CN110811609A - Intelligent epileptic spike detection method based on fusion of adaptive template matching and machine learning algorithm - Google Patents
Intelligent epileptic spike detection method based on fusion of adaptive template matching and machine learning algorithm Download PDFInfo
- Publication number
- CN110811609A CN110811609A CN201911033704.8A CN201911033704A CN110811609A CN 110811609 A CN110811609 A CN 110811609A CN 201911033704 A CN201911033704 A CN 201911033704A CN 110811609 A CN110811609 A CN 110811609A
- Authority
- CN
- China
- Prior art keywords
- spike
- eeg
- spikes
- template matching
- machine learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 60
- 238000010801 machine learning Methods 0.000 title claims abstract description 28
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 25
- 230000004927 fusion Effects 0.000 title claims abstract description 18
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 16
- 230000001037 epileptic effect Effects 0.000 title claims abstract description 5
- 206010015037 epilepsy Diseases 0.000 claims abstract description 37
- 238000007637 random forest analysis Methods 0.000 claims abstract description 21
- 239000013598 vector Substances 0.000 claims abstract description 17
- 238000007781 pre-processing Methods 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 25
- 238000012549 training Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 10
- 238000003064 k means clustering Methods 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 4
- 238000003066 decision tree Methods 0.000 description 11
- 238000005070 sampling Methods 0.000 description 6
- 230000001020 rhythmical effect Effects 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 208000014644 Brain disease Diseases 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000013138 pruning Methods 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005978 brain dysfunction Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Psychiatry (AREA)
- Animal Behavior & Ethology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Psychology (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明提供了一种基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法包括:(1)脑电信号(EEG)采集:选取实验对象,使用脑电采集设备采集癫痫患者的脑电数据,建立实验数据库;(2)数据预处理:对采集到的原始EEG数据进行带通滤波得到标准EEG信号;(3)进行自适应模板匹配棘波检测:(4)基于机器学习的棘波检测方法:首先将脑电信号分割成1s长的脑电片段,然后提取每个脑电片段中的时域和频域特征,构建棘波特征向量;使用特征向量训练随机森林分类模型,得到基于机器学习的棘波检测结果。(5)检测结果融合:将步骤S3和步骤S4的检测方法融合,如果同时被S3和S4检测为棘波,则将其视为癫痫棘波。
The present invention provides an intelligent detection method for epilepsy spike waves based on the fusion of adaptive template matching and machine learning algorithm. (2) data preprocessing: band-pass filtering the collected raw EEG data to obtain standard EEG signals; (3) adaptive template matching spike detection: (4) machine learning-based spike detection Wave detection method: firstly, the EEG signal is divided into 1s-long EEG segments, and then the time domain and frequency domain features in each EEG segment are extracted to construct a spike wave feature vector; using the feature vector to train a random forest classification model, we get Machine learning-based spike detection results. (5) Fusion of detection results: the detection methods of step S3 and step S4 are fused, and if a spike is detected by S3 and S4 at the same time, it is regarded as an epileptic spike.
Description
技术领域technical field
本发明涉及计算机领域,尤其涉及一种基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法。The invention relates to the field of computers, in particular to an intelligent detection method for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithms.
背景技术Background technique
癫痫是大脑神经元突发性异常放电导致短暂的大脑功能障碍的一种慢性疾病。在全球超过六千五百万人患有癫痫病,中国的癫痫患者约有九百万人。癫痫发作具有突发性、反复性和难预测性,并且在任何年龄段都有可能发病。Epilepsy is a chronic disease in which the sudden abnormal discharge of brain neurons leads to transient brain dysfunction. More than 65 million people worldwide suffer from epilepsy, and there are about 9 million people with epilepsy in China. Seizures are sudden, repetitive, and unpredictable, and can occur at any age.
脑电图(Electroencephalogram,EEG)是大脑神经元放电生成的电位信号,反映了大脑生物电的节律活动规律,且包含了大量的生理与疾病信息。在临床医学中,EEG信号处理不仅可以为某些脑疾病提供诊断依据,而且还可以为某些脑疾病提供有效的治疗手段,并在癫痫病的检测方面发挥着重要的作用。Electroencephalogram (EEG) is a potential signal generated by the firing of neurons in the brain, which reflects the rhythmic activity of the brain's bioelectricity and contains a large amount of physiological and disease information. In clinical medicine, EEG signal processing can not only provide the basis for the diagnosis of certain brain diseases, but also provide effective treatment methods for certain brain diseases, and play an important role in the detection of epilepsy.
棘波是典型的癫痫特征波形,通常被记录在脑电图中,相对于背景波形,棘波波形尖锐,具有高幅和瞬变的特性,临床上目前的癫痫检查主要是通过人眼检测识别出脑电信号的棘波。目前临床上癫痫脑电的检查主要是通过人工检测来识别脑电信号中的棘波,但其效率低、主观性强,不能保证结果的准确性,为此棘波自动检测技术近年来受到越来越多的关注。The spike wave is a typical epilepsy characteristic waveform, which is usually recorded in the EEG. Compared with the background waveform, the spike wave waveform is sharp, with high amplitude and transient characteristics. The current clinical epilepsy examination is mainly identified by human eye detection. EEG spikes. At present, the clinical examination of epilepsy EEG is mainly to identify spikes in EEG signals through manual detection, but its efficiency is low and subjectivity is strong, and the accuracy of the results cannot be guaranteed. more and more attention.
识别棘波的方法很多,常用的是小波分析方法对癫痫脑电信号的时频特征进行小波分解,将小波系数作为机器学习分类器和神经网络的输入信号,对棘波进行检测。但由于母小波和棘波特征存在差异,分解重构得到的信号中,背景脑电抑制较差,棘波提取效果不太理想。小波变换模极大值的信号奇异点检测方法是棘波检测的另一种常用方法,但该方法仅能检测正相棘波,检测负相棘波时,产生的假阳性率较高。形态学滤波是研究棘波提取的另一途径,它基于信号的几何特征,利用预先定义的结构元素对信号进行匹配,提取出与其形态相似的信号。具有算法渐变易行、物理意义明确、实用有效等特点,能将含有复杂成分的信号分解成具有不同物理意义的部分,使信号与背景分离并保持其全局或局部的主要形态特征,但单一的开-闭(OC)或闭-开(CO)操作会导致统计偏倚现象,使得检测到的棘波与实际棘波在波形和位置上有一定的偏差。There are many methods to identify spikes. The commonly used method is wavelet analysis to decompose the time-frequency features of epilepsy EEG signals, and use wavelet coefficients as the input signal of machine learning classifiers and neural networks to detect spikes. However, due to the difference in the characteristics of mother wavelet and spike wave, in the signal obtained by decomposition and reconstruction, the background EEG suppression is poor, and the effect of spike wave extraction is not ideal. The signal singularity detection method of wavelet transform mode maximum is another common method for spike detection, but this method can only detect positive-phase spikes, and the false-positive rate is high when detecting negative-phase spikes. Morphological filtering is another way to study spike extraction. Based on the geometric features of the signal, it uses pre-defined structural elements to match the signal to extract the signal with similar morphology. It has the characteristics of easy algorithm, clear physical meaning, practical and effective, etc. It can decompose the signal containing complex components into parts with different physical meanings, separate the signal from the background and maintain its global or local main morphological characteristics, but a single Open-close (OC) or closed-open (CO) operations can lead to statistical bias, which makes the detected spikes and the actual spikes deviate in shape and location.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的问题,本发明提供了一种基于自适应模板匹配与机器学习方法融合的癫痫棘波智能检测的方法,以提高癫痫棘波的识别率。In view of the problems existing in the prior art, the present invention provides a method for intelligent detection of epilepsy spikes based on the fusion of adaptive template matching and machine learning methods, so as to improve the recognition rate of epilepsy spikes.
为实现上述目的,本发明通过以下方案实现:一种基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法,该方法包括以下步骤:In order to achieve the above object, the present invention is realized through the following scheme: a method for intelligent detection of epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithm, the method comprises the following steps:
步骤S1:采集脑电信号,选取实验对象,建立癫痫脑电数据库,对脑电信号每个通道中的棘波进行标记;Step S1: collecting EEG signals, selecting experimental objects, establishing an epilepsy EEG database, and marking the spikes in each channel of the EEG signals;
步骤S2:对脑电信号进行预处理操作,使用5阶巴特沃斯带通滤波器去除高频分量和伪迹。Step S2: Preprocess the EEG signal, and use a 5th-order Butterworth bandpass filter to remove high-frequency components and artifacts.
步骤S3:采用自适应模板匹配的方法进行癫痫棘波检测。Step S3: Detecting epilepsy spikes by using an adaptive template matching method.
步骤S4:采用机器学习方法进行癫痫棘波检测。Step S4: using a machine learning method to detect epilepsy spikes.
步骤S5:将步骤S3和步骤S4的检测结果进行融合,得到最终的棘波检测结果。Step S5: The detection results of Step S3 and Step S4 are fused to obtain the final spike wave detection result.
根据本发明的一实施例,步骤S1中的采样频率为500Hz,并需要采取大量的脑电数据作为实验样本,实验体包括不同性别、不同年龄段的人。According to an embodiment of the present invention, the sampling frequency in step S1 is 500 Hz, and a large amount of EEG data needs to be taken as experimental samples, and the experimental subjects include people of different genders and different ages.
根据本发明的一实施例,在进行自适应模板匹配棘波检测过程中,统计人工标记的棘波的上升沿斜率、下降沿斜率、幅值和持续时间等形态特征,建立通用棘波模板。According to an embodiment of the present invention, in the process of adaptive template matching spike detection, morphological features such as rising edge slope, falling edge slope, amplitude and duration of manually marked spikes are counted to establish a general spike template.
根据本发明的一实施例,在采用自适应模板匹配的方法进行癫痫棘波检测的过程中,包括:According to an embodiment of the present invention, in the process of using the adaptive template matching method to detect epilepsy spike waves, the process includes:
步骤S31,统计脑电数据中棘波波形的上升沿斜率、下降沿斜率、幅值高度和持续时间等特征,定义一个通用模板;Step S31, count the characteristics of the spike waveform such as the rising edge slope, falling edge slope, amplitude height and duration in the EEG data, and define a general template;
步骤S32,设置窗口宽度为300,按时间顺序对脑电信号进行通用模板匹配操作,得到候选棘波信号;Step S32, setting the window width to 300, and performing a general template matching operation on the EEG signals in chronological order to obtain candidate spike signals;
步骤S33,对候选棘波进行K均值聚类,将候选棘波根据波形不同分成不同的类;Step S33, performing K-means clustering on the candidate spikes, and dividing the candidate spikes into different classes according to different waveforms;
步骤S34,统计每个棘波聚类中候选棘波的个数,如果数目小于总候选棘波数的5%,则剔除这个类,最后将剩下的类的质心作为新的模板;Step S34, count the number of candidate spikes in each spike cluster, if the number is less than 5% of the total number of candidate spikes, remove this class, and finally use the centroid of the remaining class as a new template;
步骤S35,分别使用每个类的质心作为模板进行新的模板匹配,并将结果叠加得到棘波检测结果。Step S35 , use the centroid of each class as a template to perform new template matching, and superimpose the results to obtain a spike detection result.
根据本发明的一实施例,在进行K均值聚类中,包括:According to an embodiment of the present invention, performing K-means clustering includes:
步骤S331:在样本集中随机选择k个样本作为初始聚类质心;Step S331: randomly select k samples in the sample set as the initial cluster centroids;
步骤S332:计算每个样本与初始质心之间的距离,根据最小距离重新分类,将每个候选棘波分到与其最近的质心的类中,得到聚类结果。Step S332: Calculate the distance between each sample and the initial centroid, reclassify according to the minimum distance, and classify each candidate spike into the class with the nearest centroid to obtain a clustering result.
步骤S333:将得到的每个类中的样本求均值,作为下一次聚类的质心。Step S333: Average the obtained samples in each class as the centroid of the next clustering.
步骤S334:重复步骤S332和S333,直到质心位置不再发生变化,聚类结束。Step S334: Repeat steps S332 and S333 until the position of the centroid no longer changes, and the clustering ends.
根据本发明的一实施例,在采用机器学习方法进行癫痫棘波检测的过程中,包括:According to an embodiment of the present invention, the process of using the machine learning method to detect epilepsy spikes includes:
步骤S41:将脑电信号分割成1s长的单通道片段,如果这个片段有棘波则标记为1,无棘波则标记为2。分别提取脑电片段的时域特征和频域特征,构建鲁棒性强的癫痫棘波特征向量。Step S41: Divide the EEG signal into single-channel segments with a length of 1 s, and mark this segment as 1 if there is a spike, and as 2 if there is no spike. The time-domain and frequency-domain features of EEG segments are extracted respectively, and a robust epilepsy spike feature vector is constructed.
步骤S42:随机将特征向量分成训练集和测试集,利用训练集内的多个脑电信号样本训练随机森林分类器内的多个决策树,形成随机森林模型。Step S42: Randomly divide the feature vector into a training set and a test set, and use multiple EEG signal samples in the training set to train multiple decision trees in the random forest classifier to form a random forest model.
步骤S43:将测试集中的数据输入到训练好的随机森林模型中,得到基于机器学习方法的棘波检测结果。Step S43: Input the data in the test set into the trained random forest model to obtain the spike detection result based on the machine learning method.
根据本发明的一实施例,在随机森林模型训练中,包括:According to an embodiment of the present invention, the random forest model training includes:
步骤S421:在训练样本集中有放回的抽取与训练集样本数相同的新训练集。Step S421: In the training sample set, there is a new training set with the same number of samples extracted as the training set.
步骤S422:在特征向量集内随机且无回放抽样,形成待选特征向量集;Step S422: randomly and without playback sampling in the feature vector set, to form a feature vector set to be selected;
步骤S423:根据步骤S422中得到的候选特征训练集,计算每个节点的最佳分裂方式并对该节点进行分裂,不进行剪枝,直到每个叶子节点的不纯度达到规定要求,形成一棵决策树。Step S423: According to the candidate feature training set obtained in step S422, calculate the best splitting method of each node and split the node, without pruning, until the impurity of each leaf node reaches the specified requirements, forming a tree. decision tree.
步骤S424:重复步骤S421到S423,直到生成所有的决策树并集成得到随机森林模型。Step S424: Repeat steps S421 to S423 until all decision trees are generated and integrated to obtain a random forest model.
采用本发明的技术方案,通过自适应模板匹配与机器学习相融合进行癫痫棘波检测,从而极大提高了癫痫棘波的识别率。By adopting the technical scheme of the present invention, the detection of epilepsy spikes is carried out through the fusion of adaptive template matching and machine learning, thereby greatly improving the recognition rate of epilepsy spikes.
附图说明Description of drawings
图1为本发明基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法的总流程图。FIG. 1 is a general flow chart of the intelligent detection method of epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithm according to the present invention.
图2为本发明自适应模板匹配棘波检测流程图。FIG. 2 is a flowchart of the adaptive template matching spike detection according to the present invention.
图3为本发明K均值聚类流程图。FIG. 3 is a flow chart of K-means clustering according to the present invention.
图4为本发明机器学习棘波检测流程图。FIG. 4 is a flow chart of the machine learning spike detection according to the present invention.
图5为本发明机器学习棘波检测的随机森林模型训练流程图。FIG. 5 is a flow chart of training a random forest model for machine learning spike detection according to the present invention.
具体实施方式Detailed ways
脑电信号通常包含着很多关于人类疾病的生理信息,尤其在癫痫病的检测方面发挥着重要的作用。脑电信号中包含很多癫痫特征波,棘波是其中的典型波形。故为更好地进行研究,需要对癫痫脑电信号进行棘波检测。现有的棘波方法很难完整准确的确定棘波位置问题,从而大大影响对癫痫疾病的研究。有鉴于此,本实施例提供一种基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法。EEG signals usually contain a lot of physiological information about human diseases, especially playing an important role in the detection of epilepsy. EEG signals contain many epilepsy characteristic waves, among which spike waves are typical waveforms. Therefore, in order to conduct better research, it is necessary to detect spike waves in epilepsy EEG signals. Existing spike wave methods are difficult to completely and accurately determine the location of spike waves, which greatly affects the study of epilepsy. In view of this, this embodiment provides an intelligent detection method for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithm.
为了使本发明的目的、实现方案和创新点更加突出,以下参照附图并结合实施例对本发明做进一步的详细说明。In order to make the purpose, realization scheme and innovation point of the present invention more prominent, the present invention will be further described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
图1是本发明基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法的总流程图,包括:Fig. 1 is the general flow chart of the intelligent detection method of epilepsy spike waves based on the fusion of adaptive template matching and machine learning algorithm of the present invention, including:
步骤S1:脑电信号采集:选取实验对象,使用脑电采集设备采集癫痫患者的脑电数据,建立实验数据库;Step S1: EEG signal acquisition: select experimental objects, use EEG acquisition equipment to collect EEG data of epilepsy patients, and establish an experimental database;
步骤S2:数据预处理:对采集到的原始EEG数据进行巴特沃斯带通滤波得到标准EEG信号;Step S2: data preprocessing: perform Butterworth bandpass filtering on the collected raw EEG data to obtain a standard EEG signal;
步骤S3:自适应模板匹配棘波检测:首先根据癫痫棘波的波形特点定义一个通用模板,进行通用模板匹配,获得候选棘波信号;然后使用K均值算法对候选棘波进行聚类,得到若干个类;统计每个类中候选棘波的数目,如果棘波数目小于总棘波数的5%,则剔除这个类;分别使用筛选后的类中心作为新的模板进行自适应模板匹配,将所有的匹配结果相加得到棘波检测结果。Step S3: Adaptive template matching spike detection: first, define a general template according to the waveform characteristics of epilepsy spikes, perform general template matching, and obtain candidate spike signals; then use the K-means algorithm to cluster the candidate spikes to obtain several Classes; count the number of candidate spikes in each class, if the number of spikes is less than 5% of the total number of spikes, remove this class; use the filtered class center as a new template for adaptive template matching, and all The matching results are added to obtain the spike detection result.
步骤S4:机器学习棘波检测:首先将脑电信号分割成1s长的脑电片段,然后提取每个脑电片段中的时域和频域特征,构建棘波特征向量;使用特征向量训练随机森林分类模型,得到基于机器学习的棘波检测结果。Step S4: Machine learning spike detection: first segment the EEG signal into 1s-long EEG segments, then extract the time-domain and frequency-domain features in each EEG segment to construct a spike-wave feature vector; use the feature vector to train random Forest classification model to obtain spike detection results based on machine learning.
步骤S5:检测结果融合:将S3棘波检测方法和S4棘波检测方法融合,如果同时被S3和S4检测为棘波,则将其视为癫痫棘波。Step S5 : fusion of detection results: the S3 spike detection method and the S4 spike detection method are fused. If a spike is detected by S3 and S4 at the same time, it is regarded as an epileptic spike.
以下结合图1至图5详细介绍本实施例提出的基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法。The intelligent detection method for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithm proposed in this embodiment is described in detail below with reference to FIG. 1 to FIG. 5 .
本实施例提供的基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法始于步骤S1,在该步骤中使用多导脑电图仪采集患者长程监测脑电信号,采样频率为500Hz,电极分布采用国际10-20脑电采集标准,共采集19通道脑电数据,采集大量不同性别,不同年龄的实验体的脑电信号,来获得多个脑电信号样本。经专业医生对多个脑电信号样本进行标记,将脑电信号每个通道中的棘波波形标记出来。The intelligent detection method for epilepsy spike waves based on the fusion of adaptive template matching and machine learning algorithm provided in this embodiment starts from step S1, in which a polyconductive electroencephalograph is used to collect long-range monitoring EEG signals of patients, and the sampling frequency is 500 Hz , The electrode distribution adopts the international 10-20 EEG acquisition standard, a total of 19 channels of EEG data are collected, and a large number of EEG signals of different genders and different ages are collected to obtain multiple EEG signal samples. Professional doctors mark multiple EEG signal samples, and mark the spike waveform in each channel of the EEG signal.
之后执行步骤S2,对脑电进行预处理操作。采用5阶巴特沃斯带通滤波器滤除32Hz以上、0.5Hz以下的频率分量,减少噪声和伪迹的干扰。Then, step S2 is executed to perform preprocessing operation on the EEG. A 5th-order Butterworth band-pass filter is used to filter out frequency components above 32Hz and below 0.5Hz to reduce the interference of noise and artifacts.
步骤S3将经过预处理操作后的脑电信号进行自适应模板匹配得到棘波检测结果。以下将结合图2详细介绍自适应模板匹配棘波检测方法。Step S3 performs adaptive template matching on the pre-processed EEG signal to obtain a spike detection result. The adaptive template matching spike detection method will be described in detail below with reference to FIG. 2 .
首先,对脑电信号中标记出的棘波波形进行统计分析,分别得到所有标记棘波的上升沿斜率、下降沿斜率、峰值和持续时间的平均值作为标准建立一个通用模板(步骤S31)。然后设置窗口宽度为300,按时间顺序对脑电信号进行通用模板匹配操作,得到候选棘波信号(步骤S32)。对候选棘波进行K均值聚类,将候选棘波根据波形不同分成不同的类(步骤S33)。统计每个棘波聚类中候选棘波的个数,如果数目小于总候选棘波数的5%,则剔除这个类,最后将剩下的类的质心作为新的模板(步骤S34)。分别使用每个类的质心作为模板进行新的模板匹配,并将结果叠加得到棘波检测结果(步骤S35)。First, perform statistical analysis on the marked spike waveforms in the EEG signal, and obtain the average value of the rising edge slope, falling edge slope, peak value and duration of all marked spike waves as a standard to establish a general template (step S31 ). Then, the window width is set to 300, and a general template matching operation is performed on the EEG signals in time sequence to obtain candidate spike signals (step S32). K-means clustering is performed on the candidate spikes, and the candidate spikes are divided into different classes according to different waveforms (step S33). The number of candidate spikes in each spike cluster is counted, if the number is less than 5% of the total number of candidate spikes, this class is eliminated, and finally the centroid of the remaining class is used as a new template (step S34). New template matching is performed using the centroid of each class as a template, and the results are superimposed to obtain a spike detection result (step S35).
如图3所示,K均值聚类的过程如下:As shown in Figure 3, the process of K-means clustering is as follows:
在n个候选棘波中随机选择k个样本作为初始聚类质心(步骤S331)。计算每个候选棘波与各初始质心之间的距离,根据最小距离重新分类,将每个候选棘波分到与其最近的质心的类中,得到聚类结果(步骤S332)。对每个聚类中的候选棘波求均值,作为下一次聚类的质心(步骤S333)。重复步骤S332和S333,直到质心位置不再发生变化或聚类次数达到要求,聚类结束,获得聚类结果(步骤S334)。在本实施例中,初始质心的数目k=n,即每个候选棘波都作为一个质心进行聚类,最后得到n个聚类结果。Among the n candidate spikes, k samples are randomly selected as the initial cluster centroids (step S331). Calculate the distance between each candidate spike and each initial centroid, reclassify according to the minimum distance, and classify each candidate spike into the class with the nearest centroid to obtain a clustering result (step S332). The candidate spikes in each cluster are averaged as the centroid of the next cluster (step S333). Steps S332 and S333 are repeated until the position of the centroid no longer changes or the number of clustering times meets the requirement, the clustering ends, and the clustering result is obtained (step S334). In this embodiment, the number of initial centroids is k=n, that is, each candidate spike is used as a centroid for clustering, and finally n clustering results are obtained.
步骤S4采用机器学习的方法对经过预处理后的脑电信号进行棘波提取。以下将结合图3详细介绍机器学习棘波检测方法。Step S4 adopts a machine learning method to extract spike waves from the preprocessed EEG signal. The machine learning spike detection method will be described in detail below with reference to FIG. 3 .
首先将每个通道的脑电信号都分割成1s长的片段,提取每个片段的多个特征参数,其中包括时域特征参数和频域特征参数,构建每个脑电片段对应的特征向量(步骤S41)。然后将特征向量分成训练集和测试集,使用训练集中的数据训练随机森林分类模型(步骤S42)。将测试集中的数据输入到随机森林模型中,经每个决策树进行投票后得到的输出结果即为棘波检测结果,可以检测出在这一片段中是否有棘波(步骤S43)。First, the EEG signal of each channel is divided into 1s-long segments, and multiple feature parameters of each segment are extracted, including time-domain feature parameters and frequency-domain feature parameters, and a feature vector corresponding to each EEG segment is constructed ( Step S41). Then, the feature vector is divided into a training set and a test set, and a random forest classification model is trained using the data in the training set (step S42). The data in the test set is input into the random forest model, and the output result obtained after voting by each decision tree is the spike detection result, which can detect whether there is a spike in this segment (step S43).
其中步骤S41中分割得到的脑电片段记为x(n),n=1,2,…,N,N为脑电片段的长度,在本发明中脑电信号的采样频率为500Hz,因此N=500。在特征提取前通过小波包变换提取节律波,因为棘波频率范围在14Hz以上,因此使用“db6”小波基函数进行信号分解与重构,获得β波和γ波,分别记为x1(n)和x2(n)。The EEG segment obtained by segmentation in step S41 is denoted as x(n), n=1, 2, . . . , N, where N is the length of the EEG segment. =500. Rhythm waves are extracted by wavelet packet transform before feature extraction. Because the frequency range of spike waves is above 14 Hz, the "db6" wavelet basis function is used to decompose and reconstruct the signal to obtain β waves and γ waves, which are denoted as x 1 (n ) and x 2 (n).
所述步骤S41提取的时域特征参数包括原始脑电信号x(n)和两个节律波信号x1(n)和x2(n)的最小值、最大值、平均值、标准差、峰度、偏度和Hjorth参数。其中最小值Min和最大值Max分别为信号幅值的最大值,平均值Mean为脑电信号幅值趋势,公式如下:The time-domain characteristic parameters extracted in the step S41 include the minimum value, maximum value, average value, standard deviation, peak value of the original EEG signal x(n) and the two rhythmic wave signals x 1 (n) and x 2 (n) Degree, Skewness, and Hjorth parameters. The minimum value Min and the maximum value Max are the maximum value of the signal amplitude, respectively, and the average value Mean is the trend of the EEG signal amplitude. The formula is as follows:
标准差SD反映每个采样点的幅值与平均值之间的差异,公式如下:The standard deviation SD reflects the difference between the amplitude of each sampling point and the mean, and the formula is as follows:
其中x(n)为脑电信号,N为x(n)的采样点数,是x(n)中所有采样点幅值的平均值。where x(n) is the EEG signal, and N is the number of sampling points of x(n), which is the average value of the amplitudes of all sampling points in x(n).
峰度Kur代表数据频率分布曲线的峰值水平,公式如下:The kurtosis Kur represents the peak level of the data frequency distribution curve, and the formula is as follows:
偏度Skew表示脑电信号幅值不对称程度的特征,公式如下:Skew represents the characteristics of the degree of asymmetry in the amplitude of the EEG signal, and the formula is as follows:
Hjorth参数包含Hjorth移动性和Hjorth复杂度:The Hjorth parameter contains Hjorth mobility and Hjorth complexity:
Hjorth移动性可由以下公式表示:Hjorth mobility can be expressed by the following formula:
Hjorth复杂度可由以下公式表示:The Hjorth complexity can be expressed by the following formula:
其中dnfn=x(n)-x(n-1)。in dnf n =x(n)-x(n-1).
所述步骤S41提取的频域特征参数包括两个节律波的能量Ei、两个节律波能量与信号总能量比Ri。The frequency domain characteristic parameters extracted in the step S41 include the energy E i of the two rhythmic waves, and the ratio of the energy of the two rhythmic waves to the total signal energy R i .
通过小波包变换提取节律波,使用“db6”小波函数对脑电信号进行五层小波分解,获得β波和γ波,分别记为x1(n)和x2(n)。The rhythm wave is extracted by wavelet packet transform, and the EEG signal is decomposed by five layers of wavelet using the "db6" wavelet function to obtain β wave and γ wave, which are denoted as x 1 (n) and x 2 (n) respectively.
两节律波能量Ei由下面公式得到:The two-rhythm wave energy E i is obtained by the following formula:
信号总能量Eall的公式如下:The formula for the total signal energy E all is as follows:
进而可以计算出节律波的能量比,Ri=Ei/Eall,i=1,2。Furthermore, the energy ratio of the rhythmic wave can be calculated, R i =E i /E all , i=1,2.
所述步骤S42是随机森林模型的训练过程,随机森林分类器包含多个决策树,它的输出类别是由所有树的结果中投票数最多的决定的。通过bootstrap重采样技术,从原训练样本集合M个样本中反复随机选取m个样本,生成新的训练样本集,再由m个个体决策树分类器生成随机森林。随机森林分类器的本质是对决策树算法的改进,将多个决策树合并在一起,每个树的建立依赖于独立随机提取的样本。森林中的每棵树都有相同的分布,分类误差取决于每棵树的分类能力及其相关性。The step S42 is the training process of the random forest model. The random forest classifier includes a plurality of decision trees, and its output category is determined by the result of all the trees with the most votes. Through the bootstrap resampling technology, m samples are randomly selected from the original training sample set M samples repeatedly to generate a new training sample set, and then a random forest is generated by m individual decision tree classifiers. The essence of the random forest classifier is an improvement of the decision tree algorithm, which combines multiple decision trees, and the establishment of each tree relies on independently randomly selected samples. Every tree in the forest has the same distribution, and the classification error depends on the classification ability of each tree and its correlation.
本文将数据集分为训练集和测试集,以下结合图5介绍随机森林模型训练过程:This paper divides the data set into training set and test set. The following describes the training process of the random forest model in conjunction with Figure 5:
步骤S421:首先,从所有的特征向量集中采取M次有放回的抽样,构成待选特征集,待选特征集中的样本数目与原始特征向量集中的样本数相同。Step S421: First, M samples with replacement are taken from all feature vector sets to form a feature set to be selected. The number of samples in the feature set to be selected is the same as the number of samples in the original feature vector set.
步骤S422:其次,从待选特征中随机选取一定数量的特征向量,选取其中的最优特征。Step S422: Second, randomly select a certain number of feature vectors from the features to be selected, and select the optimal feature among them.
步骤S423:根据步骤S422中得到的候选特征训练集,计算每个节点的最佳分裂方式并对该节点进行分裂,不进行剪枝,直到每个叶子节点的不纯度达到规定要求,形成一棵决策树。Step S423: According to the candidate feature training set obtained in step S422, calculate the best splitting method of each node and split the node, without pruning, until the impurity of each leaf node reaches the specified requirements, forming a tree. decision tree.
步骤S424:重复步骤S421到步骤S423,直到所有决策树都停止生长,生成随机森林。Step S424: Repeat steps S421 to S423 until all decision trees stop growing, and generate a random forest.
所述步骤S43是将测试集中的脑电数据输入到随机森林模型中,经过决策树投票选择后能够得到棘波检测结果,确定棘波所在的脑电片段,进而确定棘波所在的脑电通道和时间点。The step S43 is to input the EEG data in the test set into the random forest model, and after voting by the decision tree, the spike wave detection result can be obtained, the EEG segment where the spike wave is located, and then the EEG channel where the spike wave is located can be determined. and time point.
所述步骤S5首先对测试集中的数据进行自适应模板匹配,得到一个棘波检测结果。同时,将测试集输入到随机森林模型中进行分类得到棘波检测结果。然后将两种方法的结果进行融合对比,如果同时被两种方法检测为棘波,则将其视为癫痫棘波。The step S5 first performs adaptive template matching on the data in the test set to obtain a spike detection result. At the same time, the test set is input into the random forest model for classification to obtain spike detection results. Then the results of the two methods are fused and compared, and if they are detected as spikes by both methods at the same time, they are regarded as epileptic spikes.
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911033704.8A CN110811609B (en) | 2019-10-28 | 2019-10-28 | An intelligent detection device for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911033704.8A CN110811609B (en) | 2019-10-28 | 2019-10-28 | An intelligent detection device for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithms |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110811609A true CN110811609A (en) | 2020-02-21 |
CN110811609B CN110811609B (en) | 2022-11-22 |
Family
ID=69551174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911033704.8A Active CN110811609B (en) | 2019-10-28 | 2019-10-28 | An intelligent detection device for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithms |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110811609B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111643076A (en) * | 2020-05-13 | 2020-09-11 | 杭州电子科技大学 | BECT spike intelligent detection method based on multi-channel electroencephalogram signals |
CN112244871A (en) * | 2020-09-25 | 2021-01-22 | 吉林大学 | Amplitude integration electroencephalogram classification recognition system based on machine learning |
CN112270314A (en) * | 2020-12-22 | 2021-01-26 | 苏州国科康成医疗科技有限公司 | Spike wave identification method and device, electronic equipment and computer readable storage medium |
CN112336354A (en) * | 2020-11-06 | 2021-02-09 | 山西三友和智慧信息技术股份有限公司 | Epilepsy monitoring method based on EEG signal |
CN112568868A (en) * | 2020-10-16 | 2021-03-30 | 浙江赛微思生物科技有限公司 | Automatic quantitative analysis method and device for electrophysiological signals of epilepsy model |
CN112641449A (en) * | 2020-12-18 | 2021-04-13 | 浙江大学 | EEG signal-based rapid evaluation method for cranial nerve functional state detection |
CN113197585A (en) * | 2021-04-01 | 2021-08-03 | 燕山大学 | Neuromuscular information interaction model construction and parameter identification optimization method |
CN113397567A (en) * | 2021-05-19 | 2021-09-17 | 中国航天科工集团第二研究院 | Human behavior electroencephalogram signal classification method and system |
CN113876338A (en) * | 2020-06-16 | 2022-01-04 | 晶神医创股份有限公司 | Brain wave signal processing method and system |
CN113974653A (en) * | 2021-11-30 | 2022-01-28 | 杭州妞诺霄云大数据科技有限公司 | Optimized spike detection method and device based on Joyston index, storage medium and terminal |
CN114027854A (en) * | 2021-12-01 | 2022-02-11 | 杭州电子科技大学 | BECT spike detection method based on optimal template matching and morphological feature extraction |
CN114081508A (en) * | 2021-10-28 | 2022-02-25 | 杭州电子科技大学 | A Spike Detection Method Based on Deep Neural Network and CCA Feature Fusion |
CN114145755A (en) * | 2021-12-21 | 2022-03-08 | 上海理工大学 | Household epileptic seizure interactive intelligent monitoring system and method |
CN114532994A (en) * | 2022-03-23 | 2022-05-27 | 电子科技大学 | Automatic detection method for unsupervised electroencephalogram high-frequency oscillation signals based on convolution variational self-encoder |
CN115067877A (en) * | 2022-05-11 | 2022-09-20 | 灵犀云医学科技(北京)有限公司 | Method and apparatus for detecting epileptic seizures |
CN115299946A (en) * | 2022-08-25 | 2022-11-08 | 电子科技大学 | An Adaptive Input Signal Channel Screening Circuit Introducing Detection Result Feedback |
CN115670397A (en) * | 2022-11-17 | 2023-02-03 | 北京中科心研科技有限公司 | PPG artifact identification method and device, storage medium and electronic equipment |
CN116584900A (en) * | 2023-07-17 | 2023-08-15 | 博睿康医疗科技(上海)有限公司 | Signal steady state detection method, detection model and epilepsy detection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101259016A (en) * | 2007-03-06 | 2008-09-10 | 李小俚 | Method for real time automatically detecting epileptic character wave |
CN106137185A (en) * | 2016-06-21 | 2016-11-23 | 华南理工大学 | A kind of epileptic chracter wave detecting method based on structure of transvers plate small echo |
US20180140256A1 (en) * | 2016-11-21 | 2018-05-24 | International Business Machines Corporation | Brain Wave Processing for Diagnosis of a Subject |
CN108962391A (en) * | 2018-05-02 | 2018-12-07 | 杭州电子科技大学 | Epileptics prediction technique early period based on wavelet packet character and random forest |
CN110338786A (en) * | 2019-06-28 | 2019-10-18 | 北京师范大学 | A method, system, device and medium for identifying and classifying epileptiform discharges |
-
2019
- 2019-10-28 CN CN201911033704.8A patent/CN110811609B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101259016A (en) * | 2007-03-06 | 2008-09-10 | 李小俚 | Method for real time automatically detecting epileptic character wave |
CN106137185A (en) * | 2016-06-21 | 2016-11-23 | 华南理工大学 | A kind of epileptic chracter wave detecting method based on structure of transvers plate small echo |
US20180140256A1 (en) * | 2016-11-21 | 2018-05-24 | International Business Machines Corporation | Brain Wave Processing for Diagnosis of a Subject |
CN108962391A (en) * | 2018-05-02 | 2018-12-07 | 杭州电子科技大学 | Epileptics prediction technique early period based on wavelet packet character and random forest |
CN110338786A (en) * | 2019-06-28 | 2019-10-18 | 北京师范大学 | A method, system, device and medium for identifying and classifying epileptiform discharges |
Non-Patent Citations (1)
Title |
---|
DUANPO WU 等: "Automatic Epileptic Seizures Joint Detection Algorithm Based on Improved Multi-Domain Feature of cEEG and Spike Feature of aEEG", 《IEEE ACCESS》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111643076A (en) * | 2020-05-13 | 2020-09-11 | 杭州电子科技大学 | BECT spike intelligent detection method based on multi-channel electroencephalogram signals |
CN113876338A (en) * | 2020-06-16 | 2022-01-04 | 晶神医创股份有限公司 | Brain wave signal processing method and system |
CN112244871A (en) * | 2020-09-25 | 2021-01-22 | 吉林大学 | Amplitude integration electroencephalogram classification recognition system based on machine learning |
CN112568868A (en) * | 2020-10-16 | 2021-03-30 | 浙江赛微思生物科技有限公司 | Automatic quantitative analysis method and device for electrophysiological signals of epilepsy model |
CN112336354A (en) * | 2020-11-06 | 2021-02-09 | 山西三友和智慧信息技术股份有限公司 | Epilepsy monitoring method based on EEG signal |
CN112641449A (en) * | 2020-12-18 | 2021-04-13 | 浙江大学 | EEG signal-based rapid evaluation method for cranial nerve functional state detection |
CN112270314A (en) * | 2020-12-22 | 2021-01-26 | 苏州国科康成医疗科技有限公司 | Spike wave identification method and device, electronic equipment and computer readable storage medium |
CN113197585B (en) * | 2021-04-01 | 2022-02-18 | 燕山大学 | Neuromuscular information interaction model construction and parameter identification optimization method |
CN113197585A (en) * | 2021-04-01 | 2021-08-03 | 燕山大学 | Neuromuscular information interaction model construction and parameter identification optimization method |
CN113397567A (en) * | 2021-05-19 | 2021-09-17 | 中国航天科工集团第二研究院 | Human behavior electroencephalogram signal classification method and system |
CN114081508A (en) * | 2021-10-28 | 2022-02-25 | 杭州电子科技大学 | A Spike Detection Method Based on Deep Neural Network and CCA Feature Fusion |
CN114081508B (en) * | 2021-10-28 | 2024-05-14 | 杭州电子科技大学 | Spike detection method based on fusion of deep neural network and CCA (common cancer cell) characteristics |
CN113974653B (en) * | 2021-11-30 | 2024-03-22 | 杭州妞诺霄云大数据科技有限公司 | Method and device for detecting optimized spike based on about log index, storage medium and terminal |
CN113974653A (en) * | 2021-11-30 | 2022-01-28 | 杭州妞诺霄云大数据科技有限公司 | Optimized spike detection method and device based on Joyston index, storage medium and terminal |
CN114027854A (en) * | 2021-12-01 | 2022-02-11 | 杭州电子科技大学 | BECT spike detection method based on optimal template matching and morphological feature extraction |
CN114145755A (en) * | 2021-12-21 | 2022-03-08 | 上海理工大学 | Household epileptic seizure interactive intelligent monitoring system and method |
CN114145755B (en) * | 2021-12-21 | 2023-09-01 | 上海理工大学 | Household epileptic seizure interactive intelligent monitoring system and method |
CN114532994A (en) * | 2022-03-23 | 2022-05-27 | 电子科技大学 | Automatic detection method for unsupervised electroencephalogram high-frequency oscillation signals based on convolution variational self-encoder |
CN115067877A (en) * | 2022-05-11 | 2022-09-20 | 灵犀云医学科技(北京)有限公司 | Method and apparatus for detecting epileptic seizures |
CN115299946A (en) * | 2022-08-25 | 2022-11-08 | 电子科技大学 | An Adaptive Input Signal Channel Screening Circuit Introducing Detection Result Feedback |
CN115299946B (en) * | 2022-08-25 | 2024-05-28 | 电子科技大学 | An adaptive input signal channel screening circuit introducing detection result feedback |
CN115670397A (en) * | 2022-11-17 | 2023-02-03 | 北京中科心研科技有限公司 | PPG artifact identification method and device, storage medium and electronic equipment |
CN116584900B (en) * | 2023-07-17 | 2023-10-31 | 博睿康医疗科技(上海)有限公司 | Signal steady state detection method, detection model and epilepsy detection device |
CN116584900A (en) * | 2023-07-17 | 2023-08-15 | 博睿康医疗科技(上海)有限公司 | Signal steady state detection method, detection model and epilepsy detection device |
Also Published As
Publication number | Publication date |
---|---|
CN110811609B (en) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110811609B (en) | An intelligent detection device for epilepsy spikes based on the fusion of adaptive template matching and machine learning algorithms | |
CN106709469B (en) | Automatic sleep staging method based on electroencephalogram and myoelectricity multiple characteristics | |
CN107007278A (en) | Sleep mode automatically based on multi-parameter Fusion Features method by stages | |
Dumont et al. | Improving ECG beats delineation with an evolutionary optimization process | |
Kumari et al. | Seizure detection in EEG using time frequency analysis and SVM | |
CN109674468A (en) | It is a kind of singly to lead brain electricity sleep mode automatically method by stages | |
CN107657868A (en) | A kind of teaching tracking accessory system based on brain wave | |
CN109758145B (en) | An automatic sleep staging method based on the causal relationship of EEG signals | |
CN110135285B (en) | Electroencephalogram resting state identity authentication method and device using single-lead equipment | |
CN102499677A (en) | Emotional state identification method based on electroencephalogram nonlinear features | |
CN109363670A (en) | An intelligent detection method for depression based on sleep monitoring | |
Akella et al. | Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder | |
CN112741638A (en) | Medical diagnosis auxiliary system based on EEG signal | |
CN109871831B (en) | Emotion recognition method and system | |
CN108647584B (en) | Cardiac arrhythmia recognition and classification method based on sparse representation and neural network | |
CN108420406A (en) | Method based on pulse wave sleep stage | |
Hasan et al. | Fine-grained emotion recognition from eeg signal using fast fourier transformation and cnn | |
CN111643076A (en) | BECT spike intelligent detection method based on multi-channel electroencephalogram signals | |
CN106923825A (en) | Electroencephalogram relaxation degree identification method and device based on frequency domain and phase space | |
CN107252317A (en) | A kind of Emotion identification method based on EEG signals | |
CN111887811B (en) | Brain abnormal discharge detection method and system based on electroencephalogram signal characteristics | |
Awang et al. | Analysis of EEG signals by eigenvector methods | |
Abdel-Maboud et al. | Comparative study of machine learning techniques based on TQWT for EMG signal classification | |
CN114027854B (en) | BECT spike detection method based on optimal template matching and morphological feature extraction | |
Islam et al. | Classification of electromyography signals using support vector machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |