV has faster trajectory tracking speed and stronger anti-interference performance.
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。The embodiment is only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical idea proposed by the present invention all fall within the protection scope of the present invention. .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910949039.0A CN110825122B (en) | 2019-10-08 | 2019-10-08 | Active anti-jamming tracking control method for circular trajectory of quadrotor UAV |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910949039.0A CN110825122B (en) | 2019-10-08 | 2019-10-08 | Active anti-jamming tracking control method for circular trajectory of quadrotor UAV |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110825122A true CN110825122A (en) | 2020-02-21 |
CN110825122B CN110825122B (en) | 2020-09-15 |
Family
ID=69548706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910949039.0A Active CN110825122B (en) | 2019-10-08 | 2019-10-08 | Active anti-jamming tracking control method for circular trajectory of quadrotor UAV |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110825122B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538346A (en) * | 2020-06-17 | 2020-08-14 | 郑州轻工业大学 | A kind of interference observation compensation flight control method of quadrotor helicopter |
CN111650951A (en) * | 2020-05-22 | 2020-09-11 | 南京航空航天大学 | A full-loop composite dynamic inverse tracking control method for complex trajectory of quadrotor UAV |
CN112486141A (en) * | 2020-11-26 | 2021-03-12 | 南京信息工程大学 | Unmanned aerial vehicle flight control program modeling and verifying method based on time automaton |
CN113031636A (en) * | 2021-03-01 | 2021-06-25 | 之江实验室 | Unmanned aerial vehicle control method and device, electronic equipment, unmanned aerial vehicle and storage medium |
CN113359472A (en) * | 2021-07-02 | 2021-09-07 | 北京理工大学 | Adaptive robust trajectory tracking control method for quad-rotor unmanned aerial vehicle |
CN114578837A (en) * | 2022-02-18 | 2022-06-03 | 南京航空航天大学 | An active fault-tolerant anti-jamming trajectory tracking control method for unmanned helicopter considering actuator failure |
CN118760225A (en) * | 2024-07-04 | 2024-10-11 | 南京航空航天大学 | A trajectory tracking control method for unmanned helicopter based on filter observer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103777641A (en) * | 2014-02-19 | 2014-05-07 | 北京理工大学 | Compound active-disturbances-rejection control method of tracking control over aircraft |
CN104199286A (en) * | 2014-07-15 | 2014-12-10 | 北京航空航天大学 | Hierarchical dynamic inverse control method for flight vehicle based on sliding mode interference observer |
CN105676641A (en) * | 2016-01-25 | 2016-06-15 | 南京航空航天大学 | Nonlinear robust controller design method based on back-stepping and sliding mode control technologies and aimed at nonlinear model of quad-rotor unmanned plane |
CN106325291A (en) * | 2016-10-10 | 2017-01-11 | 上海拓攻机器人有限公司 | Four-rotor aircraft attitude control method and system based on sliding-mode control law and ESO |
CN108180910A (en) * | 2017-12-26 | 2018-06-19 | 北京航空航天大学 | One kind is based on the uncertain aircraft quick high accuracy method of guidance of aerodynamic parameter |
KR101858338B1 (en) * | 2016-04-18 | 2018-06-28 | 명지대학교 산학협력단 | Control system and method using sliding mode disturbance observer with controller for separate compensation of disturbance |
CN108873923A (en) * | 2018-07-11 | 2018-11-23 | 中国人民解放军陆军工程大学 | Method for controlling warship surface emergency takeoff of fixed-wing unmanned aerial vehicle through emergency command |
CN109062052A (en) * | 2018-08-31 | 2018-12-21 | 湖北工业大学 | Quadrotor drone integral sliding mode control method based on extended state observer |
-
2019
- 2019-10-08 CN CN201910949039.0A patent/CN110825122B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103777641A (en) * | 2014-02-19 | 2014-05-07 | 北京理工大学 | Compound active-disturbances-rejection control method of tracking control over aircraft |
CN104199286A (en) * | 2014-07-15 | 2014-12-10 | 北京航空航天大学 | Hierarchical dynamic inverse control method for flight vehicle based on sliding mode interference observer |
CN105676641A (en) * | 2016-01-25 | 2016-06-15 | 南京航空航天大学 | Nonlinear robust controller design method based on back-stepping and sliding mode control technologies and aimed at nonlinear model of quad-rotor unmanned plane |
KR101858338B1 (en) * | 2016-04-18 | 2018-06-28 | 명지대학교 산학협력단 | Control system and method using sliding mode disturbance observer with controller for separate compensation of disturbance |
CN106325291A (en) * | 2016-10-10 | 2017-01-11 | 上海拓攻机器人有限公司 | Four-rotor aircraft attitude control method and system based on sliding-mode control law and ESO |
CN108180910A (en) * | 2017-12-26 | 2018-06-19 | 北京航空航天大学 | One kind is based on the uncertain aircraft quick high accuracy method of guidance of aerodynamic parameter |
CN108873923A (en) * | 2018-07-11 | 2018-11-23 | 中国人民解放军陆军工程大学 | Method for controlling warship surface emergency takeoff of fixed-wing unmanned aerial vehicle through emergency command |
CN109062052A (en) * | 2018-08-31 | 2018-12-21 | 湖北工业大学 | Quadrotor drone integral sliding mode control method based on extended state observer |
Non-Patent Citations (5)
Title |
---|
CHEN MEILI 等: "An Improved Nonlinear Dynamic Inversion Method for Altitude and Attitude Control of Nano Quad-Rotors under Persistent Uncertainties", 《TRANSACTIONS OF NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS》 * |
XUERUIWANG 等: "Quadrotor Fault Tolerant Incremental Sliding Mode Control driven by Sliding Mode Disturbance Observers", 《AEROSPACE SCIENCE AND TECHNOLOGY》 * |
刘畅 等: "基于滑模扩张干扰观测器的固定翼无人机动态逆控制", 《电光与控制》 * |
吴坤 等: "基于高阶滑模的新型干扰观测器设计", 《弹箭与制导学报》 * |
李春涛 等: "基于动态逆的无人机飞行控制律设计", 《兵工自动化》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111650951A (en) * | 2020-05-22 | 2020-09-11 | 南京航空航天大学 | A full-loop composite dynamic inverse tracking control method for complex trajectory of quadrotor UAV |
CN111650951B (en) * | 2020-05-22 | 2021-09-17 | 南京航空航天大学 | Full-loop composite dynamic inverse tracking control method for complex track of quad-rotor unmanned aerial vehicle |
CN111538346A (en) * | 2020-06-17 | 2020-08-14 | 郑州轻工业大学 | A kind of interference observation compensation flight control method of quadrotor helicopter |
CN111538346B (en) * | 2020-06-17 | 2023-02-10 | 郑州轻工业大学 | Interference observation compensation flight control method of four-rotor helicopter |
CN112486141A (en) * | 2020-11-26 | 2021-03-12 | 南京信息工程大学 | Unmanned aerial vehicle flight control program modeling and verifying method based on time automaton |
CN113031636A (en) * | 2021-03-01 | 2021-06-25 | 之江实验室 | Unmanned aerial vehicle control method and device, electronic equipment, unmanned aerial vehicle and storage medium |
CN113031636B (en) * | 2021-03-01 | 2024-02-20 | 之江实验室 | Unmanned aerial vehicle control method, unmanned aerial vehicle control device, electronic equipment, unmanned aerial vehicle and storage medium |
CN113359472A (en) * | 2021-07-02 | 2021-09-07 | 北京理工大学 | Adaptive robust trajectory tracking control method for quad-rotor unmanned aerial vehicle |
CN113359472B (en) * | 2021-07-02 | 2024-04-19 | 北京理工大学 | Self-adaptive robust track tracking control method for four-rotor unmanned aerial vehicle |
CN114578837A (en) * | 2022-02-18 | 2022-06-03 | 南京航空航天大学 | An active fault-tolerant anti-jamming trajectory tracking control method for unmanned helicopter considering actuator failure |
CN118760225A (en) * | 2024-07-04 | 2024-10-11 | 南京航空航天大学 | A trajectory tracking control method for unmanned helicopter based on filter observer |
CN118760225B (en) * | 2024-07-04 | 2024-12-13 | 南京航空航天大学 | Unmanned helicopter track tracking control method based on filter observer |
Also Published As
Publication number | Publication date |
---|---|
CN110825122B (en) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110825122B (en) | Active anti-jamming tracking control method for circular trajectory of quadrotor UAV | |
CN111766899B (en) | Interference observer-based quad-rotor unmanned aerial vehicle cluster anti-interference formation control method | |
CN110850887B (en) | A composite dynamic inverse anti-jamming attitude control method for quadrotor UAV | |
CN106933104B (en) | A hybrid control method of attitude and position of quadrotor aircraft based on DIC-PID | |
CN109541941B (en) | Self-adaptive amplification anti-interference fault-tolerant method for active section flight of vertical take-off and landing carrier | |
CN107807663B (en) | Formation keeping control method for unmanned aerial vehicles based on adaptive control | |
CN112346470A (en) | Four-rotor attitude control method based on improved active disturbance rejection control | |
CN109062042B (en) | A limited-time track tracking control method for rotorcraft | |
CN113342025B (en) | A method for attitude control of quad-rotor UAV based on linear active disturbance rejection control | |
CN108181920B (en) | High-precision attitude tracking control method for quadrotor UAV based on given time | |
CN109991991B (en) | Robust fault-tolerant tracking method for unmanned helicopter | |
CN107765553B (en) | Nonlinear control method for hoisting transportation system of rotary-wing UAV | |
CN111650951B (en) | Full-loop composite dynamic inverse tracking control method for complex track of quad-rotor unmanned aerial vehicle | |
CN111538255B (en) | Aircraft control method and system for an anti-swarm drone | |
CN110673623B (en) | Quad-rotor unmanned aerial vehicle landing method based on dual-ring PD control algorithm control | |
CN113359459B (en) | Attitude control method of sliding mode variable structure for rotorcraft | |
CN113961010B (en) | Tracking control method for quadrotor plant protection UAV | |
CN108594837A (en) | Model-free quadrotor drone contrail tracker and method based on PD-SMC and RISE | |
CN115202213B (en) | A Control Method of Quadrotor Aircraft Based on Active Disturbance Rejection Control | |
CN108681331A (en) | A kind of Attitude tracking control method of Near Space Flying Vehicles | |
CN109885074A (en) | A finite time convergence attitude control method for quadrotor UAV | |
CN108398885A (en) | Rotor flying mechanical arm self_adaptive RBF NNs surveys Auto-disturbance-rejection Control of making an uproar | |
CN118295439B (en) | Predetermined performance control method for attitude control of high-speed aircraft | |
CN115826394A (en) | Control method of quad-rotor unmanned aerial vehicle based on fractional order PID and fractional order terminal sliding mode | |
CN111061282A (en) | Four-rotor unmanned aerial vehicle suspension flight system control method based on energy method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |