CN110823340A - 基于底面两圈标准差多项式模型的粮仓检测方法及系统 - Google Patents

基于底面两圈标准差多项式模型的粮仓检测方法及系统 Download PDF

Info

Publication number
CN110823340A
CN110823340A CN201810910929.6A CN201810910929A CN110823340A CN 110823340 A CN110823340 A CN 110823340A CN 201810910929 A CN201810910929 A CN 201810910929A CN 110823340 A CN110823340 A CN 110823340A
Authority
CN
China
Prior art keywords
pressure sensor
grain
granary
value
output values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810910929.6A
Other languages
English (en)
Other versions
CN110823340B (zh
Inventor
张德贤
张苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201810910929.6A priority Critical patent/CN110823340B/zh
Publication of CN110823340A publication Critical patent/CN110823340A/zh
Application granted granted Critical
Publication of CN110823340B publication Critical patent/CN110823340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes

Abstract

本发明涉及一种基于底面两圈标准差多项式模型的粮仓检测方法及系统,本发明针对全国储粮数量在线检测的迫切需要和检测的具体要求,根据粮仓压强分布特点,提出了一种基于底面两圈压力传感器输出值标准差的粮仓储粮数量检测模型。本发明的核心技术包括基于底面两圈压力传感器输出值标准差的模型项构造、基于底面两圈压力传感器输出值标准差的粮仓储粮数量检测模型两个部分。所提出的模型及检测方法具有检测精度高、适应于多种粮仓结构类型、便于远程在线粮仓数量检测等特点,可满足通常使用粮仓储粮数量远程在线检测的需要。

Description

基于底面两圈标准差多项式模型的粮仓检测方法及系统
技术领域
本发明涉及一种基于底面两圈标准差多项式模型的粮仓检测方法及系统,属于传感器与检测技术领域。
背景技术
粮食安全包括数量安全和原粮安全。粮食数量在线检测技术与系统研究应用是国家粮食数量安全的重要保障技求,开展这方面的研究与应用事关国家粮食安全,具有重要的意义,并将产生巨大的社会经济效益。
由于粮食在国家安全中的重要地位,要求粮食数量在线检测准确、快速和可靠。同时由于粮食数量巨大,价格低,要求粮食数量在线检测设备成本低、简单方便。因此检测的高精度与检测系统的低成本是粮食数量在线检测系统开发必需解决的关键课题。
授权公告号为CN105403294B的中国发明专利文件公开了一种基于多项式展开的粮仓储粮重量检测方法及其装置。该发明专利涉及基于多项式展开的粮仓储粮重量检测方法及其装置。依据粮仓储粮重量的理论检测模型,建立基于多项式展开的粮仓储粮重量检测模型,利用基于回归和多项式最大阶数选择样本集的多项式最大阶数优化方法对模型参数进行优化。
该方案提高了储粮重量(即储量数量)的检测精确度,还具有较强适应性和鲁棒性。然而,由于粮食的存储性质和传感器精度的限制,储粮数量的检测精度还有待进一步提高。
发明内容
本发明的目的是提供一种基于底面两圈标准差多项式模型的粮仓检测方法及系统,以解决如何在现有技术基础上进一步提高检测精确度的问题。
为实现上述目的,本发明的方案包括:
本发明的一种基于底面两圈压力传感器的粮仓储粮检测方法,包括如下步骤:
1)检测粮仓底面设置的内外两圈压力传感器的输出值;
2)利用两圈压力传感器输出值均值
Figure BDA0001761823480000011
估计粮堆底面压强均值
Figure BDA0001761823480000012
构建
Figure BDA0001761823480000013
Figure BDA0001761823480000014
的关系;
3)利用两圈压力传感器输出值均值
Figure BDA0001761823480000015
估计粮堆高度H,构建
Figure BDA0001761823480000016
与H的关系;
4)利用估计项IM(s)估计粮堆侧面单位面积平均摩擦力
Figure BDA0001761823480000021
构建外圈压力传感器输出值均值
Figure BDA0001761823480000022
内圈压力传感器输出值均值
Figure BDA0001761823480000023
外圈压力传感器输出值标准差SD(sOuter)、内圈压力传感器输出值标准差SD(sInner)与IM(s)的关系:
Figure BDA0001761823480000024
其中,KX为设定的系数;当对应粮堆的散落性小于设定标准时,对应的
Figure BDA00017618234800000215
当对应粮堆的散落性大于等于设定标准时,对应的
5)将步骤2)、3)、4)得到的关系代入粮仓储粮数量理论检测模型
Figure BDA0001761823480000026
得出粮仓储粮数量
Figure BDA0001761823480000027
Figure BDA0001761823480000028
SD(sOuter)、SD(sInner)关系的检测模型,进而根据步骤1)检测的两圈压力传感器的输出值得出粮仓储粮数量
Figure BDA0001761823480000029
其中,Kc=CB/AB,AB为粮堆底面面积,CB为粮堆底面周长。
进一步的,步骤1)中,还对压力传感器的输出值进行筛选,筛选方法为:仅保留与该圈压力传感器输出值的平均值的差在设定范围内的输出值;所述压力传感器输出值的平均值为传感器输出值的中值及其相邻设定数量的输出值的平均值。
进一步的,若内圈压力传感器输出值满足则去除该传感器输出值,得到去除后的内圈压力传感器输出值序列QBS(sInner(i));其中,QB(sInner(i))为第i个内圈压力传感器输出值,
Figure BDA00017618234800000211
为内圈压力传感器输出值中值及相邻设定数量的输出值的均值,SDMed(sInner)为内圈压力传感器输出值标准差,TSD为内圈压力传感器点去除阈值系数。
进一步的,若外圈压力传感器输出值满足
Figure BDA00017618234800000212
则去除该传感器输出值,得到去除后的外圈压力传感器输出值序列QBS(sOuter(i));其中,QB(sOuter(i))为第i个外圈压力传感器输出值,
Figure BDA00017618234800000213
为外圈压力传感器输出值中值及相邻设定数量的输出值的均值,SDMed(sOuter)为外圈压力传感器输出值标准差,CTSD为外圈压力传感器点去除阈值系数。
进一步的,两圈压力传感器输出值均值
Figure BDA00017618234800000214
的计算方法为:
Figure BDA0001761823480000031
其中,
Figure BDA0001761823480000032
为QBS(sInner(i))的均值,
Figure BDA0001761823480000033
为QBS(sOuter(i))的均值。
进一步的,步骤2)中,
Figure BDA0001761823480000034
Figure BDA0001761823480000035
的关系为:
Figure BDA0001761823480000036
其中,
Figure BDA0001761823480000037
Figure BDA0001761823480000038
的估计,bB(m)为
Figure BDA0001761823480000039
估计项的系数,NB
Figure BDA00017618234800000310
估计的多项式阶数,m=0,...,NB
步骤3)中,
Figure BDA00017618234800000311
与H的关系为:
Figure BDA00017618234800000312
其中,
Figure BDA00017618234800000313
为H的估计,bH(j)为H估计项的系数,NH为H估计的多项式阶数,j=0,...,NH
步骤4)中,
Figure BDA00017618234800000314
SD(sOuter)、SD(sInner)的关系为:
Figure BDA00017618234800000316
其中,
Figure BDA00017618234800000317
Figure BDA00017618234800000318
的估计,bF(n)为
Figure BDA00017618234800000319
估计项的系数,NF
Figure BDA00017618234800000320
估计的多项式阶数,n=0,...,NF
步骤5)中得出粮仓储粮数量
Figure BDA00017618234800000321
为:
Figure BDA00017618234800000322
进一步的,还包括步骤6),步骤6)包括整理步骤5)中的检测模型,限制
Figure BDA00017618234800000323
项的最大阶数为NB,限制IM(s)项的最大阶数为NF,得出:
其中,aB(m)、aF(n,m)为估计项的系数。
进一步的,整理步骤6)中的检测模型,对第二项按
Figure BDA00017618234800000325
与IM(s)乘积项的阶数和Nn+m的升序排序,Nn+m按IM(s)阶数由低到高排序,得出:
Figure BDA00017618234800000326
其中,Nn+m为检测模型第二项中与IM(s)乘积项的阶数和,取值区间为[1,NB+NF];
Figure BDA0001761823480000041
进一步的,步骤4)中:
Figure BDA0001761823480000042
时,对应的
Figure BDA0001761823480000043
Figure BDA0001761823480000044
时,对应的
Figure BDA0001761823480000045
其中,KSD为预设调整系数。
本发明的一种基于底面两圈压力传感器的粮仓储粮检测系统,包括处理器,所述处理器用于执行实现上述方法的指令。
本发明的有益效果为:
本发明根据粮仓压强分布特点,提出了一种采用基于底面两圈压力传感器输出值标准差的粮仓储粮数量检测模型的粮仓储粮重量检测方法,本方案相比现有技术进一步提高了检测精度,鲁棒性更强,适应多种类型的粮仓结构,同时进一步减少了传感器的使用,降低了系统成本和运维费用。
附图说明
图1是平房仓底面压力传感器布置模型示意图;
图2是筒仓底面压力传感器布置示意图;
图3是不同粮仓外圈压力传感器输出值分布示意图;
图4是不同粮仓内圈压力传感器输出值分布示意图;
图5是选择后内圈压力传感器输出值分布示意图;
图6是实施例1的利用所有样本建模的粮仓储粮重量计算误差示意图;
图7是实施例1的7至12号样本作为测试样本时粮仓储粮重量计算误差示意图;
图8是实施例1的建模样本的粮仓储粮重量计算误差示意图;
图9是实施例1的所有样本的粮仓储粮重量计算误差示意图;
图10是实施例1、2的本发明的粮仓储粮数量检测方法流程图;
图11是实施例2的利用所有样本建模的粮仓储粮重量计算误差示意图;
图12是实施例2的7至12号样本作为测试样本时粮仓储粮重量计算误差示意图;
图13是实施例2的建模样本的粮仓储粮重量计算误差示意图;
图14是实施例2的所有样本的粮仓储粮重量计算误差示意图。
具体实施方式
本发明提供了一种基于底面两圈压力传感器的粮仓储粮检测系统,该系统包括处理器,该处理器用于执行指令实现本发明的基于底面两圈压力传感器的粮仓储粮检测方法,下面结合附图对该方法做进一步详细说明。
实施例1
1.检测理论模型
通过粮堆受力分析可以推出,粮仓储粮数量理论检测模型为:
Figure BDA0001761823480000051
其中,AB为粮堆底面面积,KC为模型参数,Kc=CB/AB,CB为粮堆底面周长,H为粮堆高度,fF为粮堆侧面与粮仓侧面之间的平均摩擦系数,
Figure BDA0001761823480000052
为对底面压强均值,
Figure BDA0001761823480000054
为粮堆侧面压强均值,
Figure BDA0001761823480000055
令:
Figure BDA0001761823480000056
其中,
Figure BDA0001761823480000057
为粮堆侧面单位面积平均摩擦力。则有:
Figure BDA0001761823480000058
由式(3)可以看出,粮堆重量与且仅与粮堆底面压强均值
Figure BDA0001761823480000059
侧面单位面积平均摩擦力
Figure BDA00017618234800000510
以及粮堆高度H有关。因此基于压力传感器的粮仓储粮数量检测的核心在于
Figure BDA00017618234800000511
和H三参数的检测与估计。
2.传感器布置模型
对于通常使用的平房仓和筒仓,在粮仓底面按外圈和内圈两圈布置压力传感器,如图1和图2所示,圆圈为压力传感器布置位置。外圈压力传感器均与侧面墙距离为d,内圈压力传感器均与侧面墙距离为D。可取d>0米且d<1米,取D>2米,一般取D为3米左右。为了保证检测模型的通用性,各粮仓的内外两圈压力传感器与侧面墙距离d和D应相同。两圈压力传感器个数均为6-10,传感器间距应大于1m。
3.传感器选择与标准差计算
由于粮食的有限流动性,内外两圈压力传感器输出值具有显著的波动性和随机性,当内外两圈压力传感器数量足够多时,传感器输出值呈近似正态分布。由于检测系统成本问题,内外两圈压力传感器数量较少。在这种情况下,压力传感器输出值的波动性与随机性势必严重影响外圈压力传感器输出值均值与标准差的准确估算。图3、图4为不同粮仓内外两圈压力传感器输出值依大小排序后的分布情况。从这些测量结果可以看出,在中值附近区域传感器输出值变化与随机性相对较小,而在较小和较大值的区域输出值变化与随机性相对较大。较小和较大值的区域输出值的随机性大势必严重影响内外两圈压力传感器输出值均值与标准差的准确估算。因此,应合理去除较小和较大值的区域输出值点。下面讨论内外两圈压力传感器输出值均值与标准差的计算方法。
3.1内圈压力传感器选择与标准差计算
对于内圈压力传感器输出值序列QB(sInner(i)),i=1,2,...,NI,NI为内圈压力传感器个数。对传感器输出值序列依大小排序,求出中值点。取中值点左边相邻NLM个输出值点,取中值点右边相邻NRM个输出值点,形成中值邻近点的传感器输出值序列QMed(sInner(i))。一般取NLM=2-3,NRM=2-3。求出所选取中值邻近点的传感器输出值序列QMed(sInner(i))的均值
Figure BDA0001761823480000061
Figure BDA0001761823480000062
由内圈压力传感器输出值序列QB(sInner(i))和均值
Figure BDA0001761823480000063
计算内圈压力传感器输出值标准差SDMed(sInner):
Figure BDA0001761823480000064
其中,
Figure BDA0001761823480000065
为内圈中值点两边邻近输出值点均值。
内圈压力传感器输出值点去除规则为:
Figure BDA0001761823480000066
则去除QB(sInner(i))点(6)
其中,TSD为内圈压力传感器点去除阈值系数,可根据粮仓储粮数量检测模型的误差变化而合理调整。
式(6)所示的内圈压力传感器输出值点去除规则,基于中值点两边邻近输出值点均值
Figure BDA0001761823480000067
的标准差SDMed(sInner),以消除较小和较大值的区域输出值随机性的影响,并实现内圈压力传感器输出值点去除门限的自适应调整,内圈压力传感器输出值标准差SDMed(sInner)大,则输出值点去除门限增大,反之亦然。同时引入基于粮仓储粮数量检测模型的误差变化的内圈压力传感器点去除阈值系数TSD,以实现内圈压力传感器输出值点去除门限的合理调整与优化。图5为基于式(6)所示的内圈压力传感器输出值点去除规则,去除较小和较大值的区域部分输出值点后,内圈压力传感器输出值依大小排序后的分布情况。可以看出,合理去除了较小和较大值的区域输出值。
对于内圈压力传感器输出值序列QB(sInner(i)),i=1,2,...,NI,根据式(6)所示的内圈压力传感器输出值点去除规则,去除满足规则的传感器输出值点后,形成去除后的内圈压力传感器输出值序列QBS(sInner(i)),i=1,2,...,NIS,NIS为去除后内圈压力传感器输出值序列数据个数。则内圈压力传感器输出值均值
Figure BDA0001761823480000071
为:
Figure BDA0001761823480000072
式(5)为内圈压力传感器输出值标准差计算公式,式(7)为内圈压力传感器输出值均值计算公式。这种内圈压力传感器输出值均值和标准差计算方法的主要特点在于通过去除较小和较大值的区域输出值点,以减少传感器输出值随机性对内圈压力传感器输出值均值和标准差计算的影响。
3.2外圈压力传感器选择与标准差计算
采用同样的方法,对于外圈压力传感器输出值序列QB(sOuter(i)),i=1,2,...,NO,NO为外圈压力传感器个数。对输出值序列依大小排序,求出中值点。取中值点左边相邻NLM个输出值点,取中值点右边相邻NRM个输出值点,一般取NLM=2-3,NRM=2-3,形成中值邻近点的传感器输出值序列QMed(sOuter(i))。求出所选取传感器输出值序列QMed(sOuter(i))的均值
Figure BDA0001761823480000073
Figure BDA0001761823480000074
由外圈压力传感器输出值序列QB(sOuter(i))和均值
Figure BDA0001761823480000075
计算外圈压力传感器输出值标准差SDMed(sOuter):
Figure BDA0001761823480000076
其中,
Figure BDA0001761823480000077
为外圈中值点两边邻近输出值点均值。
则外圈压力传感器输出值点去除规则为:
Figure BDA0001761823480000081
则去除QB(sOuter(i))点(10)
其中,CTSD为外圈压力传感器点去除阈值系数,可根据粮仓储粮数量检测模型的误差变化而合理调整。此处采用CTSDTSD作为外圈压力传感器输出点去除阈值系数,以便于系数CTSD的选择与优化。
对于外圈压力传感器输出值序列QB(sOuter(i)),i=1,2,...,NO,根据式(10)所示的外圈压力传感器输出值点去除规则,去除满足规则的传感器输出值点后,形成去除后的外圈压力传感器输出值序列QBS(sOuter(i)),i=1,2,...,NOS,NOS为去除后外圈压力传感器输出值序列数据个数。则外圈压力传感器输出值均值
Figure BDA0001761823480000082
为:
Figure BDA0001761823480000083
式(9)为外圈压力传感器输出值标准差计算公式,式(11)为外圈压力传感器输出值均值计算公式。
4.模型项构造
根据图1、图2所示的粮仓底面两圈压力传感器布置模型,对于由式(5)所示的内圈压力传感器输出值标准差计算公式、式(7)所示的内圈压力传感器输出值均值计算公式以及式(9)所示的外圈压力传感器输出值标准差计算公式、式(11)所示的外圈压力传感器输出值均值计算公式,令:
Figure BDA0001761823480000084
其中,
Figure BDA0001761823480000085
为内外两圈压力传感器输出值均值。
对于式(3)所示的粮仓储粮数量理论检测模型,根据粮仓的特性,显然有:
Figure BDA0001761823480000086
Figure BDA0001761823480000087
因此,可以利用
Figure BDA0001761823480000088
构造粮堆底面压强
Figure BDA0001761823480000089
和粮堆高度H的估计。
由实验结果可知,由于侧面单位面积平均摩擦力
Figure BDA00017618234800000810
作用,势必导致内外两圈压力传感器输出值均值、标准差的变化,
Figure BDA00017618234800000811
增大势必使内外两圈压力传感器输出值均值、标准差的差别程度增大。因此内外两圈压力传感器输出值均值的差、以及标准差的大小可以体现
Figure BDA00017618234800000812
的大小,可以利用这些量构造侧面单位面积平均摩擦力
Figure BDA00017618234800000813
的估计。令:
Figure BDA0001761823480000091
其中,IM(s)为基于内外两圈压力传感器输出值标准差均值的粮堆侧面单位面积平均摩擦力
Figure BDA0001761823480000092
的估计项。通过引入了常数项
Figure BDA0001761823480000093
使式(15)中的预设调整系数KSD取值接近于1,便于KSD值选择。显然,式(15)的第一项体现了粮堆侧面单位面积平均摩擦力
Figure BDA0001761823480000094
对内外两圈压力传感器输出值均值的影响,第二项体现了
Figure BDA0001761823480000095
对内外两圈压力传感器输出值标准差的影响。式(15)针对的是稻谷等流动性较低的粮堆,而针对小麦等流动性较强的粮堆,可参考实施例2中的式(34)来得到粮堆侧面单位面积平均摩擦力
Figure BDA0001761823480000096
的估计项。
粮食的流动性又称粮食的流散特性,粮食的流散特性主要包括散落性、自动分级、孔隙度等,这是颗粒状粮食所固有的物理性质。粮食在自然形成粮堆时,向四面流动成为一个圆锥体的性质称为粮食的散落性。粮粒的大小、形状、表面光滑程度、容量、杂质含量都对粮食的散落性有影响。粒大、饱满、圆型粒状、比重大、表面光滑、杂质少的粮食散落性好,反之则散落性差。不同粮食之间,上述外观特征明显不同,因此,具有不同的散落特性。
粮食散落性的好坏通常用静止角表示。静止角是指粮食由高点落下,自然形成圆锥体的斜面与底面水平线之间的夹角。静止角与散落性成反比,即散落性好(相当于散落性大于等于设定标准),静止角小;散落性差(相当于散落性小于设定标准),静止角大。表a中给出了主要粮种静止角的大小。
表a几种常见粮食的静止角大小(单位:度)
Figure BDA0001761823480000097
Figure BDA0001761823480000101
当粮堆静止角小于40度时,采用本实施例的式(15)来计算估计项(即IM(s)),当粮食静止角大于等于40度时,采用实施例2的式(34)来计算估计项(即ID(s)),此处静止角指的是粮食品种对应的最大静止角(即为表a中的静止角止)。
5.检测模型
对于式(3)所示的粮仓储粮数量理论检测模型,采用
Figure BDA0001761823480000102
IM(s)多项式构建和H的估计为:
Figure BDA0001761823480000104
Figure BDA0001761823480000105
Figure BDA0001761823480000106
其中,bB(m)、bH(j)、bF(n)分别为
Figure BDA0001761823480000107
H和
Figure BDA0001761823480000108
估计项的系数,m=0,...,NB,j=0,...,NH,n=0,...,NF,NB、NH、NF分别为
Figure BDA0001761823480000109
H和
Figure BDA00017618234800001010
估计的多项式阶数。将式(16)至式(18)代入式(3),则有:
Figure BDA00017618234800001011
整理式(19),并限制项的最大阶数为NB,限制IM(s)项的最大阶数为NF,可以得出:
Figure BDA00017618234800001013
其中,aB(m)、aF(n,m)为估计项的系数,m=0,...,NB,n=1,...,NF,NB、NF分别为
Figure BDA00017618234800001014
IM(s)项的阶数。显然,式(20)的第一项总项数为NB+1,最大阶数为NB;第二项总项数为(NB+1)NF与IM(s)乘积项的最大阶数和为NB+NF。为了限制式(20)所示检测模型的非线性程度,应控制第二项中乘积项最大阶数和。因此,为了便于模型总项数优化,整理式(20),对第二项按
Figure BDA00017618234800001016
与IM(s)乘积项的阶数和Nn+m的升序排序,Nn+m相同时按IM(s)阶数由低到高排序,则有:
Figure BDA00017618234800001017
其中,Nn+m为检测模型第二项中
Figure BDA00017618234800001018
与IM(s)乘积项的阶数和,取值区间为[1,NB+NF];mb、me取值如下二式所示:
Figure BDA0001761823480000111
Figure BDA0001761823480000112
显然,式(21)第二项的乘积项总数为(NB+1)NF,模型项总数NItem的最大值为NB+(NB+1)NF+1。为了限制式模型的非线性程度,可从模型尾部(第NB+(NB+1)NF+1乘积项)项开始,去除若干乘积项项,以减少模型项总数NItem
式(21)为基于底面两圈压力传感器和
Figure BDA0001761823480000113
IM(s)的多项式粮仓储粮数量检测模型。根据IM(s)项的特点,该模型适用于小麦等流动性较高的粮食粮仓储粮数量检测。
6.建模方法
对于式(21)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000114
IM(s)的多项式粮仓储粮数量检测模型,由式(4)至(23)可以看出,式(21)所示的粮仓储粮数量检测模型建模参数包括项的最大阶数NB、IM(s)项的最大阶数NF、模型项总数NItem、IM(s)项参数KSD、内圈压力传感器点去除阈值系数TSD、外圈压力传感器点去除阈值系数CTSD以及多项式项系数aB(m)和aF(n,m)等建模参数。令:
CR=(NB,NF,NItem,KSD,TSD,CTSD) (24)
其中,CR为参数组。
从式(21)可以看出,若给定参数组CR的取值,则aB(m)和aF(n,m)可利用多元线性回归方法获得。因此参数组CR优化问题是式(21)建模的关键问题。
对于给定的样本集
Figure BDA0001761823480000116
其中,k为样本点号,k=1,2,3,...,M,M为样本个数;
Figure BDA0001761823480000117
为第k个样本点的内圈压力传感器输出值序列,i=1,2,...,NI,NI为内圈压力传感器个数;为第k个样本点的外圈压力传感器输出值序列,j=1,2,...,NO,NO为外圈压力传感器个数;Wk为样本点k的实际进粮重量,
Figure BDA0001761823480000119
为相应的粮仓底面面积。将样本集S分为三个部分,分别作为多元回归样本集SM、参数优化样本集SO与测试样本集ST。通过多元回归样本集SM样本与参数优化样本集SO样本的不同,以避免模型过学习,提高模型的泛化能力。当样本数小时,将样本集S分为两个部分,一部分同时作为多元回归样本集SM和参数优化样本集SO,另外一部分作为测试样本集ST
式(21)所示的基于底面两圈压力传感器和IM(s)的多项式粮仓储粮数量检测模型建模优化可表示为下式所示的百分比误差的最小化问题:
其中,E(CR,aB(m),aF(n,m))为建模优化误差;参数组CR以及aB(m)和aF(n,m)为优化参数;
Figure BDA0001761823480000123
为式(21)所示的样本点k的粮仓储粮数量检测模型的粮堆重量计算值;Wk为样本点k的实际储粮重量。实际优化计算表明,由于参数组CR的特性,使得式(25)成为很强的非凸的最优化问题。下面讨论具体优化方法。
通过分析可以看出,可将式(21)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000124
IM(s)的多项式粮仓储粮数量检测模型建模优化问题分解为两个优化问题。
第一个优化问题是给定参数组CR具体取值的多元线性回归问题,回归误差模型如下式所示:
Figure BDA0001761823480000125
其中,为给定参数组CR的样本点k的粮仓储粮数量检测模型的计算值,粮仓储粮数量检测模型如式(21)所示;ER(CR)为回归百分比误差。
第二个优化问题是基于式(26)多元线性回归的参数组CR中所有参数的优化问题,如下式所示:
Figure BDA0001761823480000127
其中,
Figure BDA0001761823480000128
为给定参数组CR具体取值,通过式(26)的多元线性回归获得aB(m)和aF(n,m)的最优值;
Figure BDA0001761823480000129
为基于给定CR以及
Figure BDA00017618234800001210
的样本点k的粮仓储粮数量检测模型的计算值,粮仓储粮数量检测模型如式(21)所示;E(CR)为CR优化误差。
因此,可以看出,对于式(21)所示的基于底面两圈压力传感器和
Figure BDA00017618234800001211
IM(s)的多项式粮仓储粮数量检测模型建模优化问题,可以通过上述两个优化问题的结合来实现。由于式(27)具有很强的非凸的最优化特性,本研究采用可行域内全局搜索方法实现参数组CR中的参数的优化。下面讨论的具体的优化方法。
设定NB取值范围为[1,MaxNB],NF取值范围为[1,MaxNF],模型项总数NItem选择范围为[1,NB+(NB+1)NF]。KSD取值范围为[0,MaxKSD],TSD取值范围为[MinTSD,MaxTSD],CTSD取值范围为[MinCTSD,MaxCTSD]。一般取MinTSD和MinCTSD为0.4,取MaxNB和MaxNF为6,取MaxKSD和MaxTSD为4,取MaxCTSD为2。对于各参数取值范围,按一定间隔均匀选取若干个取值点,由这些取值点的不同组合,可构建参数组CR的不同取值,并由参数组CR的不同取值构成CR的取值集合
Figure BDA0001761823480000131
对于集合
Figure BDA0001761823480000132
的任一元素
Figure BDA0001761823480000133
其中
Figure BDA0001761823480000134
为集合
Figure BDA0001761823480000135
第i个元素
Figure BDA0001761823480000136
的参数NB、NF、NItem、KSD、TSD、CTSD的相应取值,
Figure BDA0001761823480000137
为集合
Figure BDA0001761823480000138
中元素个数,利用式(26)所示优化模型优化,并使:
其中,
Figure BDA00017618234800001310
为参数组CR在集合所有元素中的最优值;为集合
Figure BDA00017618234800001313
第i个元素
Figure BDA00017618234800001314
相应的aB(m)和aF(n,m)的最优值。
具体的优化算法如算法1所示。
算法1基于底面两圈压力传感器和
Figure BDA00017618234800001315
IM(s)的多项式粮仓储粮数量检测模型建模优化算法
输入:参数组CR的各参数取值点个数与取值;
参数优化样本SO和多元回归样本集SM
输出:参数组CR的各参数以及回归系数aB(m)和aF(n,m)的最优值。
1.由参数组CR的各参数的不同取值组合构造取值集合
2.i=1。
3.若
Figure BDA00017618234800001317
则转5,否则从取值集合
Figure BDA00017618234800001318
中按顺序取出第i组取值组合
Figure BDA00017618234800001319
i=i+1。
4.对于取值组合
Figure BDA00017618234800001320
利用式(26)进行多元线性回归,求出取值组合
Figure BDA00017618234800001321
相应aB(m)和aF(n,m)的最优值
Figure BDA00017618234800001322
并由式(27)求出取值组合
Figure BDA00017618234800001323
相应的优化误差
Figure BDA00017618234800001324
保存取值组合
Figure BDA00017618234800001325
以及相应的
Figure BDA00017618234800001326
Figure BDA00017618234800001327
转3。
5.若
Figure BDA00017618234800001328
则输出
Figure BDA00017618234800001329
以及相应的最优值并退出。
上述利用多元回归样本集SM、参数优化样本集SO进行建模的方法,将有助于降低式(21)所示模型的多项式最大阶数和模型项总数,有助于实现模型的结构风险最小化,提高模型的泛化能力。
计算机根据对压力传感器的检测结果及粮仓底面积的相关参数的采集,利用式(21)的模型,能够很容易的计算出对应粮仓的储粮数量。
7.检测实例与结果分析
7.1检测实例1
实验所采用的平房仓长9m,宽4.2m,面积为37.8m2,CB/AB=0.698。粮仓均属于小型粮仓,CB/AB相对较大。根据图1所示的压力传感器布置模型,压力传感器分2圈布置,内圈6个,外圈16个,共22个压力传感器。小麦粮堆高度约6米,进粮时每1米取一次数据,重复5次实验共获得30个样本。
对于式(21)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000141
IM(s)的多项式粮仓储粮数量检测模型,将全部30个样本作为建模样本。优化后的建模参数如表1所示,获得的参数如表2和3所示。粮仓储粮重量计算误差如图6所示,最大百分比误差为1.956E-5%。
表1优化后的建模参数
Figure BDA0001761823480000142
表2模型系数aB(m)
Figure BDA0001761823480000143
表3模型系数aF(n,m)
Figure BDA0001761823480000144
Figure BDA0001761823480000151
表3(续)模型系数aF(n,m)
Figure BDA0001761823480000152
对于式(21)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000153
IM(s)的多项式粮仓储粮数量检测模型,以实验2的7至12号样本作为测试样本,利用实验3的13至18号样本作为参数优化样本,其余18个样本作为建模样本。优化后的建模参数如表4所示,获得的参数如表5和6所示。粮仓储粮重量计算误差如图7所示,最大测试百分比误差为2.29%。由于建模样本过少,使得最大测试误差较大,如果增大建模样本数量,则可进一步减少预测误差。
表4优化后的建模参数
Figure BDA0001761823480000154
表5模型系数aB(m)
Figure BDA0001761823480000155
表6模型系数aF(n,m)
Figure BDA0001761823480000156
7.2检测实例2
对于山东齐河粮库、武汉粮库、广东新安粮库的3个小麦平房仓,储粮重量分别为2220.253吨、4441吨和3236吨。从检测数据中选取351个样本。取240个样本同时作为多元回归样本集和参数优化样本集,其它作为测试样本集。对于式(21)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000162
IM(s)的多项式粮仓储粮数量检测模型,优化后的建模参数如表7所示,获得的参数如表8和9所示。建模样本的粮仓储粮重量计算误差如图8所示,所有样本的粮仓储粮重量计算误差如图9所示。从这些结果中可以看出,建模样本和测试样本的粮仓储粮重量计算误差均小于0.131%。
表7优化后的建模参数
Figure BDA0001761823480000163
表8模型系数aB(m)
Figure BDA0001761823480000164
表9模型系数aF(n,m)
Figure BDA0001761823480000165
表9(续)模型系数aF(n,m)
Figure BDA0001761823480000166
Figure BDA0001761823480000171
本发明所提出的基于底面两圈压力传感器输出值标准差的粮仓储粮数量检测模型与粮仓重量检测方法可按图10所示的实施方式实施,具体步骤实施如下:
(1)系统配置
选定具体压力传感器,并配置相应的数据采集、数据传输等系统。
(2)底面压力传感器安装
平房仓传感器布置如图1所示,筒仓如图2所示,底面压力传感器按外圈和内圈两圈布置,外圈压力传感器均与侧面墙距离为d>0且d<1米,内圈压力传感器均与侧面墙距离D>2米。两圈压力传感器个数均为6-10,传感器间距应不小于1m。
(3)系统标定与模型建模
对于给定的传感器、粮食种类以及仓型,如果系统尚未有标定,则在多于6个粮仓中布置压力传感器,进粮至满仓,压力传感器输出值稳定后,采集各仓的压力传感器输出值,形成样本集
Figure BDA0001761823480000172
其中,k为样本点号,k=1,2,3,...,M,M为样本个数;
Figure BDA0001761823480000173
为第k个样本点的内圈压力传感器输出值序列,i=1,2,...,NI,NI为内圈压力传感器个数;
Figure BDA0001761823480000174
为第k个样本点的外圈压力传感器输出值序列,j=1,2,...,NO,NO为外圈压力传感器个数;Wk为样本点k的实际进粮重量,
Figure BDA0001761823480000175
为相应的粮仓底面面积。
将样本集S分为三个部分,分别作为多元回归样本集SM、参数优化样本集SO与测试样本集ST。通过多元回归样本集SM样本与参数优化样本集SO样本的不同,以避免模型过学习,提高模型的泛化能力。当样本数较少时,将样本集S分为两个部分,一部分同时作为多元回归样本集SM和参数优化样本集SO,另外部分作为测试样本集ST
设定NB取值范围为[1,MaxNB],NF取值范围为[1,MaxNF],模型项总数NItem选择范围为[1,NB+(NB+1)NF]。KSD取值范围为[0,MaxKSD],TSD取值范围为[MinTSD,MaxTSD],CTSD取值范围为[MinCTSD,MaxCTSD]。一般取MinTSD和MinCTSD为0.4,取MaxNB和MaxNF为6,取MaxKSD和MaxTSD为4,取MaxCTSD为2。对于各参数取值范围,按一定间隔均匀选取若干个取值点,由这些取值点的不同组合,可构建参数组CR的不同取值,并由参数组CR的不同取值构成CR的取值集合
Figure BDA0001761823480000181
按算法1所示的优化方法求出式(21)所示的粮仓储粮数量检测模型的所有参数。
算法1基于底面两圈压力传感器和IM(s)的多项式粮仓储粮数量检测模型建模优化算法
输入:参数组CR的各参数取值点个数与取值;
参数优化样本SO和多元回归样本集SM
输出:参数组CR的各参数以及回归系数aB(m)和aF(n,m)的最优值。
1.由参数组CR的各参数的不同取值组合构造取值集合
Figure BDA0001761823480000183
2.i=1。
3.若
Figure BDA0001761823480000184
则转5,否则从取值集合
Figure BDA0001761823480000185
中按顺序取出第i组取值组合
Figure BDA0001761823480000186
i=i+1。
4.对于取值组合
Figure BDA0001761823480000187
利用式(26)进行多元线性回归,求出取值组合相应aB(m)和aF(n,m)的最优值
Figure BDA0001761823480000189
并由式(27)求出取值组合
Figure BDA00017618234800001810
相应的优化误差
Figure BDA00017618234800001811
保存取值组合
Figure BDA00017618234800001812
以及相应的
Figure BDA00017618234800001813
Figure BDA00017618234800001814
转3。
5.若
Figure BDA00017618234800001815
则输出
Figure BDA00017618234800001816
以及相应的最优值
Figure BDA00017618234800001817
并退出。
(4)实仓重量检测
如果系统已标定,检测底面压力传感器输出值并利用式(21)所示模型进行粮仓储粮数量检测。
实施例2
1.检测理论模型
通过粮堆受力分析可以推出,粮仓储粮数量理论检测模型为:
Figure BDA00017618234800001818
其中,AB为粮堆底面面积,KC为模型参数,Kc=CB/AB,CB为粮堆底面周长,H为粮堆高度,fF为粮堆侧面与粮仓侧面之间的平均摩擦系数,
Figure BDA00017618234800001819
为对底面压强均值,
Figure BDA00017618234800001820
Figure BDA00017618234800001821
为粮堆侧面压强均值,
Figure BDA0001761823480000191
令:
Figure BDA0001761823480000192
其中,
Figure BDA0001761823480000193
为粮堆侧面单位面积平均摩擦力。则有:
Figure BDA0001761823480000194
由式(30)可以看出,粮堆重量与且仅与粮堆底面压强均值侧面单位面积平均摩擦力
Figure BDA0001761823480000196
以及粮堆高度H有关。因此基于压力传感器的粮仓储粮数量检测的核心在于和H三参数的检测与估计。
2.传感器布置模型
对于通常使用的平房仓和筒仓,在粮仓底面按外圈和内圈两圈布置压力传感器,如图1和图2所示,圆圈为压力传感器布置位置,外圈压力传感器均与侧面墙距离为d,内圈压力传感器均与侧面墙距离为D。可取d>0米且d<1米,取D>2米,一般取D为3米左右。为了保证检测模型的通用性,各粮仓的内外两圈压力传感器与侧面墙距离d和D应相同。两圈压力传感器个数均为6-10,传感器间距应大于1m。
3.模型项构造
对于图1、图2所示的粮仓底面两圈压力传感器布置模型,假设外圈压力传感器输出值均值为
Figure BDA0001761823480000198
外圈压力传感器输出值标准差为SD(sOuter),内圈压力传感器输出值均值为
Figure BDA0001761823480000199
内圈压力传感器输出值标准差为SD(sInner)。令:
Figure BDA00017618234800001910
其中,
Figure BDA00017618234800001911
为内外两圈压力传感器输出值均值。对于式(30)所示的粮仓储粮数量理论检测模型,根据粮仓的特性,显然有:
Figure BDA00017618234800001912
Figure BDA00017618234800001913
因此,可以利用
Figure BDA00017618234800001914
构造粮堆底面压强
Figure BDA00017618234800001915
和粮堆高度H的估计。
由实验结果可知,由于侧面单位面积平均摩擦力
Figure BDA00017618234800001916
作用,势必导致内外两圈压力传感器输出值均值、标准差的变化,
Figure BDA00017618234800001917
增大势必使内外两圈压力传感器输出值均值、标准差的差别程度增大。因此内外两圈压力传感器输出值均值的差、标准差的大小可以体现
Figure BDA0001761823480000201
的大小,可以利用这些量构造侧面单位面积平均摩擦力
Figure BDA0001761823480000202
的估计项IM(s),为了与实施例1相区别,本实施例中,估计项用ID(s)表示,令:
其中,ID(s)为基于内外两圈压力传感器输出值标准差之差的粮堆侧面单位面积平均摩擦力的估计项。通过引入了常数项
Figure BDA0001761823480000205
使式(34)中的预设调整系数KSD取值接近于1,便于KSD值选择。显然,式(34)的第一项体现了粮堆侧面单位面积平均摩擦力
Figure BDA0001761823480000206
对内外两圈压力传感器输出值均值的影响,第二项体现了
Figure BDA0001761823480000207
对内外两圈压力传感器输出值标准差的影响。
实际建模结果表明,对于流动性较低的稻谷等粮堆,粮堆侧面压强
Figure BDA0001761823480000208
相对较小,各圈标准差与粮堆重量的线性相关性高,宜采用式(34)所示的ID(s)构造
Figure BDA0001761823480000209
的估计。而针对稻谷等流动性较高的粮堆,可参考实施例1的式(15)来构建。
4.检测模型
对于式(30)所示的粮仓储粮数量理论检测模型,采用
Figure BDA00017618234800002010
ID(s)多项式构建
Figure BDA00017618234800002011
和H的估计为:
Figure BDA00017618234800002012
其中,bB(m)、bH(j)、bF(n)分别为H和估计项的系数,m=0,...,NB,j=0,...,NH,n=0,...,NF,NB、NH、NF分别为
Figure BDA00017618234800002017
H和
Figure BDA00017618234800002018
估计的多项式阶数。将式(35)至式(37)代入式(30),则有:
Figure BDA00017618234800002019
整理式(30),并限制项的最大阶数为NB,限制ID(s)项的最大阶数为NF,可以得出:
Figure BDA00017618234800002021
其中,aB(m)、aF(n,m)为估计项的系数,m=0,...,NB,n=1,...,NF,NB、NF分别为ID(s)项的阶数。显然,式(39)的第一项总项数为NB+1,最大阶数为NB;第二项总项数为(NB+1)NF与ID(s)乘积项的最大阶数和为NB+NF。为了限制式(39)所示检测模型的非线性程度,应控制第二项中乘积项最大阶数和。因此,为了便于模型总项数优化,整理式(39),对第二项按
Figure BDA0001761823480000211
与ID(s)乘积项的阶数和Nn+m的升序排序,Nn+m相同时按ID(s)阶数由低到高排序,则有
Figure BDA0001761823480000212
其中,Nn+m为检测模型第二项中
Figure BDA0001761823480000213
与ID(s)乘积项的阶数和,取值区间为[1,NB+NF];mb、me取值如下二式所示:
Figure BDA0001761823480000214
Figure BDA0001761823480000215
显然,式(39)第二项的乘积项总数为(NB+1)NF,模型项总数NItem的最大值为NB+(NB+1)NF+1。为了限制式模型的非线性程度,可从模型尾部(第NB+(NB+1)NF+1乘积项)项开始,去除若干乘积项项,以减少模型项总数NItem
式(40)为基于底面两圈压力传感器和
Figure BDA0001761823480000216
ID(s)的多项式粮仓储粮数量检测模型。根据ID(s)项的特点,该模型适用于稻谷等流动性较低的粮食粮仓储粮数量检测。
5.建模方法
对于给定的样本集
Figure BDA0001761823480000217
其中,k为样本点号,k=1,2,3,...,M,M为样本个数;
Figure BDA0001761823480000218
为第k个样本点的内圈压力传感器输出值序列,i=1,2,...,NI,NI为内圈压力传感器个数;为第k个样本点的外圈压力传感器输出值序列,j=1,2,...,NO,NO为外圈压力传感器个数;Wk为样本点k的实际进粮重量,
Figure BDA00017618234800002110
为相应的粮仓底面面积。将样本集S分为三个部分,分别作为多元回归样本集SM、参数优化样本集SO与测试样本集ST。通过多元回归样本集SM样本与参数优化样本集SO样本的不同,以避免模型过学习,提高模型的泛化能力。当样本数小时,将样本集S分为两个部分,一部分同时作为多元回归样本集SM和参数优化样本集SO,另外一部分作为测试样本集ST
对于式(31)、式(34)和式(40),任意选定一组
Figure BDA00017618234800002111
ID(s)多项式的最大阶数(NB,NF),则可利用多元回归样本集SM和多元回归方法确定相应的aB(m)和aF(n,m)。利用所建立的回归模型和参数优化样本集SO,依据下式所示的百分比误差模型计算参数优化样本集SO和多元回归样本集SM的预测误差E(NB,NF):
Figure BDA00017618234800002112
其中,
Figure BDA00017618234800002113
为样本点k的粮堆重量预测值。设定NB选择范围为[1,MaxNB],NF选择范围为[1,MaxNF],在本发明研究中,一般取MaxNB和MaxNF为4-10。若:
Figure BDA0001761823480000221
Figure BDA0001761823480000222
Figure BDA0001761823480000223
ID(s)项最佳最大阶数。
6.检测实例与结果分析
6.1检测实例1
实验所采用的平房仓长9m,宽4.2m,面积为37.8m2,CB/AB=0.698。粮仓均属于小型粮仓,CB/AB相对较大。根据图1所示的压力传感器布置模型,压力传感器分2圈布置,内圈6个,外圈16个,共22个压力传感器。稻谷粮堆高度约6米,进粮时每1米取一次数据,重复5次实验共获得30个样本。
对于式(40)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000224
ID(s)的多项式粮仓储粮数量检测模型,将全部30个样本作为建模样本。优化后的建模参数如表10所示,获得的参数如表11和12所示。粮仓储粮重量计算误差如图11所示,最大百分比误差为1.58E-6%。
表10最佳最大阶数
Figure BDA0001761823480000225
Figure BDA0001761823480000226
Figure BDA0001761823480000227
表11模型系数aB(m)
Figure BDA0001761823480000228
表12模型系数aF(n,m)
Figure BDA0001761823480000229
表12(续)模型系数aF(n,m)
Figure BDA0001761823480000232
对于式(40)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000233
ID(s)的多项式粮仓储粮数量检测模型,以实验2的7至12号样本作为测试样本,利用实验3的13至18号样本作为参数优化样本集,其余18个样本作为建模样本。优化后的建模参数如表13所示,获得的参数如表14和15所示。粮仓储粮重量计算误差如图12所示,最大测试百分比误差为1.76%。由于建模样本过少,使得最大测试误差较大,如果增大建模样本数量,则可进一步减少预测误差。
表13最佳最大阶数
Figure BDA0001761823480000234
Figure BDA0001761823480000235
Figure BDA0001761823480000236
表14模型系数aB(m)
Figure BDA0001761823480000237
表15模型系数aF(n,m)
Figure BDA0001761823480000238
6.2检测实例2
对于通州粮库的4个稻谷粮仓和洪泽的2个稻谷粮仓,储粮重量分别为6450吨、4420吨、3215吨、64500吨、2455.6吨和2099.9吨。从长时间检测数据中选取样本1231个。选取922个作为多元回归样本集和参数优化样本集,其它作为测试样本集。对于式(40)所示的基于底面两圈压力传感器和
Figure BDA0001761823480000242
ID(s)的多项式粮仓储粮数量检测模型,优化后的建模参数如表16所示,获得的参数如表17和18所示。建模样本的粮仓储粮重量计算误差如图13所示,所有样本的粮仓储粮重量计算误差如图14所示。从这些结果中可以看出,建模样本和测试样本的粮仓储粮重量计算误差均小于0.087%。
表16最佳最大阶数
Figure BDA0001761823480000243
Figure BDA0001761823480000244
Figure BDA0001761823480000245
表17模型系数aB(m)
表18模型系数aF(n,m)
Figure BDA0001761823480000247
18(续)模型系数aF(n,m)
Figure BDA0001761823480000251
本发明所提出的基于底面两圈压力传感器输出值标准差的粮仓储粮数量检测模型与粮仓重量检测方法也可按图10所示的实施方式实施,具体步骤实施如下:
(1)系统配置
选定具体压力传感器,并配置相应的数据采集、数据传输等系统。
(2)底面压力传感器安装
平房仓传感器布置如图1所示,筒仓如图2所示,底面压力传感器按外圈和内圈两圈布置,外圈压力传感器均与侧面墙距离为d>0且d<1米,内圈压力传感器均与侧面墙距离D>2米。两圈压力传感器个数均为6-10,传感器间距应不小于1m。
(3)系统标定与模型建模
对于给定的传感器、粮食种类以及仓型,如果系统尚未有标定,则在多于6个粮仓中布置压力传感器,进粮至满仓,压力传感器输出值稳定后,采集各仓的压力传感器输出值,形成样本集
Figure BDA0001761823480000252
其中,k为样本点号,k=1,2,3,...,M,M为样本个数;
Figure BDA0001761823480000253
为第k个样本点的内圈压力传感器输出值序列,i=1,2,...,NI,NI为内圈压力传感器个数;
Figure BDA0001761823480000254
为第k个样本点的外圈压力传感器输出值序列,j=1,2,...,NO,NO为外圈压力传感器个数;Wk为样本点k的实际进粮重量,为相应的粮仓底面面积。将样本集S分为三个部分,分别作为多元回归样本集SM、参数优化样本集SO与测试样本集ST。根据多元回归样本集SM,利用回归方法确定式(40)中的回归参数aB(m)和aF(n,m),并根据所建立的回归模型和参数优化样本集SO,利用式(43)、式(44)优化
Figure BDA0001761823480000256
ID(s)多项式的最大阶数NB和NF,从而构造出式(40)所示的粮仓储粮数量检测模型。
(4)实仓重量检测
如果系统已标定,检测底面压力传感器输出并利用式(40)所示模型进行粮仓储粮数量检测。

Claims (10)

1.一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,包括如下步骤:
1)检测粮仓底面设置的内外两圈压力传感器的输出值;
2)利用两圈压力传感器输出值均值
Figure FDA0001761823470000011
估计粮堆底面压强均值
Figure FDA0001761823470000012
构建
Figure FDA0001761823470000014
的关系;
3)利用两圈压力传感器输出值均值
Figure FDA0001761823470000015
估计粮堆高度H,构建
Figure FDA0001761823470000016
与H的关系;
4)利用估计项IM(s)估计粮堆侧面单位面积平均摩擦力
Figure FDA0001761823470000017
构建外圈压力传感器输出值均值
Figure FDA0001761823470000018
内圈压力传感器输出值均值
Figure FDA0001761823470000019
外圈压力传感器输出值标准差SD(sOuter)、内圈压力传感器输出值标准差SD(sInner)与IM(s)的关系:
其中,KX为设定的系数;当对应粮堆的散落性小于设定标准时,对应的
Figure FDA00017618234700000111
当对应粮堆的散落性大于等于设定标准时,对应的
Figure FDA00017618234700000112
5)将步骤2)、3)、4)得到的关系代入粮仓储粮数量理论检测模型
Figure FDA00017618234700000113
得出粮仓储粮数量
Figure FDA00017618234700000114
Figure FDA00017618234700000115
SD(sOuter)、SD(sInner)关系的检测模型,进而根据步骤1)检测的两圈压力传感器的输出值得出粮仓储粮数量其中,Kc=CB/AB,AB为粮堆底面面积,CB为粮堆底面周长。
2.根据权利要求1所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,步骤1)中,还对压力传感器的输出值进行筛选,筛选方法为:仅保留与该圈压力传感器输出值的平均值的差在设定范围内的输出值;所述压力传感器输出值的平均值为传感器输出值的中值及其相邻设定数量的输出值的平均值。
3.根据权利要求2所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,若内圈压力传感器输出值满足则去除该传感器输出值,得到去除后的内圈压力传感器输出值序列QBS(sInner(i));其中,QB(sInner(i))为第i个内圈压力传感器输出值,
Figure FDA00017618234700000118
为内圈压力传感器输出值中值及相邻设定数量的输出值的均值,SDMed(sInner)为内圈压力传感器输出值标准差,TSD为内圈压力传感器点去除阈值系数。
4.根据权利要求3所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,若外圈压力传感器输出值满足
Figure FDA0001761823470000021
则去除该传感器输出值,得到去除后的外圈压力传感器输出值序列QBS(sOuter(i));其中,QB(sOuter(i))为第i个外圈压力传感器输出值,
Figure FDA0001761823470000022
为外圈压力传感器输出值中值及相邻设定数量的输出值的均值,SDMed(sOuter)为外圈压力传感器输出值标准差,CTSD为外圈压力传感器点去除阈值系数。
5.根据权利要求4所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,两圈压力传感器输出值均值
Figure FDA0001761823470000023
的计算方法为:
Figure FDA0001761823470000024
其中,
Figure FDA0001761823470000025
为QBS(sInner(i))的均值,
Figure FDA0001761823470000026
为QBS(sOuter(i))的均值。
6.根据权利要求5所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,步骤2)中,
Figure FDA0001761823470000027
Figure FDA0001761823470000028
的关系为:
Figure FDA0001761823470000029
其中,
Figure FDA00017618234700000211
的估计,bB(m)为
Figure FDA00017618234700000212
估计项的系数,NB
Figure FDA00017618234700000213
估计的多项式阶数,m=0,...,NB
步骤3)中,
Figure FDA00017618234700000214
与H的关系为:
Figure FDA00017618234700000215
其中,为H的估计,bH(j)为H估计项的系数,NH为H估计的多项式阶数,j=0,...,NH
步骤4)中,
Figure FDA00017618234700000218
SD(sOuter)、SD(sInner)的关系为:
Figure FDA00017618234700000219
其中,
Figure FDA00017618234700000221
的估计,bF(n)为
Figure FDA00017618234700000222
估计项的系数,NF
Figure FDA00017618234700000223
估计的多项式阶数,n=0,...,NF
步骤5)中得出粮仓储粮数量为:
Figure FDA00017618234700000225
7.根据权利要求6所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,还包括步骤6),步骤6)包括整理步骤5)中的检测模型,限制
Figure FDA0001761823470000031
项的最大阶数为NB,限制IM(s)项的最大阶数为NF,得出:
Figure FDA0001761823470000032
其中,aB(m)、aF(n,m)为估计项的系数。
8.根据权利要求7所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,整理步骤6)中的检测模型,对第二项按
Figure FDA0001761823470000033
与IM(s)乘积项的阶数和Nn+m的升序排序,Nn+m按IM(s)阶数由低到高排序,得出:
Figure FDA0001761823470000034
其中,Nn+m为检测模型第二项中
Figure FDA0001761823470000035
与IM(s)乘积项的阶数和,取值区间为[1,NB+NF];
Figure FDA0001761823470000036
9.根据权利要求1所述的一种基于底面两圈压力传感器的粮仓储粮检测方法,其特征在于,步骤4)中:
时,对应的
Figure FDA0001761823470000038
Figure FDA0001761823470000039
时,对应的
Figure FDA00017618234700000310
其中,KSD为预设调整系数。
10.一种基于底面两圈压力传感器的粮仓储粮检测系统,其特征在于,包括处理器,所述处理器用于执行实现如权利要求1~9任一项所述方法的指令。
CN201810910929.6A 2018-08-10 2018-08-10 基于底面两圈标准差多项式模型的粮仓检测方法及系统 Active CN110823340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810910929.6A CN110823340B (zh) 2018-08-10 2018-08-10 基于底面两圈标准差多项式模型的粮仓检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810910929.6A CN110823340B (zh) 2018-08-10 2018-08-10 基于底面两圈标准差多项式模型的粮仓检测方法及系统

Publications (2)

Publication Number Publication Date
CN110823340A true CN110823340A (zh) 2020-02-21
CN110823340B CN110823340B (zh) 2021-04-09

Family

ID=69541457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810910929.6A Active CN110823340B (zh) 2018-08-10 2018-08-10 基于底面两圈标准差多项式模型的粮仓检测方法及系统

Country Status (1)

Country Link
CN (1) CN110823340B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693182A (zh) * 2020-06-16 2020-09-22 河南工业大学 基于底面两圈压强对数模型的粮仓储量检测方法和装置
CN111695266A (zh) * 2020-06-16 2020-09-22 河南工业大学 基于底面压强偏态统计量的粮仓储量检测方法及装置
CN111721448A (zh) * 2020-06-16 2020-09-29 河南工业大学 基于底面压强统计量与储量方程的粮仓检测方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2118986U (zh) * 1992-01-08 1992-10-14 赤峰粮食机械厂 粮食储藏检测传感器
JPH07239182A (ja) * 1994-02-28 1995-09-12 Iseki & Co Ltd 穀粒乾燥機の張込穀粒量検出装置
CN102706417A (zh) * 2012-05-14 2012-10-03 河南工业大学 平房仓浅圆仓储粮数量检测方法
CN104296847A (zh) * 2014-04-03 2015-01-21 河南工业大学 一种粮仓、储粮重量检测系统、方法及传感器布置方法
CN104330137A (zh) * 2014-08-14 2015-02-04 河南工业大学 基于检测点压强值序列的粮仓储粮数量检测方法
CN104729618A (zh) * 2015-01-27 2015-06-24 新疆维吾尔自治区粮油科学研究所 粮仓粮食传感装置、粮仓储粮数量的测量装置和测量方法
CN105352571A (zh) * 2015-11-11 2016-02-24 河南工业大学 一种基于指数关系估计的粮仓重量检测方法及装置
CN105403294A (zh) * 2015-11-11 2016-03-16 河南工业大学 基于多项式展开的粮仓储粮重量检测方法及其装置
CN105432262A (zh) * 2015-12-07 2016-03-30 湖北叶威(集团)智能科技有限公司 自然低温粮仓及其储粮方法
CN106017625A (zh) * 2015-08-25 2016-10-12 张雪 粮仓储粮数量的检测方法及压力传感器
CN107036687A (zh) * 2017-03-08 2017-08-11 湖北叶威(集团)智能科技有限公司 基于视觉的储粮数量监测方法及装置
CN107843321A (zh) * 2017-10-18 2018-03-27 河南工业大学 基于三维力传感器的粮仓储粮数量检测方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2118986U (zh) * 1992-01-08 1992-10-14 赤峰粮食机械厂 粮食储藏检测传感器
JPH07239182A (ja) * 1994-02-28 1995-09-12 Iseki & Co Ltd 穀粒乾燥機の張込穀粒量検出装置
CN102706417A (zh) * 2012-05-14 2012-10-03 河南工业大学 平房仓浅圆仓储粮数量检测方法
CN104296847A (zh) * 2014-04-03 2015-01-21 河南工业大学 一种粮仓、储粮重量检测系统、方法及传感器布置方法
CN104330137A (zh) * 2014-08-14 2015-02-04 河南工业大学 基于检测点压强值序列的粮仓储粮数量检测方法
CN104729618A (zh) * 2015-01-27 2015-06-24 新疆维吾尔自治区粮油科学研究所 粮仓粮食传感装置、粮仓储粮数量的测量装置和测量方法
CN106017625A (zh) * 2015-08-25 2016-10-12 张雪 粮仓储粮数量的检测方法及压力传感器
CN105352571A (zh) * 2015-11-11 2016-02-24 河南工业大学 一种基于指数关系估计的粮仓重量检测方法及装置
CN105403294A (zh) * 2015-11-11 2016-03-16 河南工业大学 基于多项式展开的粮仓储粮重量检测方法及其装置
CN105432262A (zh) * 2015-12-07 2016-03-30 湖北叶威(集团)智能科技有限公司 自然低温粮仓及其储粮方法
CN107036687A (zh) * 2017-03-08 2017-08-11 湖北叶威(集团)智能科技有限公司 基于视觉的储粮数量监测方法及装置
CN107843321A (zh) * 2017-10-18 2018-03-27 河南工业大学 基于三维力传感器的粮仓储粮数量检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHANGDEXIAN: ""Method to Detect Granary Storage Weight Based on the Janssen Model"", 《GRAIN&OIL SCIENCE AND TECHNOLOGY》 *
张德贤等: ""基于压力传感器的粮仓储粮数量在线检测方法"", 《中国粮油学报 》 *
张德贤等: ""粮仓储粮数量在线检测模型"", 《自动化学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693182A (zh) * 2020-06-16 2020-09-22 河南工业大学 基于底面两圈压强对数模型的粮仓储量检测方法和装置
CN111695266A (zh) * 2020-06-16 2020-09-22 河南工业大学 基于底面压强偏态统计量的粮仓储量检测方法及装置
CN111721448A (zh) * 2020-06-16 2020-09-29 河南工业大学 基于底面压强统计量与储量方程的粮仓检测方法及装置
CN111721448B (zh) * 2020-06-16 2021-08-27 河南工业大学 基于底面压强统计量与储量方程的粮仓检测方法及装置

Also Published As

Publication number Publication date
CN110823340B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN110823340B (zh) 基于底面两圈标准差多项式模型的粮仓检测方法及系统
CN104331591B (zh) 基于支持向量回归的粮仓储粮数量检测方法
CN101907481B (zh) 基于压力传感器的粮仓储粮数量检测方法
CN105403294B (zh) 基于多项式展开的粮仓储粮重量检测方法及其装置
CN105424148B (zh) 基于多项式的支持向量回归粮仓储粮重量检测方法及装置
CN105424147B (zh) 基于粮堆高度与底面压强关系的粮仓重量检测方法及装置
CN104330137A (zh) 基于检测点压强值序列的粮仓储粮数量检测方法
CN104296847A (zh) 一种粮仓、储粮重量检测系统、方法及传感器布置方法
CN105387919B (zh) 一种基于Janssen模型的支持向量回归粮仓重量检测方法及装置
CN104330138A (zh) 基于结构自适应检测模型的粮仓储粮数量检测方法
CN110823338B (zh) 基于底面单圈标准差对数模型的粮仓检测方法及系统
CN110823348B (zh) 基于底面两圈标准差svm模型的粮仓检测方法及系统
CN105352571B (zh) 一种基于指数关系估计的粮仓重量检测方法及装置
CN110823335B (zh) 基于底面单圈标准差多项式模型的粮仓检测方法及系统
CN108519171B (zh) 一种仓储谷物粮情的判定方法
CN110823347B (zh) 基于底侧面两圈标准差多项式模型的粮仓检测方法及系统
CN110823334B (zh) 一种粮仓储粮检测方法及系统
CN104296845B (zh) 基于最佳底面压强测量点的粮仓储粮重量检测方法与装置
CN110823346B (zh) 基于底面单圈标准差指数模型的粮仓检测方法及系统
CN110823342B (zh) 基于侧面单圈标准差多项式模型的粮仓检测方法及系统
CN110823344B (zh) 基于底面两圈标准差svm对数模型的粮仓检测方法及系统
CN110823345B (zh) 基于底面两圈标准差svm指数模型的粮仓检测方法及系统
CN110704512B (zh) 一种基于历史粮情数据的粮仓通风时段判断方法
CN110823341B (zh) 基于侧面两圈标准差多项式模型的粮仓检测方法及系统
CN111721448B (zh) 基于底面压强统计量与储量方程的粮仓检测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant