CN110809702A - Compressor train arrangement - Google Patents

Compressor train arrangement Download PDF

Info

Publication number
CN110809702A
CN110809702A CN201780092757.XA CN201780092757A CN110809702A CN 110809702 A CN110809702 A CN 110809702A CN 201780092757 A CN201780092757 A CN 201780092757A CN 110809702 A CN110809702 A CN 110809702A
Authority
CN
China
Prior art keywords
compressor
gas turbine
shaft
section
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780092757.XA
Other languages
Chinese (zh)
Inventor
斯特凡诺·巴拉科
安东尼奥·佩拉戈蒂
西蒙·阿米迪
斯特凡诺·德西蒙
埃韦尔·法德隆
斯特凡诺·德尔普利亚
安东尼奥·克里斯塔洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuovo Pignone Technologie SRL
Original Assignee
Nuovo Pignone Technologie SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone Technologie SRL filed Critical Nuovo Pignone Technologie SRL
Publication of CN110809702A publication Critical patent/CN110809702A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/005Adaptations for refrigeration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0289Use of different types of prime drivers of at least two refrigerant compressors in a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/22Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Abstract

An LNG refrigerant compressor train (1) is disclosed. The group comprising: a driver section (11) which is drivingly coupled to the compressor section (13) by a shaft line (1). The compressor section comprises at least one refrigerant fluid compressor which is driven in rotation by the driver section (11).

Description

Compressor train arrangement
Technical Field
The present disclosure relates to systems and methods for producing liquefied natural gas (hereinafter also referred to simply as LNG).
Background
In several industrial processes, the combustion of conventional fuels is necessary. Recently, the use of natural gas has increased in order to reduce the environmental impact of traditional liquid or solid fossil fuels, such as gasoline, diesel and carbon. Natural gas represents a cleaner, less polluting source of energy.
While the use of natural gas overcomes some of the disadvantages and shortcomings of conventional fossil fuels, difficulties have been encountered in the storage and transportation of natural gas. For transportation, where no gas pipeline is available, natural gas is conventionally chilled and converted to liquefied natural gas and transported via a carrier (e.g., a liquefied gas tanker). Several thermodynamic cycles have been developed for converting natural gas to liquefied natural gas. The thermodynamic cycle typically includes one or more compressors that process one or more refrigerant fluids. The refrigerant fluid undergoes a thermodynamic transition of the cycle to remove heat from the natural gas until the natural gas is eventually converted to the liquid phase.
LNG compressor trains and associated drives are heavy machines. Improvements in the arrangement and configuration of compressor trains are needed to improve their operability and availability and their overall efficiency.
Disclosure of Invention
Disclosed herein is an LNG refrigerant compressor train that: a driver section drivingly coupled to a compressor section by a shaft line, wherein the compressor section includes at least one refrigerant fluid compressor that is driven to rotate by the driver section. The refrigerant compressor will also be referred to herein as a gas compressor.
The driver segment may include at least one of: an internal combustion engine; a gas turbine engine; an electric motor; a steam turbine; a reciprocating gas engine. If provided, the gas turbine engine may be selected from the group consisting of: 1-shaft gas turbine; 1.5-shaft gas turbine; 2-shaft gas turbine; 3-shaft gas turbine.
The compressor section may include more than one refrigerant compressor drivingly coupled to the driver section and preferably less than five refrigerant compressors. The compressor may comprise a dynamic compressor, such as an axial, radial or hybrid axial-radial compressor, or a positive displacement compressor, such as a reciprocating compressor.
The compressor train may include additional rotary machines. In general, the compressor string may include one or more auxiliary machines driven by the driver section and mechanically coupled to at least one compressor of the compressor section. The auxiliary machine may include one or more of: a generator; an electric or steam booster; an electric or steam starter; electric or steam starter-booster; electric or steam starter-booster-generator. In general, the auxiliary machine may also include another compressor.
Features and embodiments are disclosed below and further recited in the appended claims, which form an integral part of the present description. The foregoing brief description sets forth features of various embodiments of the present invention in order that the detailed description that follows may be better understood and in order that the present contributions to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will be set forth in the claims appended hereto. In this regard, before explaining several embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and/or systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Drawings
A more complete appreciation of the disclosed embodiments of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
FIGS. 1, 2, 3, and 4 show schematic diagrams of a compressor train for a natural gas liquefaction train according to the present disclosure;
FIGS. 5, 6, 7, 8 and 9 show schematic views of a gas turbine engine used as a driver in a gas compressor train according to the present disclosure;
fig. 10, 11, 12, 13, 14, 15, 16 and 17 show schematic views of an electric motor for use as a drive in a gas compressor package according to the present disclosure;
fig. 18, 19, 20 and 21 show the configuration of the mechanical coupling between the compressors in the compressor string according to the present disclosure;
fig. 22, 23, 24, 25, 26, 27, 28, 29 and 30 illustrate alternative compressor layouts for the gas compressor package of the present disclosure;
fig. 31, 32, 33 and 34 show possible combinations of multiple compressor trains for a gas liquefaction system;
fig. 35, 36, 37, 38, 39, 40, and 41 illustrate various LNG systems that may use one or more compressor trains in accordance with the present disclosure;
42A, 42B, 42C, 42D, 42E illustrate a flow chart of a method for generating a compressor rack configuration according to the present disclosure;
fig. 43, 44 and 45 show a compressor train with combined top and bottom thermodynamic cycles.
Detailed Description
The following detailed description of exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Additionally, the drawings are not necessarily drawn to scale. Also, the following detailed description does not limit the invention. Rather, the scope of the invention is defined by the appended claims.
Reference in the specification to "one embodiment" or "an embodiment" or "some embodiments" means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearances of the phrase "in one embodiment" or "in an embodiment" or "in some embodiments" in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
FIG. 1 schematically illustrates a compressor train of a natural gas liquefaction plant for processing one or more refrigerant fluids. The compressor train is indicated by 1. One or more refrigerant conduits, shown schematically at 3, are provided for fluidly coupling the compressor package to a cooling and liquefaction system 5 in which one or more streams of compressed refrigerant fluid are cooled and expanded by exchanging heat with fins to produce chilled refrigerant. This chilled refrigerant is used to remove heat, either directly or indirectly, from the natural gas stream 7 entering the cooling and liquefaction system 5. The natural gas is finally liquefied by one or more cooling steps and leaves the cooling and liquefaction system at 9.
In general, an LNG plant may comprise one or more compressor trains 1. In fig. 1, a compressor installation 1 is shown by way of example. When more than one compressor train is provided, the compressor trains may be the same as each other or different from each other, depending on the liquefaction process used in the cooling and liquefaction system 5, for example.
The compressor string 1 generally comprises a driver section 11 and a driven section. As will be described in more detail below, the driven section may include a gas compressor section 13, which in turn includes at least one refrigerant fluid compressor.
Several configurations and arrangements of the driver section 11 and the compressor drive 13 will be described in more detail later. The mechanical energy generated by one or more drivers disposed in driver section 11 is used to drive one or more compressors in gas compressor section 13. The transmission 15 provides a mechanical coupling between the driver section 11 and the gas compressor section 13. As will be described later, the transmission 15 may comprise a simple mechanical shaft or a more complex mechanical arrangement.
The compressor installation 1 may also comprise one or more aggregates of auxiliary machines. In fig. 1, the first set of auxiliary machines is designated 17 and the second set of auxiliary machines is designated 19. In the exemplary embodiment of fig. 1, a first auxiliary machine aggregate 17 and a second auxiliary machine aggregate 19 are arranged at opposite ends of the compressor unit. More specifically: the first auxiliary machine aggregate 17 is arranged at a first end of the axis 2, and the second auxiliary machine aggregate 19 is arranged at a second end of the axis 2.
In other embodiments, as schematically shown in fig. 2, one or more auxiliary machine aggregates 17, 19 may be arranged along the shaft line 2 between the driver section 11 and the gas compressor section 13. The transmission 15.1 may be arranged between the drive section 11 and the auxiliary machine aggregate 17, 19, and the transmission 15.2 may be arranged between the auxiliary machine aggregate 17, 19 and the compressor section.
Other embodiments, schematically illustrated in fig. 3 and 4, may comprise two auxiliary machine aggregates 17 and 19 arranged as follows:
in fig. 3, the first auxiliary machine aggregate 17 is located at the first end of the shaft line 2 and the second auxiliary machine aggregate 19 is located between the driver section 11 and the gas compressor section 13. Transfer means 15.3, 15.4, 15.5 are arranged between each pair of sequentially arranged mechanical sections and aggregates;
in fig. 4, the first auxiliary machine aggregate 17 is positioned along the shaft line 2 between the driver section 11 and the gas compressor section 13; the second auxiliary machinery aggregate 19 is located at the second end of the shaft line 2, on the side of the first auxiliary machinery aggregate opposite the gas compressor section 13. A transmission 15.6, 15.7, 15.8 is arranged between each pair of sequentially arranged mechanical sections and aggregates.
In some embodiments, the compressor train 1 may not contain an auxiliary machine or an auxiliary machine aggregate. In other embodiments, the auxiliary machine may include other compressors, such as refrigerant compressors.
Each auxiliary machinery complex may in turn comprise one or more machines. The auxiliary machine may be a driven auxiliary machine, e.g. a generator, i.e. a machine which is generally driven by mechanical energy provided by a driven section. In other embodiments, the auxiliary machine may be a drive auxiliary machine, e.g. an electric motor, i.e. generally a machine generating mechanical energy. Exemplary embodiments of the auxiliary machine arrangement will be discussed later in this specification. Combinations of driven auxiliary machines and driving auxiliary machines are also conceivable.
In some embodiments, the auxiliary machine aggregate may include a reversible electric machine capable of operating in a generator mode or in an electric motor mode. In the generator mode, excess energy generated by the drive segments 11 is converted into usable electrical energy and used to drive another load or delivered to the power distribution grid. In the electric motor mode, when the energy produced by the drive section 11 is insufficient, for example if the efficiency of the gas turbine engine used as the drive is reduced due to variable environmental conditions, the auxiliary machine may be used as a booster, providing additional energy to drive the load.
Combining one or more auxiliary machines or machine aggregates on the same shaft line 2 improves the operational flexibility and optionally the operating conditions of the compressor train.
The drive section 11 may include one or more drives. In general, the drive converts energy available from an energy source other than mechanical energy into mechanical energy for driving a rotating load (i.e., one or more compressors) and one or more auxiliary machines or an auxiliary machine aggregate, if present) mechanically coupled to the drive section 11 via the shaft line 2.
In fig. 1, several different drivers are schematically represented in the left cloud. Each driver may be selected from the group consisting of: gas turbine engines (GT), steam or vapor turbines (ST) using organic or non-organic (e.g., water) working fluids such as rankine turbines, Expanders (EX), Electric Motors (EM), reciprocating internal combustion engines such as Gas Engines (GE), or combinations thereof. The steam turbine and expander may be designed to handle any fluid in a vapor or gas state, such as: carbon dioxide, organic fluids such as pentane, cyclopentane, or other fluids suitable for use in organic thermodynamic cycles such as ORC (organic rankine cycle).
When the drive section 11 comprises a gas turbine engine, the gas turbine engine may be a heavy duty gas turbine engine or an aircraft engine retrofit gas turbine engine. Exemplary embodiments of turbine engines adapted to drive compressor trains are described below, with reference to fig. 5, 6, 7, 8, and 9. Each gas turbine engine includes a compressor section. Each compressor section may include one or more air compressors. The air compressor of the gas turbine engine disclosed herein will be referred to simply as the "compressor".
Depending on the configuration, the gas turbine engine may provide up to about 130MW of mechanical energy that may be available on the shaft line 2 to drive one or more rotary driven machines, according to embodiments disclosed herein.
An exemplary heavy duty gas turbine engine 21 is schematically illustrated in FIG. 5 and in the left hand cloud of FIG. 1. Gas turbine engine 21 is a one-shaft gas turbine engine that includes a compressor section 23, a combustor section 25, and a power turbine section 27.
The power turbine section is mechanically coupled to the compressor section by a shaft 29. Air is compressed by the compressor section 23, fuel is mixed with the compressed air, and the air-fuel mixture is ignited in the combustor section 25 to produce hot, compressed combustion gases. This combustion gas is then expanded in the turbine section 21, wherein mechanical energy is generated. Part of the mechanical energy generated by the expanded combustion gases in the power turbine section 27 is partly used to power the compressor section 23 and maintain a continuous delivery of compressed air, and partly becomes available on the shaft line 2 through the shaft 29 to drive the rotation of one or more loads connected to the shaft line 2.
The power turbine section 27 and the compressor section 23 are fluidly and mechanically coupled by a combustor section 25 and a shaft 29, respectively.
The term "one-shaft gas turbine engine" as used herein may be understood as a machine in which the rotating components of the compressor section 23 and the rotating components of the power turbine section 27 are mounted on the same shaft 29 and thus rotate at the same rotational speed. A shaft gas turbine engine, also referred to as a "single shaft gas turbine engine," is labeled "GT 1" in FIG. 1.
In some embodiments, a one-shaft or single-shaft gas turbine engine as shown in FIG. 5 may provide particularly high efficiency if compared to a multi-shaft gas turbine engine. Moreover, this type of gas turbine may be more compact and less expensive relative to other gas turbines.
For example, in some embodiments, the shaft gas turbine engine may be one of the gas turbines listed below:
-model SGT-800 available from Siemens AG, Germany;
-model number Taurus70 mono available from Solar Turbines;
-model number Titan130 mono available from Solar Turbines, California, US;
-model H25 available from Hitachi, Japan;
model GE10-1 available from General Electric, USA;
model NovalT5-1 available from General Electric, USA;
model MS7001 available from General Electric, USA;
model MS5001 available from General Electric, USA.
In some embodiments, the driver section 11 may comprise a multi-shaft gas turbine engine, i.e. a gas turbine engine comprising two or more shafts. The multi-shaft gas turbine engine may be a heavy duty gas turbine engine or an aircraft engine retrofit gas turbine engine.
An exemplary embodiment of a two-shaft gas turbine engine is shown in FIG. 6. The gas turbine engine is designated 31 and may be a heavy duty gas turbine engine or an aircraft engine retrofit gas turbine engine. Gas turbine engine 31 includes a compressor section 33, a combustor section 35, and a turbine section 36. This turbine section may in turn comprise a high pressure turbine 37 and a low pressure turbine 39. The low-pressure turbine 39 is also referred to as a power turbine. The aggregate comprising the compressor section 33, combustor section 35 and high pressure turbine 37 is sometimes collectively referred to as a gas generator because it provides compressed, high temperature combustion gases that expand in the low pressure turbine 39 to produce mechanical energy.
Air is drawn in and compressed by the compressor section 33, fuel is mixed with the compressed air, and the air-fuel mixture is ignited in the combustor section 35 to produce hot, compressed combustion gases. This combustion gas is then expanded sequentially in a high pressure turbine 37 and a low pressure turbine 39 of the turbine section 36. The mechanical energy generated by the high pressure turbine 37 is used to drive the compressor section 33 for rotation via the first shaft 38. The mechanical energy generated by the low pressure turbine 39 is used to drive a load coupled to a shaft line 2 that is mechanically coupled to a second shaft 40 of the gas turbine engine 31.
The high pressure turbine 39 and the compressor section 33 are fluidly and mechanically coupled by a combustor section 35 and a shaft 38, respectively. Low-pressure turbine 39 is fluidly coupled but not mechanically coupled to high-pressure turbine 37, i.e., low-pressure turbine 39 and high-pressure turbine 37 include respective rotors that are supported by separate shafts (i.e., shaft 38 and shaft 40), respectively. The high-pressure turbine 37 and the low-pressure turbine 39 can thus rotate at different rotational speeds.
The gas turbine engine 31 of FIG. 6 is also referred to as a 1.5-shaft gas turbine engine, and is indicated in FIG. 1 by "GT 1.5". A 1.5-shaft gas turbine engine is a machine that includes a first shaft formed by a first shaft, a turbine and a compressor, and a half-shaft formed by a shaft and a turbine but without a corresponding compressor.
The 1.5-shaft gas turbine engine 31 is a compact drive that allows the low pressure turbine 39 to rotate at a different rotational speed than the high pressure turbine 37 and the compressor 33, which form part of the gas generator. Flexibility of operation of the compressor train can thus be obtained to increase the efficiency of the compressor train.
For example, in some embodiments, the 1.5-shaft gas turbine engine may be one of the gas turbines listed below:
-model SGT-400 available from Siemens AG, Germany;
-model SGT-700 available from Siemens AG, Germany;
-model SGT-750 available from Siemens AG, Germany;
-model Mars90 available from Solar Turbines, CA, USA;
model Taurus70 available from Solar Turbines, CA, USA;
-model Mars100 available from Solar Turbines, CA, USA;
model Titan130 available from Solar Turbines, CA, USA;
model Titan250 available from Solar Turbines, CA, USA;
-model H50 available from Hitachi, Japan;
-model H100 available from Hitachi, Japan;
model GE10-2 available from General Electric, USA;
model NovalT5-2 available from General Electric, USA;
model NovalT16 available from General Electric, USA;
model PGT25 available from General Electric, USA;
model LM2500 series, available from General Electric, USA;
model PGT25 series available from General Electric, USA;
model MS5002 series available from General Electric, USA.
FIG. 7 illustrates another embodiment of a gas turbine engine, generally designated 41. The gas turbine engine 41 may be a heavy duty gas turbine engine or an aircraft engine retrofit gas turbine engine. In the exemplary embodiment of FIG. 6, gas turbine engine 41 is a two-spool gas turbine engine that includes a compressor section 43, a combustor section 45, and a turbine section 47. In some embodiments, the compressor section 43 includes a first compressor 49 and a second compressor 51 arranged sequentially.
In the exemplary embodiment of FIG. 7, turbine portion 47 includes a high pressure turbine 53 and a low pressure turbine 55. The high pressure turbine 53 and the low pressure turbine 55 are fluidly coupled to each other such that the combustion gases are sequentially expanded in the high pressure turbine and the low pressure turbine. However, the high-pressure turbine 53 and the low-pressure turbine 55 are mechanically separated from each other, i.e. their rotors are supported on shafts which rotate independently of each other and are arranged coaxially. The two rotors can thus rotate at different rotational speeds.
Air is sucked by the first compressor 49 and compressed by the first compressor 49 and the second compressor 51 in sequence. The compressed air is delivered to the combustor section 45 where fuel is mixed with the compressed air. The air-fuel mixture is ignited in the combustor section 45 to produce hot, compressed combustion gases. This combustion gas is then expanded sequentially in a high pressure turbine 53 and a low pressure turbine 55 of the turbine section 47.
The mechanical energy generated by the high pressure turbine 53 is used to drive the second compressor 51 in rotation through a first shaft 57 that mechanically connects the high pressure turbine 53 to the second compressor 51.
The mechanical energy generated by the low pressure turbine 55 is used to drive the first compressor 49 in rotation through a second shaft 59 which mechanically connects the low pressure turbine 55 to the first compressor 49 and to the shaft line 2. The first shaft 57 is coaxial with the second shaft 59. The mechanical energy generated by the low pressure turbine 55 in excess of the energy required to drive the first compressor 49 in rotation is applied to the shaft line 2, which may be mechanically coupled to the second shaft 59, and may be used to drive a load.
The high pressure turbine 53 is fluidly coupled with the second compressor 51 by the combustor section 45 and mechanically coupled by a first shaft 57. The low pressure turbine 55 is mechanically coupled with the first compressor 49 by a second shaft 59. The low pressure turbine 55 is fluidly coupled but not mechanically coupled to the high pressure turbine 53.
The rotational speed of the shaft line 2 and the low pressure turbine 55 can be adjusted independently of the rotational speed of the high pressure turbine 53 taking into account the variable operating conditions and/or variable environmental conditions of the compressor to increase the efficiency of the compressor train.
The gas turbine engine configured as shown in fig. 7 is also referred to as a "two-shaft gas turbine engine". Such a gas turbine is indicated by "GT 2" in fig. 1. Generally, a two-shaft gas turbine engine includes two concentrically arranged shafts, wherein an inner shaft supports a rotor of a first compressor and a rotor of a first turbine, forming a first shaft, and wherein an outer shaft supports a rotor of a second compressor and a rotor of a second turbine, forming a second shaft. In some embodiments, a two-shaft gas turbine engine as shown in FIG. 7 may provide some advantages over a 1.5-shaft gas turbine engine as shown in FIG. 6. In particular, advantages can be provided by dividing the air compression process into more than one air compressor.
For example, dividing the air compression process among the two air compressors 49, 51 rather than requiring a single compressor 33 to perform all of the air compression may provide advantages in terms of efficiency and ease of control over the air compression process. Fewer working air compressors may be required in a two-shaft configuration as compared to a 1.5-shaft configuration. Enhanced operational flexibility may also be achieved in the two-shaft configuration compared to the 1.5-shaft configuration, and higher compression ratios are possible, which in turn results in higher cycle efficiency and higher power density of the gas turbine engine. Two (or more) sequentially arranged air compressors also provide the possibility to use an intercooler (as described in more detail later) to further increase the efficiency and reduce the burden on the whole compressor section.
For example, in some embodiments, the two-shaft gas turbine engine may be a gas turbine model number LM6000, available from general electric, USA. Other embodiments of the drive section 11 may include a three-shaft gas turbine engine as shown by way of example in FIG. 8 and designated 61. Gas turbine engine 61 includes a compressor section 63, a combustor section 65, and a turbine section 67.
In the exemplary embodiment of fig. 8, the compressor section 63 includes a first compressor or booster compressor 69 and a second compressor 71 arranged in series. The turbine portion 67 includes a high-pressure turbine 73, an intermediate-pressure turbine 75, and a low-pressure turbine 77, which are arranged in series such that the combustion gases are expanded sequentially through the three turbines. The high pressure turbine 73 may be mechanically coupled to the second compressor 71 by a first shaft 79. The intermediate pressure turbine 75 may be mechanically coupled to the first compressor 69 by a second shaft 81 arranged coaxially with and inside the first shaft 79. The low pressure turbine 77 is mechanically coupled to the shaft line 2 by a third shaft 83, but is mechanically separated from the compressor section 63 and from the high pressure turbine 73 and the intermediate pressure turbine 75.
The high pressure turbine 73 is fluidly coupled with the second compressor 71 through the combustor section 65 and is also mechanically coupled through a first shaft 79. The intermediate pressure turbine 75 is mechanically coupled with the first compressor 69 by a second shaft 81. The first and second compressors 69, 71 are fluidly coupled but mechanically independent from each other so that they may rotate at different rotational speeds. The low pressure turbine 77 is fluidly coupled but not mechanically coupled to the intermediate pressure turbine 75, i.e., the rotor of the intermediate pressure turbine 75 and the rotor of the low pressure turbine 77 rotate independently of each other. The three turbines 73, 75, 77 can thus rotate at respective different rotational speeds.
Air is sucked by the first compressor 69 and compressed by the first compressor 69 and the second compressor 71 in sequence. The compressed air is mixed with fuel and the air/fuel mixture is ignited in the combustor section 65 to produce hot, compressed combustion gases. This combustion gas is sequentially expanded in turbines 73, 75, 77. The mechanical energy generated by the high-pressure turbine 73 and the intermediate-pressure turbine 75 is used to drive the second compressor 71 and the first compressor 68, respectively. The mechanical energy generated by the low pressure turbine 77 is used to drive a load coupled to the shaft line 2. The three-shaft gas turbine engine of FIG. 8 is referred to as a "2.5-shaft gas turbine engine" and is labeled "GT 2.5" in FIG. 1. In general, a 2.5-shaft gas turbine engine is a three-shaft gas turbine engine in which a first shaft supports a rotor of a first turbine and a rotor of a first compressor to form a first shaft, and a second shaft supports a rotor of a second turbine and a rotor of a second compressor to form a second shaft. The third shaft rod supports the rotor of the third turbine, thereby forming a half shaft.
In some embodiments, a 2.5-shaft gas turbine engine may have some advantages over a two-shaft gas turbine engine as shown in FIG. 6. Specifically, the 2.5 shaft gas turbine engine provides independent control of the rotational speed of the free power or low pressure turbine 77, which may rotate at a rotational speed and may be adjusted independently of the rotational speeds of the first shaft 79 and the second shaft 81. The 2.5-shaft gas turbine engine can thus combine the advantages of the free power turbine of the 1.5-shaft gas turbine engine (fig. 6) with the advantages of the two-shaft gas turbine engine (fig. 7), i.e. the shaft line rotational speed is independent of the rotational speed of the air compressor and the air compressor process is divided into two independent air compressors.
For example, in some embodiments, the 2.5-shaft gas turbine engine may be one of the gas turbines listed below:
model RB211 available from Rolls-royce (siemens);
model LM9000, available from General Electric, USA;
model LMS100 available from General Electric, USA;
another embodiment of a gas turbine engine for the drive section 11 is shown in fig. 9 and is designated in its entirety by 85. A three-shaft gas turbine is also shown in fig. 1 and is labeled "GT 3". Gas turbine engine 85 is a three-shaft gas turbine engine that includes a compressor section 87, a combustor section 89, and a turbine section 91.
The compressor section 87 includes a first or booster compressor 93, a second compressor 95 and a third compressor 97. The three compressors 93, 95, 97 are sequentially arranged to sequentially compress air at gradually increasing pressure values. Compressed air from the last compressor 97 is delivered to the combustor section 89.
Turbine section 91 includes a high pressure turbine 99, an intermediate pressure turbine 101, and a low pressure turbine, also referred to as power turbine 103. The three turbines 99, 101 and 103 are arranged in series to sequentially expand the combustion gases from the combustor section 89 and generate mechanical energy through the expansion.
High pressure turbine 99 is mechanically coupled to third compressor 97 by first shaft 105 such that the mechanical energy generated by high pressure turbine 99 is used to mechanically drive third compressor 97. The second shaft 107 is arranged coaxially with the first shaft 105 and mechanically connects the intermediate pressure turbine 101 to the second compressor 95, so that the mechanical energy generated by the expansion of the combustion gases in the intermediate pressure turbine 101 is used to drive the second compressor 95 in rotation. The third shaft 109 is arranged coaxially with the first shaft 105 and the second shaft 107 and mechanically connects the low pressure turbine 103 to the first compressor 93 and to said shaft line. The energy generated by the expansion of the combustion gases in the low pressure turbine 103 thus rotates the first compressor 93 and drives the load applied to the shaft line 2 into rotation.
High pressure turbine 99 is fluidly coupled with third compressor 97 via combustor section 89 and mechanically connected via first shaft 105. The intermediate pressure turbine 101 is mechanically coupled with the second compressor 95 by a second shaft 107. The low pressure turbine 103 is mechanically coupled with the first compressor 93 by a third shaft 109. The low pressure turbine 103 is fluidly coupled but not mechanically coupled to the intermediate pressure turbine 101. The three shafts 105, 107, 109 and the associated machines connected thereto may thus rotate at different rotational speeds. The rotational speed of the shaft line 2 can be adjusted independently of the rotational speeds of the high-pressure turbine 99 and the intermediate-pressure turbine 101. Similarly, the rotational speed of the intermediate pressure turbine 101 may be adjusted independently of the rotational speed of the high pressure turbine 99, thus providing enhanced adjustment options to improve the efficiency of the drive, for example, under variable operating conditions of the load and/or taking variable environmental conditions into account.
The turbine configuration of fig. 9 is referred to as a three-shaft gas turbine engine, wherein each shaft includes a shaft, a compressor rotor and a turbine rotor coupled by the shaft.
The three-shaft gas turbine engine may have particular advantages over 2.5-shaft or 2-shaft gas turbine engines as shown in fig. 8 and 7, respectively. Specifically, the three-shaft gas turbine engine allows for exhaust at lower pressures, which reduces the negative impact of the exhaust on overall turbine efficiency.
For example, in some embodiments, the three-axis gas turbine engine may be a gas turbine available from Rolls-royce (siemens) under the designation TRENT 60.
In the exemplary embodiments shown in fig. 5, 7 and 9, the shaft line 2 may be mechanically coupled to either the hot side or the cold side of the gas turbine engine. The term "hot side" as used herein may be understood as the side of the gas turbine engine in which the turbine section is arranged, whereas the term "cold side" as used herein may be understood as the side of the gas turbine engine in which the compressor section is arranged. In some embodiments, as shown for example in fig. 1, the shaft line 2 may extend on both sides of the gas turbine engine, in which case components of the machine may be arranged on a shaft line section 2 extending from a hot side of the gas turbine engine and components of the machine are arranged on a shaft line section 2 extending from a cold side of the gas turbine engine. In some embodiments, the compressor section 13 is disposed on the hot side of the gas turbine engine. In this case, possible refrigerant gas leakage from the compressor section will not contaminate the combustion air drawn in by the air compressor of the gas turbine engine, thereby preventing a possible explosion or fire.
According to some embodiments, as shown by way of example in fig. 7, 8 and 9, the gas turbine engine may include two or more air compressors. In some embodiments, an intercooler may be disposed between sequentially disposed upstream and downstream compressors of the compressor section. In a gas turbine engine comprising more than two sequentially arranged compressors, an intercooler may be arranged between any pair of sequentially arranged upstream-downstream compressors. If desired, more than one intercooler may be provided between consecutively arranged compressors of two or more compressor pairs. An intercooler 110 is shown in the embodiment of fig. 8 by way of example between the first and second compressors 69, 71. However, it should be understood that an intercooler arrangement may also be provided in other gas turbine engine arrangements.
An intercooler may be used to remove heat from air compressed by an upstream compressor, which is then subjected to a second compression step in a downstream compressor. Using an intercooler, a lower final air temperature may be achieved, which increases the overall efficiency of the gas turbine engine cycle. Furthermore, by limiting the final temperature of the compressed air, less working material may be employed, particularly for manufacturing the final compressor stage, which may reduce the overall cost of the compressor section.
The intercooler may comprise an air/air heat exchanger, an air/water heat exchanger or any other heat exchanger in which hot, partially compressed air is cooled by heat exchange with the fins. In some embodiments, the partially compressed air may be cooled by heat exchange with a refrigerant of the LNG loop. This may allow lower temperatures to be reached and/or smaller heat exchange surfaces to be used, thus resulting in a more compact heat exchanger.
Each heat exchanger may comprise a single section or more sections. Different cooling media may be used in each section. For example, air may be cooled in a heat exchanger by exchanging heat with air, water, or other cooling medium.
The multi-shaft gas turbine engine, such as those shown in fig. 6, 7, 8 and 9, may be a heavy duty gas turbine engine, an aero engine modified gas turbine engine, or a hybrid gas turbine engine, for example, including an aero engine modified core section and an additional power turbine, or a low pressure turbine designed according to heavy duty design criteria.
The gas turbine engine may include a control device for adjusting an operating condition of the gas turbine engine. According to an exemplary embodiment, as schematically shown in, for example, fig. 5 and 9, a fuel metering device 112 may be provided to adjust the amount of fuel delivered to the combustor section. It should be understood that similar fuel metering devices may also be provided in other gas turbine engine arrangements disclosed herein. The fuel may be a gaseous fuel, such as methane or a methane-based gas mixture. The gaseous fuel may be taken from natural gas flowing in 7. In other embodiments, the fuel may be a liquid fuel, such as kerosene or distillate n.2. In other embodiments, it is possible to envisage a combustion chamber portion designed to operate alternately with a gaseous fuel and a liquid fuel.
In some embodiments, an adjustable Inlet Guide Vane (IGV) may be provided in the compressor section to adjust the air intake section according to the required operating conditions of the gas turbine engine. The adjustable IGVs are schematically illustrated at 114 in FIGS. 5 and 6 by way of example, it being understood that adjustable IGVs may also be provided in other gas turbine engine arrangements described herein.
In some embodiments, an adjustable nozzle vane (NGV) may be provided at the inlet of one or more turbines in the turbine section of a gas turbine engine. By way of example, a tunable NGV 116 is shown in fig. 6 and 8. Similar NGVs may also be used in conjunction with other embodiments disclosed herein. When more turbines are arranged in sequence, the NGV may be arranged at the inlet of one, some or all of said turbines to increase control flexibility.
The tunable IGVs and the tunable NGVs may be used individually or in combination in the same gas turbine engine.
Tunable IGVs may be used in conjunction with tunable NGVs to provide better flow control flexibility and to better operate low emission combustion systems that combustion sections may have. In some embodiments, only NGVs may be envisaged, although the combination of NGVs and IGVs provides greater flexibility.
NGVs, for example, may be used to provide better tuning of the airflow and thus improve control of low-emission combustion systems (such as so-called dry low-NOx-emission combustion systems) without adversely affecting the overall efficiency of the machine.
It is contemplated that IGVs (even without NGVs) may be used to achieve better anti-surge control of the air compressor of a gas turbine engine.
In some single-shaft or one-shaft gas turbine engines, as schematically shown in fig. 5 for example, the IGV at the inlet of the compressor section may be used to adjust the airflow rate even if the NGV is not provided, whereas a multi-shaft gas turbine engine would require the IGV in combination with the NGV. On the other hand, in some embodiments, it is preferred to use a multi-shaft gas turbine engine, for example, to improve efficiency over an extended range of rotational speeds, for example, when turbine speed is in a range between 50% and 105% of nominal rotational speed.
One, some or all of the compressors of the compressor section may include one or more adjustable stator vanes (VSV), i.e., movable stator vanes, to adjust the operating conditions of the compressor. An adjustable VSV is illustrated in fig. 8 at 118. If more air compressors are provided, as shown for example in fig. 7, 8 or 9, one, some or all of the compressor sections may have one or more sets of VSVs. In some embodiments, VSV and IGV may be used in combination in one, some, or all of the compressors of the compressor section.
VSV can be used especially when a large aerodynamic operating range is desired. In such cases, the VSV may increase the overall efficiency of the compressor section, as the geometry of the several compressor stages may be adapted to the operating conditions of the compressor. In some embodiments, the IGV and VSV may be mechanically coupled to each other such that the same adjustment actuator is used to simultaneously adjust the IGV and VSV. In other embodiments, the IGV and VSV may be at least partially independent of each other, i.e., the VSV of at least one compressor stage may be adjusted by an actuator independent of an actuator adjusting the IGV.
In various embodiments of the gas turbine engines disclosed herein, each air compressor may include one or more compressor stages. The air compressor may be an axial compressor, a centrifugal compressor, or a hybrid centrifugal and axial compressor, or a combination thereof. In some embodiments, one or more axial compressors may be combined with one or more centrifugal compressors. In some embodiments, the at least one axial compressor is arranged upstream of the at least one centrifugal compressor.
In some embodiments, if two or more compressors are arranged in series, the downstream compressor may have a higher number of compressor stages and may therefore provide a higher compression ratio than the upstream compressor. The most downstream turbine can thus provide a higher power rating to the shaft line 2.
In some embodiments, each compressor does not comprise a centrifugal stage or comprises one centrifugal stage and 1 to N axial stages, wherein in some embodiments N may be between 4 and 30, preferably between 4 and 20. The compression ratio of the compressor may be between about 1.5 and about 35, preferably between 1.5 and 30. In some embodiments, the total compression ratio of the air compressor section may be as high as 60.
In general, each stage may comprise a set of circularly arranged rotating vanes acting in conjunction with a diffuser (centrifugal compressor) or with a set of stationary vanes (axial compressor).
The turbine of the turbine section of each gas turbine engine described herein is preferably an axial turbine and may include a variable number of stages. In some embodiments, each turbine may comprise 1 to M stages, where M-10, preferably M-6. Each turbine may be an impulse turbine (also referred to as an impulse turbine) or a reaction turbine. For example for higher rotational speeds, for example between about 6000 and about 12000rpm, preferably an impulse or impulse turbine is used, whereas for lower rotational speeds, for example below 4000rpm, preferably a reaction turbine is used. High speed impulse turbines typically comprise a lower number of stages, for example 1 to 4 stages, preferably 2 to 3 stages. The low speed reaction turbine may have a large number of stages, for example four or more stages.
While in some embodiments an impulse turbine having a lower number of stages and a high rotational speed is used as the low pressure turbine directly coupled to the shaft line, in some embodiments a low speed turbine having a greater number of stages (e.g., 3 or more stages, preferably four or more stages, such as six or more stages) is used as the low pressure power turbine directly coupled to the shaft line 2. In some embodiments, a low speed power turbine may advantageously be used in direct coupling with the shaft line 2, such that a gearbox for reducing the rotational speed may be omitted.
Each turbine stage may include a set of stationary vanes and a set of rotating vanes. However, in some embodiments, the first turbine stage may lack stationary vanes and include only rotating vanes.
Each turbine may be a high speed turbine or a low speed turbine. The term "high speed turbine" as used herein may be understood as a turbine having a rated rotational speed of about 4000rpm or higher, preferably about 5000rpm or higher. The term "low speed turbine" as used herein may be understood as a turbine having a rated rotational speed of about 4000rpm or less. The low speed turbine preferably has a rated rotational speed of between about 3000 and about 3600 rpm.
In embodiments where two adjacent turbines are included in the turbine section and the turbines are fluidly coupled but not mechanically coupled to each other (such as turbines 37 and 39 in fig. 6 or turbines 75, 77 in fig. 8), the two turbines may be co-rotating, i.e., they may both rotate clockwise or both rotate counter-clockwise. In other embodiments, the two sequentially arranged turbines may be counter-rotating, i.e. one turbine may rotate clockwise and the other turbine may rotate counter-clockwise. In this case, one or more rows of stationary vanes in a circular arrangement may be omitted, which results in a more compact arrangement and higher turbine efficiency.
In some embodiments, the combustor section (25, 35, 45, 65, 89) may include a multi-can combustor. In other embodiments, the combustor section may comprise an annular combustor. In some embodiments, the combustor section may comprise a can combustor. Combinations of different combustion chambers are also contemplated.
The combustor section may have a fixed geometry or a variable geometry to adjust the gas flow inside and outside the combustor liner.
Each combustor section may include one or more fuel control valves, for example one to ten fuel control valves, preferably one to five fuel control valves, to adjust the fuel distribution in a plurality of cans, for example a multi-can combustor.
The gas turbine engine may include a radial or axial exhaust gas discharge port at the hot side and an axial or radial air intake port at the cold side. The radial inlet opening and the radial exhaust gas outlet opening are advantageously selected when the shaft line extends on the side of the inlet opening or exhaust gas outlet opening, respectively, and no space is available for arranging the axial inlet opening or exhaust gas outlet opening. In some embodiments, it is preferred to use an axial air inlet and/or an axial exhaust gas outlet, as long as space is available on the cold side or the hot side of the gas turbine engine, respectively.
In general, all multi-shaft gas turbines (like those of fig. 6, 7, 8 and 9) allow for easy starting of the gas turbine engine, since the gas generator is mechanically decoupled from the gas compressor section 13.
Each gas turbine engine may also include a starter or starter motor. The starter may include a smaller drive, such as a hydraulic motor, a combustion engine, an electric motor, an expander, a steam turbine, for example, to initiate rotation of the gas turbine engine. The actuator 120 is shown by way of example in fig. 6.
In some embodiments, the multi-shaft gas turbine engine provides simpler starting by starting the motor, which may have a total power rating of about 1% to 3%, typically 2%, of the total power rating of the gas turbine engine. A one-shaft gas turbine engine may require a larger starter motor, for example, having a power rating of about 15% to 20% of the total power rating of the gas turbine engine.
In some embodiments, an actuator/booster may be provided along the shaft line 2. A starter/booster is a drive machine that is capable of starting a gas turbine engine and is also capable of providing auxiliary mechanical energy to drive a load when the energy produced by the gas turbine engine is insufficient.
In some embodiments, the starter/booster may have a power rating of up to 25 WM. In some embodiments, larger starters/boosters with power ratings, for example, up to 60MW, may be used.
The starter/booster may be an electric motor. In other embodiments, the starter/booster may be a reversible electric machine that can be alternately switched to an electric motor mode or a generator mode, such that the same electric motor can operate as a starter, as a booster, and also as a generator.
In some embodiments, particularly in single-shaft gas turbine engines (such as the single-shaft gas turbine engine shown in FIG. 6), a turning device may be provided to keep the shaft of the gas turbine engine at a slow rotation after the gas turbine engine is shut down. The turning device 122 is schematically shown in fig. 6. Similar rotating devices may also be provided in other gas turbine engine embodiments. The slow turning of the shaft after the gas turbine engine is shut down prevents adverse effects on rotating and stationary components of the gas turbine engine, for example, caused by thermally induced deformation of the curved surface of the shaft.
Especially when the gas turbine engine is installed in a hot place, the gas turbine may comprise a refrigerator for cooling the air at the inlet of the compressor section. In fig. 5, 6, 7, 8 and 9, the refrigerator is schematically shown at 88. The inlet air may be cooled by heat exchange with a cooling fluid. In some embodiments, the cooling fluid may be one of the refrigerant fluids processed by the compressor train to which the gas turbine engine belongs or processed by another compressor train of the same LNG system, or may be a chilled fluid from another process separate from the LNG system. The refrigerator may be omitted if the ambient temperature is sufficiently cold.
Although in fig. 6, 7, 8 and 9 an exemplary embodiment of a gas turbine engine as a drive for the compressor string 1 has been shown and described above, the drive section 11 may comprise different kinds of prime movers for driving said compressor string.
For example, gas turbine engines are particularly advantageous when a portion of the natural gas processed by the LNG system is available for use as fuel for the drive section 11. In some embodiments, for example, where the efficiency of the gas turbine engine is reduced and the mechanical energy generated thereby becomes insufficient to drive the compressor string, the gas turbine engine may be combined with an electric motor that acts as a starter or booster, i.e., provides additional mechanical energy.
In some embodiments, for example, an electric drive (i.e., an electric motor) may be more convenient than a gas turbine engine if electrical energy is available. In fig. 1, the electric motor is labeled "EM". In some embodiments, the electric motor may allow for increased flexibility in speed adjustment, for example, by a variable speed drive. Depending on the operating conditions of the refrigerant compressor, the gas turbine engine or the electric motor may provide a better solution in terms of efficiency, especially at off-design operating conditions.
Variable speed electric motors as prime movers may be particularly advantageous when low rotational speeds and high torques are required under some operating conditions.
In some embodiments, when high flexibility in the rotational speed of the compressor train is desired but no power is available, a combination of gas turbine engines and electric motors may be used, where one or more gas turbine engines drive one or more generators to convert the chemical energy of fossil fuels (such as gas) into electrical energy. This electrical energy is used to drive one or more variable speed electric motors, which in turn drive one or more compressor strings.
Fig. 10, 11, 12, 13, 14, 15, 16 and 17 show an exemplary layout of the driver segments 11 including the respective electric motors 124 and their electrical connections. The electric motor may be powered by an electric distribution network or by a generator, which in turn is driven by a gas turbine.
In some embodiments, each electric motor may have a power rating of about 100MW or less, preferably 75MW or less. In some embodiments, a smaller electric motor, i.e., an electric motor with a lower power rating, may be included in the compressor string to operate as a booster, i.e., to provide additional power to supplement the main drive. This may be beneficial, for example, when the power supplied by the main drive may fluctuate due to, for example, environmental conditions, or when the requested driving force exceeds the rated power of the drive for any reason. Each auxiliary motor may have a power rating of up to about 40MW, preferably about 30MW or less.
The electric motor 124 may be a synchronous motor. In other embodiments, the electric motor 124 may be an asynchronous or induction motor.
In fig. 10, 11 and 12, the electric motor 124 is electrically connected to the power distribution grid G through a variable speed drive system. In the exemplary embodiment of fig. 10, 11, and 19, the variable speed drive system includes a variable frequency drive 129. The variable frequency drive 129 may be a Voltage Source Inverter (VSI) or a Current Source Inverter (CSI), such as a Load Commutated Inverter (LCI). The variable frequency driving device comprises a rectifier, a direct current section or a direct current voltage section and an inverter. The variable frequency drive may be used to modify the frequency of the voltage applied to the electric motor 124 and make it independent of the grid frequency, i.e. the frequency of the power distribution grid G. The variable frequency drive may be used, for example, to start a compressor train providing high torque at low rotational speeds and reducing voltage drops at grid connection points.
Acting on the modulated signal DS applied to the variable frequency drive 129, the rotational speed of the electric motor 124 and thus of the shaft line 2 to which the electric motor 124 is drivingly coupled can be adjusted.
In some embodiments, as shown in fig. 10, the variable frequency drive 129 is electrically coupled to the power distribution grid through a transformer 127. The transformer may have a 3-phase primary winding and a 6-phase secondary winding. In the first case, the electric motor may be a 3-phase electric motor, while in the second case, the electric motor may be a 6-phase electric motor. The 6-phase electric motor may be an LCI synchronous electric motor.
In other embodiments, as shown in fig. 11, the variable frequency drive 129 is coupled directly to the power distribution grid G. In other embodiments, as shown in fig. 12, step-down transformer 127 is disposed between power distribution grid G and variable frequency drive 129, and step-up transformer 128 is disposed between variable frequency drive 129 and electric motor 124. In some embodiments, the step-down transformer 127 may have a 3-phase primary winding and a 6-phase secondary winding. The step-up transformer may have a 6-phase primary winding and a 6-phase secondary winding, and the electric motor 124 may be a 6-phase electric motor. In other embodiments, the step-up transformer may have a 6-phase primary winding and a 3-phase secondary winding, and the electric motor 125 is thus a 3-phase motor.
In some embodiments, a multilevel voltage source type inverter may be provided between the grid and the electric motor to reduce the harmonic content of the voltage.
The variable frequency drive 129 may be used to adjust the rotational speed of the electric motor 124 when the rotational speed of the compressor package needs to be adjusted under steady state conditions, and to set a ramp up of the electric motor during start-up to control the time required to reach a steady state rotational speed and/or to control the voltage drop at the grid connection during start-up of the electric motor 124.
In fig. 13, 14, 15 and 16, the electric motor 124 is electrically coupled to the power distribution grid G by a soft starter 131. The soft-starter 131 comprises a first connection branch 133A and a second connection branch 133B, which can be selectively used to electrically connect the electric motor 124 to the power distribution grid G. A switch 135 selectively connects one of the two branches 133A, 133B to the power distribution grid G.
In some embodiments, as shown in fig. 13, the first branch 133A may include a direct electrical connection. The second branch 133B may include a step-down transformer 137, an AC operator 139 (such as an AC/AC converter or variable frequency drive), and a step-up transformer 141. The AC operator may be any of the variable frequency drives described above, i.e., VSI, CSI, or LCI. In some embodiments, the AC/AC converter may be a voltage converter.
In some embodiments, as shown in fig. 14, the first branch 133A may include a step-down transformer 130, and the second branch 133B may include a step-down transformer 137 and an AC operator 139.
In the embodiment of fig. 13 and 14, the AC operator 139 is a 3-phase electric device. To achieve more efficient power conversion and reduced distortion, in some embodiments, the AC operator 139 may be a six-phase device. Fig. 15 (in which the same or equivalent components as those in fig. 13 and 14 are labeled with the same reference numerals) shows a six-phase AC/AC converter combined with a step-down transformer providing three input phases and six output phases and also combined with a step-up transformer 141 having six input phases and three output phases.
Fig. 16 shows an arrangement in which a 3-phase/6-phase step-down transformer 137 is provided along branch 133B upstream of the 6-phase AC operating device 139. Along branch 133A, a 3-phase/6-phase step-down transformer 138 is provided. The electric motor 124 may be a 6-phase electric motor.
In all the embodiments of fig. 13, 14, 15 and 16, the electric motor 124 is started by connecting the electric motor 124 to the power distribution grid G via the branch 133B. The rotation of electric motor 124 is controlled by the AC operator and is gradually accelerated from zero to the nominal rotational speed. After the nominal rotational speed is reached, the switch 135 will switch the connection from branch 133B to branch 133A and the electric motor 124 will then maintain its nominal speed, which is defined by the number of poles of the electric motor 124 and by the grid frequency. Once the electric motor has reached a steady state condition, no speed adjustment can be made.
In other embodiments not shown, the step-up transformer and step-down transformer may be omitted.
The electric motor 124 may be an induction motor or a synchronous motor.
In the embodiments of fig. 13, 14 and 15 and 16, the AC operator 139 may have a lower power rating than the power rating of the corresponding electric motor 124 because it is used only at start up, while the variable frequency drive 129 of fig. 10, 11 and 12 will have a power rating sufficient to supply the maximum power rating of the electric motor 124.
In fig. 17, a direct start coupling of the electric motor 124 to the power distribution grid G is shown. In this case, a dedicated transformer 143 is arranged between the power distribution grid G and the electric motor 124. The electric motor 124 will be a self-starting motor, such as an induction motor. Once a steady state condition is reached, the electric motor 124 of fig. 17 is caused to rotate at a fixed speed determined by the grid frequency and the number of poles of the electric motor. The rotational speed is typically 3.000rpm when the grid frequency is 50Hz, and 3.600rpm when the grid frequency is 60 Hz. In some embodiments, the speed may be set to 1500rpm or 1800 rpm.
The variable frequency drive of fig. 10, 11 and 12 and the soft starter 131 of fig. 13, 14, 15 and 16 may be used to adjust the ramp up of the electric motor, for example, to control the time required to reach a steady state rotational speed and/or to control the voltage drop at the grid connection during start-up of the electric motor.
In other embodiments, as schematically shown in fig. 1, the driver section 11 may comprise a steam turbine or a steam turbine, where ST schematically represents a steam or steam turbine. As used herein, the term "steam turbine" may be understood as a turbine in which energy is generated by the expansion of a fluid other than steam, the fluid being processed in a substantially closed system in which the fluid undergoes a cyclic thermodynamic transformation to convert thermal energy into mechanical energy. For example, the steam turbine may be a turbine of an ORC (organic rankine cycle) arrangement in which organic fluid is processed.
The steam turbine may have a power rating of 100MW or less, preferably 60MW or less.
In other embodiments, the driver 11 may be an expander, labeled "EX" in FIG. 1, for example, in which compressed CO is processed2Or any other gas expander.
In other embodiments, the drive 11 may be a hydraulic turbine.
In another embodiment, the driver section 11 may comprise a reciprocating internal combustion engine, such as a gas engine or a diesel engine. Such a drive is indicated by "GE" in fig. 1.
In possible alternative configurations, the driver section 11 may comprise a combination of two or more drivers of the same or different kind, e.g. two or more gas turbine engines, or one or more gas turbine engines in combination with one or more electric motors. In other embodiments, the gas turbine engine may be used in conjunction with a steam or steam turbine.
Referring now again to fig. 1, 2, 3 and 4, as mentioned above, one or more auxiliary machine aggregates 17, 19 may be arranged along the shaft line 2.
Each auxiliary machine may be a driven machine, a driving machine or a reversible machine capable of alternately operating in a driving machine mode and in a driven machine mode, for example depending on the operating conditions of the driver section 11 and/or the gas compressor section 13.
The or each auxiliary machine aggregate may comprise one or more machines selected from the group consisting of: a starter motor, a booster motor, a generator, a starter/booster, a starter/generator, a booster/generator, a starter/booster/generator, an expander. In other embodiments, the auxiliary machine may include one or more additional compressors in addition to the compressor of the gas compressor section 13.
As used herein, the term "starter" may be understood as a drive machine configured and controlled to initiate rotation of a prime mover shaft, such as a gas turbine engine. As used herein, the term "power assist" may be understood as a drive machine configured and controlled to provide supplemental mechanical energy to the shaft line 2 when the prime mover of the drive section provides insufficient power to the shaft line 2. As used herein, the term "generator" may be understood as an electrical machine that may convert mechanical energy available from the shaft line 2 into electrical energy. As used herein, the term "booster/generator" may be understood as an auxiliary machine configured and controlled to selectively operate as a booster or as a generator. As used herein, the term "starter/booster" may be understood as an auxiliary machine that is configured and controlled to selectively operate as a starter or as a booster. As used herein, the term "starter/generator" may be understood as an auxiliary machine configured and controlled to selectively operate as a starter or as a generator. Further, as used herein, the term "starter/booster/generator" may be understood as an auxiliary machine configured and controlled to selectively operate as a starter, a generator, or a booster.
In some embodiments, no auxiliary machinery aggregate is provided. In other embodiments, one or more auxiliary machine aggregates may be provided at one or more locations along the axis 2. When the driver segment 11 comprises, for example, a gas turbine engine, the one or more auxiliary machines may be arranged on the cold side of the gas turbine engine, i.e. the side of the gas turbine engine where the compressor segment and the air intake are located, or on the hot side of the gas turbine engine, i.e. the side of the gas turbine engine where the turbine and the exhaust gas discharge are located. The auxiliary machine or machine aggregate may also be arranged in an intermediate position between the driver machine and the driven machine, for example between the gas turbine engine of the driver section 11 and the gas compressor section 13 or between two compressors of the gas compressor section 13.
Exemplary embodiments may include an assist disposed adjacent to the gas compressor section 13. Advantageously, in this way, in the event of a failure of the main drive section 11, the booster can be used to drive the gas compressor section 13 into rotation more efficiently. For example, the booster may be positioned along the shaft line 2 between the driver section 11 and the gas compressor section 13. Especially in configurations where a single-shaft gas turbine engine is envisaged, such as in fig. 5, the booster may be located on the side of the driver section 11 and the gas compressor section 13 may be arranged at the opposite side of said compressor section.
A machine (e.g. an electric machine) adapted to operate in a booster and/or starter and/or generator mode may be arranged on the opposite side of the gas compressor section 13 from the driver section 11, i.e. the gas compressor section 13 may be positioned somewhere along the shaft line 2 between the driver section 11 and the auxiliary machine. In this case, the power from the drive 11 need not flow through the auxiliary machine. However, in order to increase accessibility to the compressor section, it may be preferred in some alternative embodiments to arrange the compressor section at the end of the compressor string 3.
The power aid may comprise an electric motor or a different drive, for example an expander, or a steam turbine, a reciprocating engine (such as a diesel engine or, for example, a reciprocating gas engine).
In some embodiments, the auxiliary machinery aggregate may include an electric starter and an electric booster. In some embodiments, the power assist may be configured as a power assist/generator.
In some embodiments, a single electric machine selectively operating as a starter, booster, or generator may be preferred, as a more compact compressor package may be configured accordingly. In other embodiments, separate electric machines are provided to act as a starter and an assist. The configuration thus obtained is redundant and leads to an increased availability. In some embodiments, a starter may be provided to accelerate the gas turbine engine from zero to a first rotational speed prior to firing the turbine. Once said first rotational speed has been reached, the power aid may take over the function of turbo acceleration, up to e.g. 60% or 70% of the rated turbo speed. The turbine can then be started and accelerated further, thereby powering the shaft line 2 in combination with the booster, until the nominal rotational speed is reached.
In some embodiments, the electric motor may function as a starter or starter/generator, and use separate machines of different power sources (such as a steam turbine or expander (e.g., CO)2Or ORC expander) may be used as an assist.
As shown in fig. 1, 2, 3, 4 and 5, between each pair of sectors or aggregates arranged sequentially along the axis 2 of the shaft, a transmission 15 is provided. According to some embodiments, the transmission 15 may comprise a simple shaft. In some exemplary embodiments, the transmission 15 may include two or more shafts or shaft portions. The successive shaft parts can be coupled to each other by means of respective joints. In some embodiments, rigid joints or flexible joints or a combination of rigid joints and flexible joints may be arranged along the same transmission 15 between two sequentially arranged sections or machine aggregates. For example, each transmission 15 in the schematic of fig. 1 may comprise a simple shaft or a central shaft mechanically coupled to the driven section 11 and the gas compressor section 13 by means of respective joints. Joints, such as flexible joints, particularly useful for accommodating axial or angular misalignment between rotating machines
In some embodiments, clutches may be provided in one, some or all of the transmissions 15 along the shaft line 2. This allows disconnection of one or some of the rotating machines arranged along the shaft line 2.
According to some embodiments, one or more of the transmissions 15 along the shaft line 2 may include a speed manipulation device. As understood, the term "speed steering device" may be understood as any device having at least one driving shaft and at least one transmission shaft, and wherein the rotational speed of said transmission shaft is or may be different from the rotational speed of the driving shaft. Exemplary embodiments of the speed manipulating device may be a gearbox with a fixed gear ratio or a gearbox with a variable gear ratio. The gearbox may comprise an epicyclic gear train, i.e. a gear train in which the axis of one gear rotates about the axis of the other gear. In other embodiments, the gearbox may comprise a simple gear train.
In other embodiments, the speed manipulation device may comprise a variable speed coupling. As used herein, the term "variable speed coupling" may be understood as a coupling in which the ratio between the driving shaft and the transmission shaft may be varied continuously or stepwise. For example, in some embodiments, the variable speed coupling may comprise a voreon variable speed coupling available from Voith turbo gmbh & co. According to other embodiments, the variable speed coupling may comprise a magnetic infinitely variable transmission, a friction or liquid viscous variable transmission.
Thus, in general, the term "speed manipulation device" may include devices that provide a fixed gear ratio between the drive shaft and the transmission shaft as well as devices that provide a variable and adjustable speed gear ratio.
Speed manipulating means and in particular a speed change coupling may be particularly advantageous when different rotational speeds are useful or necessary for different machines arranged along the shaft line 2. For example, the gas compressor section 13 may include two or more compressors that need to operate at different speeds. The first compressor may be directly mechanically coupled to the driver section 11 such that the rotational speed of the driver is substantially the same as the rotational speed of the compressor. The speed manipulation device may be arranged between the first compressor and the second compressor such that the second compressor may be driven at a rotational speed different from a rotational speed of the first compressor. If a variable speed coupling is used, the second compressor can be driven at a variable speed even though the driver and the first compressor rotate at a constant speed.
For example, if the drive is controlled to rotate at a fixed or substantially fixed rotational speed, while the compressor requires a speed change depending on the requirements of the LNG process, a single compressor train in which the gas compressor section 13 comprises a single compressor may also benefit from using a variable speed coupling arranged between the gas compressor section 13 and the drive section 11.
By arranging the speed manipulation device as far away from the driver section 11 as possible when more compressors are provided, the losses caused by the speed manipulation device are reduced, since less power flows through the speed manipulation device.
In some embodiments, a variable speed coupling may be used to control the rotation of one or more driven machines (including the compressor of the gas compressor section 13 and possibly one or more auxiliary machines) without changing the speed of the drive. For example, an adjustable transmission ratio may be used when the drive is an electric motor rotating at a fixed rotational speed set by the frequency of the power distribution grid, or when a drive is used whose efficiency depends strongly on the rotational speed (i.e. the efficiency depends strongly on the rotational speed).
The gas compressor section 13 may include a variable number of compressors. In fig. 18, an embodiment is schematically shown wherein the gas compressor section 13 comprises a single compressor 125.1. According to other embodiments, as shown in fig. 19, the gas compressor section 13 may comprise two compressors 125.1, 125.2. In other embodiments, as shown in fig. 20, three compressors 125.1, 125.2, 125.3 may be arranged in the gas compressor section 13. In fig. 21, a four compressor arrangement comprising four compressors 125.1, 125.2, 125.3, 125.4 is shown. Larger numbers of compressors are not excluded, but may involve rotodynamic difficulties.
Each gas compressor may include axial stages, radial (typically centrifugal) stages, or axial and centrifugal stages in a single common casing. In this case, the compressor is referred to as a hybrid axial-centrifugal compressor. In a preferred embodiment, the hybrid axial-centrifugal compression comprises one or more upstream stages that are axial stages and one or more downstream stages that are radial (centrifugal) stages. This may be beneficial because axial stages are generally capable of handling larger volumetric flows, while centrifugal stages are generally capable of providing more compression capacity relative to axial compressor stages.
In some embodiments, described in detail later below
Figure BDA0002345406460000331
A mixed axial-radial compressor may be used in a propane/mixed refrigerant LNG system to compress the mixed refrigerant.
Unless otherwise indicated, the terms upstream and downstream as used herein refer to the general direction of gas flow along the compressor. The terms axial and radial as used herein refer to the orientation of the axis of rotation of the compressor, unless otherwise specified.
The mechanical transmission 127.i (i ═ 1 to 3) is arranged between the compressors arranged in series. As mentioned above, each mechanical transmission may or may not include a speed manipulation device, such as, for example, a variable speed transmission or a gearbox with a fixed gear ratio. Speed manipulation means may be envisaged as long as two or more sequentially arranged compressors on the same shaft line 2 will rotate at different rotational speeds. In other embodiments, the or each mechanical transmission 127.i (i ═ 1 to 3) may include a clutch to allow disconnection of the compressor or compressors from the gas compressor section 13, for example to perform maintenance activities. In another embodiment, one, some or all of the mechanical transmission means 127.1(i ═ 1 to 3) may comprise a mechanically rigid or flexible joint.
One or more auxiliary machines may be arranged between two adjacent compressors. For example, a starter, a booster or a generator or a multi-function electric machine (e.g., acting as a starter and/or a booster and/or a generator depending on the operating conditions of the compressor unit) may be arranged between a pair of sequentially arranged compressors. When the gas compressor section 13 includes a clutch, a portion of the stack 1 may be disconnected to make it independent of the other sections. This disconnection can be used to disconnect the main drive 11 (e.g. gas turbine) from the rest of the stack for periodic maintenance; if the group 1 comprises a booster-motor, the gas compressor section 13 can be maintained operational by means of said booster-motor.
Each compressor 125.i may be one of a positive displacement compressor and a powered compressor. The positive displacement compressor may be, for example, a reciprocating compressor. The reciprocating compressor may be a single-effect reciprocating compressor or a double-effect reciprocating compressor. Further, the reciprocating compressor may have a single or multiple cylinder-piston arrangement.
The dynamic compressor may be a centrifugal compressor or an axial compressor or a hybrid axial-centrifugal compressor. One or more positive displacement compressors and/or one or more combinations of powered compressors may be arranged in the same compressor train.
In some embodiments, the axial compressor includes (fig. 22) a plurality of stages, each stage including a set of stationary (i.e., non-rotating) blades 147 and a set of rotating vanes 149. The stages of rotating vanes alternate with the stages of stationary blades. According to some exemplary, non-limiting embodiments, the axial compressor includes 1 to 15 fixed stages and 2 to 16 rotating stages. The fixed vanes in one, some or all of the fixed vane sets may be adjustable fixed vanes, i.e. their angular position may be adjustable about a respective radial axis. An actuator 151 may be provided to change the angular position of the fixed blades. Fixed vanes having variable geometry may help to increase the overall efficiency of the axial compressor, especially as the operating parameters of the natural gas liquefaction process change over time.
The axial compressor may be used alone or in combination with an intermediate bearing or a centrifugal compressor of the suspension type or both. In some embodiments, an axial compressor may provide high flow and high efficiency.
The centrifugal compressor of the gas compressor section 13 may be a vertical separation compressor, i.e. a so-called barrel compressor. The vertical split compressor is particularly effective when high gas pressures have to be achieved.
In other embodiments, the compressor may be a horizontal split compressor. The horizontal split compressor is particularly advantageous in terms of maintenance, since the compressor train, i.e. the internal components of the compressor, can be removed from the outer casing without having to remove other machines arranged along the shaft line 2. In a preferred embodiment, when two or more compressors are arranged in the gas compressor section 13, a combination of one or more vertical split compressors and one or more horizontal split compressors is conceivable.
The horizontal split compressor has a compressor diaphragm and a compressor rotor arranged in a casing 151 comprising at least two casing parts 151.1, 151.2 cooperating along a horizontal plane P-P, see fig. 23. The diaphragm is typically divided into an upper portion and a lower portion configured to be located in an upper housing part 151.1 and a lower housing part 151.2, respectively. Access to the interior of the compressor and removal of the diaphragm parts, rotor, bearings and other mechanical parts from the casing is easy, as this only requires lifting the upper casing part 151.1, without the need to disassemble the adjacent machine along the shaft line 2.
The vertical split compressor has a compressor rotor and a compressor train (fig. 24) arranged in a housing 153, which comprises a central cylinder 153.1 and two housing end sections 153.2, 153.3. One or both housing end portions 153.2, 153.3 may be removably coupled to the central cartridge 153.1 along respective vertical planes P1-P1, P2-P2. The compressor assembly and rotor can be removed from the central cartridge 153.1 by opening one or the other of the housing end portions 153.2, 153.3. In other embodiments, one of the end portions 153.2, 153.3 is integrally connected to the central barrel 153.1, i.e., formed (e.g., forged) as a single component.
If a vertical split compressor and a horizontal split compressor are provided in the gas compressor section 13, in some advantageous embodiments the vertical split compressor is arranged at the end of the shaft line so that access to its interior can be made from the front end of the group without having to disassemble the other machines on the shaft line 2.
Each compressor may have one or more compressor stages. Each centrifugal compressor may have an intermediate bearing or a suspension arrangement. As understood herein, an "intermediate bearing" arrangement may be understood as an arrangement in which one or more compressor stages are arranged between end bearings. The intermediate bearing arrangement is also referred to as a "beam" arrangement. One or more centrifugal impellers are mounted for rotation on a shaft, and the shaft is supported at opposite sides by respective bearings.
As understood herein, a "suspended" arrangement may be understood as an arrangement in which one or more compressor impellers are mounted on a shaft that is supported for rotation by bearings located on one and the same side of the impeller. The suspended arrangement may provide advantages over intermediate arrangements because fewer components are required.
A part of a centrifugal multistage compressor comprising a plurality of compressor stages in an intermediate arrangement is schematically shown in fig. 25. Each compressor stage includes a rotating impeller 155 and a diffuser 157. Each compressor stage, except the last compressor stage, includes a return passage. The rotating impeller 155 includes a hub 155.1 and a plurality of vanes 155.2.
The impeller may be a shrouded impeller or an open impeller. The shrouded impeller includes a shroud that forms a closed flow path between adjacent impeller vanes.
Each vane may be a two-dimensional or three-dimensional vane. Three dimensions (or 3D blades) represent twisted blades (three dimensional curvature) and two dimensions (or 2D blades) represent constant blade angle from hub to cover (two dimensional curvature). The compressor may include only 3D impellers, i.e., impellers with 3D blades, may include only 2D impellers, i.e., impellers with 2D blades, or may include a combination of 3D and 2D impellers.
The compressor may include only a shrouded impeller, or only an open impeller. In other embodiments, the shrouded impeller and the open impeller may be combined in the same compressor, such as in an HPRC (high pressure ratio compressor), wherein the shrouded impeller is preferably located in the most upstream stage and the open impeller is located in the most downstream stage.
Each diffuser may be a diffuser with vanes or a diffuser without vanes. In a bladed diffuser, stationary blades (i.e., blades that do not rotate with the impeller) are arranged within the diffuser to orient the flow exiting the impeller. In some embodiments, a variable geometry vaned diffuser may be provided. The variable geometry diffuser comprises diffuser vanes, each or some of which comprise at least an adjustable vane portion, the inclination of which can be adjusted to accommodate different operating conditions.
Between a pair of adjacent impellers of sequentially arranged compressor stages, the return passage 159 redirects the airflow exiting from the diffuser of the upstream stage towards the inlet of the impeller of the downstream stage.
The compressor 125 of the gas compressor section 13 may be a single phase once-through type compressor as schematically shown in fig. 25. Gas enters the compressor through an inlet 122 and exits the compressor on a discharge side 124, with all compressor stages disposed between the inlet 122 and the discharge side 124.
In some embodiments, the one or more compressors of the gas compressor section 13 may be a dual flow type compressor as shown in fig. 26, comprising a first inlet 122.1 and a second inlet 122.2 and two sets of substantially symmetrically arranged compressor stages, each compressor stage comprising one or more impellers and associated diffusers and return channels. The combined discharge 124 collects the compressed gas from the two most downstream compressor stages of the two symmetrically arranged sets of compressor stages. According to some embodiments, a dual flow type compressor may have advantages over a direct flow type compressor. The incoming flow is split into partial incoming flows entering the compressor at a first inlet 122.1 and a second inlet 122.2. The entry speed is reduced and the axial load on the shaft is balanced. In some embodiments, the balancing drum may therefore be omitted. In other embodiments, each of those substantially symmetrically arranged sets of compressor stages has its own discharge volute and the compressed gas streams are recollected together downstream of the discharge volute.
In some advantageous embodiments, cooling of the gas during the compressor process may be provided to maintain the operating temperature below material or process limitations and/or to increase the overall efficiency of the compressor. In exemplary embodiments, a multi-phase compressor may be contemplated for this purpose, wherein the cooling nozzle permits extraction of partially compressed hot gas from the first compressor phase. The extracted gas can be cooled in an external heat exchanger and eventually returned to the inlet of the subsequent compressor phase through a cooler circuit.
Fig. 27 schematically illustrates a compound two-phase centrifugal compressor of the once-through type, which includes a first compressor phase 125A and a second compressor phase 125B. For example, the first compressor phase 125A includes three compressor stages and the second compressor phase 125B includes two compressor stages. According to other embodiments, a different number of compressor stages may be provided for each compressor phase. The cooler outlet 161 collects the partially compressed hot gas from the diffuser of the most downstream compressor stage of the compressor phase 125A. The cooler outlet 161 is in fluid communication with a heat exchanger 162 wherein the partially compressed gas is cooled, for example, by heat exchange with a cooling fluid such as air or water or a stream of refrigerant from an LNG process. The cold, partially compressed gas is returned to the most upstream compressor stage of the second compressor phase 125B through the cooler loop 163 and is also sequentially compressed in the compressor stages of the second compressor phase 125B.
In some embodiments, a multi-stage once-through type compressor as shown, for example, in fig. 25 or 27, may provide a higher compression ratio than a single stage compressor.
While the multi-phase compressor configuration with intercooling is shown in fig. 27 in a straight-flow compressor configuration, a similar intercooling arrangement may also be provided in a dual-flow compressor as shown in fig. 26. Different arrangements of extraction of partially compressed gas from the compressor and injection of partially compressed gas into the compressor may be provided with or without cooling the gas prior to injection.
To balance the axial thrust resulting from the gas compression action on the compressor shaft, in some arrangements, as schematically illustrated in fig. 28, the compressor stages are arranged in a back-to-back configuration. In a back-to-back compressor, the compressor stage is divided into two groups or phases 125C, 125D and the impellers of the two phases are back-to-back with the impeller inlets of the first group facing away from the impeller inlets of the second group. The gas enters the compressor 125 at a first inlet 122.1, and the partially compressed gas exits the first compressor phase 125C through a first exhaust port 124.1 and enters the first impeller of the second compressor phase 125D through a second inlet 122.2. The compressed gas is then delivered through the second gas outlet 124.2. In some embodiments, a heat exchanger 162 may be disposed between the first discharge 124.1 and the second inlet 122.2 such that the partially compressed gas may be cooled prior to entering the second compressor phase 125D, thereby increasing the overall efficiency of the back-to-back compressor.
In particular a once-through compressor may include a balance piston to balance the axial thrust generated by the gas being processed by the impeller on the shaft, as illustrated in fig. 25 at 126.
Depending on the LNG cycle, one or more compressors in the gas compressor section 13 may have a side stream inlet or nozzle so that the main compressed gas stream may be split into multiple side streams that expand at different pressure stages to exchange heat with natural gas and/or another refrigerant gas. The lowest pressure flow is returned at the compressor inlet, while a side stream at intermediate gas pressure is returned to the intermediate compressor stage through the side stream nozzle. Fig. 29 shows an exemplary embodiment of a side-stream nozzle in a straight-flow type compressor, but it should be understood that a side-stream nozzle arrangement may be provided in any of the compressors described above, for example, in a double-flow type compressor or in a back-to-back compressor arrangement. In fig. 29, a five-stage centrifugal compressor is illustrated by way of example, including a compressor inlet 122 and a compressor discharge 124. Side-stream nozzles 122A, 122B are shown at the inlets of the second, third and fourth compressor stages.
One or more compressors of gas compressor section 13 may have inlet guide vanes at one, some, or all of the compressor stages. The inlet guide vanes of one, some or all of the compressor stages may be adjustable inlet guide vanes, i.e. actuators may be provided to vary the geometry of the vanes depending on the operating conditions of the compressor. In fig. 29, an inlet guide vane is illustrated at 171, but it will be understood that similar inlet guide vanes may also be provided with the other compressor configurations described in connection with fig. 25, 26, 27 and 28.
Any of the above-described compressors may be configured as a vertical split or a horizontal split compressor.
In the embodiment shown in fig. 25, 26, 27, 28 and 29, the compressor comprises a central shaft or beam on which the impeller is mounted to form a rotor. In some embodiments, the impellers may be stacked on top of each other and torsionally coupled to each other by means of a hese coupling or the like. The center rod axially locks the impeller, thus forming a rotor. Both of these configurations are sometimes referred to as beam compressors; the rotor is formed by an axial beam and an impeller mounted thereon for co-rotation.
In fig. 25, 6, 27, 28 and 29, an intermediate axial compressor arrangement is shown, in which the compressor wheel is placed between some bearings arranged at the ends of the beams or shafts supporting the compressor wheel. In other embodiments, one or more impellers may be suspended. The compressor may include only a hanging impeller or a combination of a hanging impeller and a center bearing impeller.
While different kinds of compressors have been described separately in connection with fig. 22, 26, 27, 28 and 29, compressors of different topologies may be combined on the same shaft line. One or more compressors may be arranged in the same casing. For example, a compressor may have a combination of one or more beam impellers and a hanging impeller in the same housing and arranged on the same shaft line. Intercooling may be provided between sequentially arranged compressors or compressor phases to improve efficiency.
In the embodiments disclosed herein, the compressor may be integrated in the casing together with the respective electric motor.
In other embodiments, the gas compressor section 13 may include one or more integrally geared compressors. Unlike beam compressors, integrally geared compressors comprise a plurality of compressor stages mounted on a plurality of shafts drivingly coupled to a central bull gear and rotatable at different rotational speeds. Fig. 30 shows a schematic arrangement of the integrally gear compressor. In the exemplary embodiment of fig. 30, the integrally geared compressor includes four compressor stages, each compressor stage including a respective impeller 155A, 155B, 155C, 155D. The impellers 155A, 155B of the first and second stages are mounted overhung on the first shaft 172A and the impellers 155C, 155D are mounted overhung on the second shaft 172B. All of the impellers 155A-115D may have different sizes. The two axles 172A, 172B are mechanically coupled to a large gear 173 by respective toothed wheels. The arrangement allows impellers of different stages to rotate at different rotational speeds. Each compressor stage may have inlet vanes, one, some, or all of which may be adjustable inlet vanes. Diffusers with or without vanes may be used in one or more of each compressor stage. A side stream and/or intercooler outlet and intercooler inlet may be provided in an integrally geared compressor in much the same manner as disclosed above in connection with the beam compressor described above.
In some embodiments, an integrally geared compressor may be advantageous because it may provide higher efficiency because different compressor stages may rotate at different rotational speeds. A very compact arrangement can be achieved. Furthermore, each compressor stage of the integrally geared compressor can be easily equipped with an adjustable inlet guide vane.
The integrally geared compressor may be combined with an intermediate bearing centrifugal compressor or a suspension compressor or with an axial compressor on the same shaft line as described above.
Axial compressors as well as centrifugal compressors may have side flow ports to provide refrigerant gas at multiple pressure stages.
One, some or all of the compressors or compressor phases may include one or more gas extraction conduits (also referred to herein as "extraction ports") to provide partially compressed gas for various needs. For example, partially compressed natural gas may be extracted at a required intermediate pressure for use as fuel in one or more gas turbine engines used as drivers for one or more compressor trains.
As mentioned above, as shown in fig. 18, 19, 20 and 21, the gas compressor section 13 may comprise a variable number N of compressors, where N is typically between 1 and 4. Alternatively, each compressor may be a vertically split or horizontally split compressor or an integrally geared compressor. Each compressor may be an integrally geared compressor or a beam compressor or a pendant compressor. Further, each compressor may be a single phase or a multi-phase compressor. Each compressor may have a simple or back-to-back configuration. Each compressor may be a simple straight flow type compressor or a double flow type compressor. Intercooling may be provided between compressor phases or between consecutively arranged compressors.
Furthermore, if two or more compressors are provided in the gas compressor section 13, the compressors may all be different from each other. In other embodiments, there may be two, three, or four compressors having the same configuration. For example, if two compressors are provided, the compressors may each be vertically split, each be horizontally split, or one compressor may be vertically split and the other compressor may be horizontally split.
Further, although reference is made to a powered compressor in the above detailed description, a positive displacement compressor, such as a reciprocating compressor, may be used, possibly in combination with a powered compressor.
In fig. 24, 25, 26, 27, 28 and 29, the air inlet and outlet ducts are presented as being oriented upwardly or downwardly for purposes of illustration only. However, it should be understood that the arrangement of the inlet and outlet conduits of each compressor (including any intermediate outlet and inlet ports fluidly connecting different phases of the compressor and any side stream or extraction conduits) may be positioned upwardly or downwardly relative to the axis of rotation of the respective compressor.
The inlet duct and/or the outlet duct may be vertical or inclined, i.e. may form an angle equal to or different from 0 ° with the vertical direction. As understood herein, the vertical direction is the direction of gravity. In some embodiments, the inlet and/or outlet pipes may be arranged laterally, e.g. horizontally, i.e. such as forming an angle of about 90 ° with the vertical, and may be arranged symmetrically with respect to a horizontal plane containing the rotational axis of the compressor. In some embodiments, upwardly directed air inlet and/or air outlet ducts may have the advantage of simplified construction, as they do not require a floor. In other embodiments, a downwardly directed gas duct may be advantageous in terms of ease of installation and disassembly interventions, especially in the case of a horizontal split compressor. The side arrangement may result in a simpler piping layout.
In other embodiments, one, some, or all of the inlet conduits, outlet conduits, side flow ports, and/or extraction ports may be oriented substantially horizontally.
In general, let C1, C2, C3 be three compressors of different configuration and service, for example in terms of shaft structure (beam-to-integral gear), casing structure (horizontal split versus vertical split), number of stages, number of phases, kind of impeller arrangement (back-to-back or in-line), number of side stream and/or extraction nozzles (0, 1 or more side stream nozzles).
The gas compressor section 13 may have any one of the following compressor combinations, wherein the symbol "-" schematically indicates a mechanical coupling between sequentially arranged compressors;
A. compressor section with only one compressor:
Figure BDA0002345406460000431
C1
B. compressor section with two compressors:
Figure BDA0002345406460000432
C1-C1
Figure BDA0002345406460000433
C1-C2
C. a compressor section having three compressors:
Figure BDA0002345406460000434
C1-C1-C1
Figure BDA0002345406460000435
C1-C1-C2
Figure BDA0002345406460000436
C1-C2-C1
Figure BDA0002345406460000437
C1-C2-C2
Figure BDA0002345406460000438
C2-C1-C1
Figure BDA0002345406460000439
C1-C2-C3
D. compressor section with four compressors:
Figure BDA0002345406460000441
C1-C1-C1-C1
C1-C1-C1-C2
Figure BDA0002345406460000443
C1-C1-C2-C1
Figure BDA0002345406460000444
C1-C2-C1-C1
Figure BDA0002345406460000445
C1-C1-C2-C2
Figure BDA0002345406460000446
C1-C2-C1-C2
Figure BDA0002345406460000447
C1-C2-C2-C1
Figure BDA0002345406460000448
C1-C2-C2-C2
Figure BDA0002345406460000449
C1-C1-C2-C3
Figure BDA00023454064600004410
C1-C2-C1-C3
Figure BDA00023454064600004411
C1-C2-C3-C3
Figure BDA00023454064600004412
C1-C3-C2-C1
C1-C3-C2-C3
Figure BDA00023454064600004414
C1-C3-C3-C2
wherein the compressors C1, C2, C3 are different from each other and wherein each compressor C1 to C3 may be:
1. a positive displacement compressor, such as a reciprocating compressor, selected from the group consisting of: a single-stage reciprocating compressor and a multi-stage reciprocating compressor, wherein the multi-stage reciprocating compressor may be a single-effect or double-effect reciprocating compressor;
2. a powered compressor selected from the group consisting of: axial compressors and centrifugal compressors; wherein
The axial compressor may include one or more of the following features; a plurality of sequentially arranged stages; one or more sets of variable geometry fixed vanes; an adjustable inlet guide vane; an axially split case; a vertically split enclosure; one or more side flow ports; one or more extraction nozzles;
the centrifugal compressor may include one or more of the following features; a single compressor stage; a plurality of compressor stages; an integral gear compressor arrangement; a middle bearing arrangement; suspension type arrangement; a single impeller or a plurality of impellers per compressor stage; a combination of one or more suspended impellers and one or more intermediate bearing impellers; one or more 2D impellers; one or more 3D impellers; one or more shrouded impellers; one or more open impellers; combinations of two or more of the foregoing impellers; a vertically split enclosure; a horizontally split housing; a direct current type arrangement; a dual flow arrangement; a back-to-back arrangement; a multiphase arrangement; one or more side flow ports; one or more extraction ports; one or more intercooling arrangements between sequentially arranged compressor phases; adjustable inlet guide vanes at one or more compressor stages; one or more vaned diffusers; one or more diffusers without vanes; one or more stationary diffusers; one or more variable geometry diffusers; one or more balancing drums; a central shaft on which a plurality of impellers are mounted for common rotation; a plurality of mutually stacked impellers and a central axial rod connecting the impellers to each other; one or more sealing arrangements including single, tandem, or three dry gas seals, mechanical seals, oil film type seals, air seals; one or more oil film bearings, including hydrodynamic and hydrostatic bearings, magnetic bearings, rolling bearings.
It should be understood that although in fig. 1, the gas compressor section 13 and the driver section 11 are presented as two separate entities located at two separate locations along the shaft line 2, if either or both of the driver section 11 or the gas compressor section 13 contain more than one component, the compressor and the driver may be dispersed along the shaft line such that the driver is disposed between the two compressors, and/or the compressor is disposed between the two drivers.
Although in the above description some exemplary embodiments of a compressor string and related machine have been disclosed, a more detailed disclosure of several configurations of a compressor string according to the present disclosure is given below. Each compressor train disclosed below may include additional machinery, accessories, or the like, such as an intercooler between sequentially arranged compressors or compressor phases, an air cooler at an inlet of the gas turbine engine, a waste heat recovery heat exchanger at an exhaust of one or more gas turbine engines, an air filter or air handling equipment, and the like.
Since a large number of machine arrangements are possible, they will not be described separately in detail. Rather, the flowcharts and program code will be described below which may be used by those skilled in the art to produce a number of possible machine arrangements, each of which is within the scope of the present disclosure. It will be understood that each and every machine arrangement and configuration produced by the flowcharts and code described herein will be considered to be fully disclosed by the present disclosure even if the arrangement and configuration is not explicitly listed in one of the exemplary lists shown below.
As described above, a compressor string may include a driver section and a compressor section. The drive section typically includes a drive machine or prime mover. The compressor section may include one or more compressors.
Typically, the compressor train comprises a main drive machine, at least one compressor and optionally an auxiliary machine. The auxiliary machine may be a driven machine, i.e. a machine that absorbs mechanical energy provided by the drive machine. The auxiliary machine may alternatively be a drive machine, i.e. a machine that generates mechanical energy and may be used as a starter and/or as a booster for a main drive or prime mover to provide additional mechanical energy to drive the compressor package.
The auxiliary machine may also include a generator that may convert mechanical energy into usable electrical energy.
Each compressor train may also include two or more primary machines and optionally a number of secondary machines, such as gearboxes, clutches, flexible joints, rigid joints, variable speed drives, and the like.
The main machine may belong to three main categories: drive machine, compressor or auxiliary machine. The auxiliary machine may again be a compressor.
In some embodiments, a compressor train may include two primary machines, i.e., a driver machine and a compressor.
In other embodiments, the compressor train may include three primary machines, i.e., a driver machine, a first compressor, and an auxiliary machine, which may in turn be another compressor.
In other embodiments, the compressor train may include four primary machines, i.e., for example, a driver machine, a first compressor, a second compressor, and an auxiliary machine, which may in turn be another compressor.
In some other embodiments, the compressor train may include five primary machines, such as, for example, a driver machine, a first compressor, a second compressor, a third compressor, and an auxiliary machine, which may in turn be another compressor.
The primary machine and the secondary machine may be of different types and may be arranged at different locations along the shaft line. Thus, a large number of permutations of these machines are possible. It is therefore an object of the present invention to provide a production method and generator that are able to produce and disclose all possible arrangements of the compressor group. In fig. 42A, 42B, 42C, 42D, and 42E, flowcharts representing the architecture of the generation method are shown. For the sake of clarity, the flowchart is divided into five sections shown in fig. 42A, 42B, 42C, 42D, and 42E.
The result of the production method is a list of the arrangement of the main machines in the compressor string. The arrangement list depends on the number "m _ max" of the main machines constituting the compressor group and on the number of different types of main machines that can be combined in the compressor group.
In some embodiments, the method is configured to generate four lists: if the number of main machines in the compressor group is two, i.e. if the compressor group contains two main machines, a first list is generated; if the number of main machines in the compressor group is three, i.e. if the compressor group contains three main machines, a second list is generated; if the number of main machines in the compressor group is four, i.e. if the compressor group contains four main machines, a third list is generated; and if the number of machines in the compressor string is five, i.e. if the compressor string contains five main machines, a fourth list is generated.
Referring now to fig. 42A, 42B, 42C, 42D, 42E, the maximum number of main machines "m _ max" included in the compressor group and the maximum number of types of main machines per category (driver machine, compressor, auxiliary machine) are set as inputs of the method in the input section 2001.
The input section 2001 comprises a step 2006 in which the total number "m _ max" of the main machines of the compressor group is defined. The input section 2001 further includes step 2007 in which the maximum number of types of main machines per category is set. More specifically: "D" is the maximum number of types of drive machines, "C" is the maximum number of types of compressors, and "M" is the maximum number of types of auxiliary machines or other compressors.
In exemplary embodiments disclosed herein, "M _ max" can be 1, 2, 3, 4, or 5, "D", "C", and "M" are integers equal to or greater than 1.
Each row of the list that can be generated by the method is denoted by a specific value of the index "r", where "r" is an integer equal to or greater than 1.
For each row of the list, the primary machine is arranged at a specific position of the axis of the shaft. The particular position of the primary machine along the axis of the spindle (left to right) is indicated by the index "i", "j", "h", "g" or "k". Each of these indices is an integer and may take values from 1 to "m _ max". Each primary machine has its corresponding index: "i" is the index of the driver machine, "j" is the index of the first compressor, "h" is the index of the second compressor, "g" is the index of the third compressor, "k" is the index of the auxiliary machine or another compressor.
For example, if i-2, j-1, h-3 and k-4, the driver machine would be arranged at a second position along the shaft line (i-2), the first compressor at the first position (j-1), the second compressor at the third position (h-3) and the auxiliary machine or another compressor at the fourth position (k-4). I.e. along the axis of the spindle, the machine will be arranged as follows: a first compressor, a driver machine, a second compressor, and an auxiliary machine or another compressor.
The primary machines of each category may be of one or more types. The type of each primary machine is defined by an index. "x" is an index that defines the type of drive machine. "y" is an index defining the type of the first compressor. "s" is an index defining the type of the second compressor. "v" is an index defining the type of the third compressor. "z" is an index that defines the type of auxiliary machine or another compressor.
For example, if there are nine different types of drive machines, i.e., if nine different types of drive machines can be alternately used to drive the group, the value of the index "x" is from 1 to 9, and each value of "x" designates a specific type of drive machine. For example: x ═ 1 denotes a 1-shaft gas turbine engine, x ═ 2 denotes a 1.5-shaft gas turbine engine, x ═ 3 denotes a 2-shaft gas turbine engine, x ═ 4 denotes a 2.5-shaft gas turbine engine, x ═ 5 denotes a 3-shaft gas turbine engine, x ═ 6 denotes a constant speed electric motor, x ═ 7 denotes a variable speed electric motor, x ═ 8 denotes a steam turbine, and x ═ 9 denotes a reciprocating gas engine, i.e., a reciprocating internal combustion engine using gaseous fuel.
The flowcharts of fig. 42A, 42B, 42C, 42D, and 42E include four main generation sections 2002, 2003, 2004, and 2005, each section representing a corresponding generation routine. These four sections of the flow chart are used alternately, depending on the number of main machines of the compressor train. More specifically: if the compressor rack has two primary machines, then a first section 2002 is executed (i.e., the routine represented by section 2002); if the compressor bank has three primary machines, then the second section 2003 is executed; if the compressor bank has four primary machines, then the third section 2004 is executed; if the compressor bank has five primary machines, then the fourth section 2005 is executed.
Each production section 2002, 2003, 2004, 2005 has three major steps:
Figure BDA0002345406460000491
a first routine loop, labeled 2008, 2009, 2010, 2011 for each segment 2002, 2003, 2004, 2005, respectively, for determining a cordReference to the values of "i", "j", "h", "g" or "k", i.e., the position for each major machine along the axis of the spindle;
Figure BDA0002345406460000492
a second routine loop, labeled 2012, 2013, 2014, 2015 for each section 2002, 2003, 2004, 2005, respectively, for determining the value of index "x", "y", "s", "v", or "z", i.e., for selecting the type of primary machine to be located at each location determined by the first routine;
Figure BDA0002345406460000493
the resulting steps, labeled 2016, 2017, 2018, 2019 respectively for each section 2002, 2003, 2004, 2005, are used to write out the type of primary machine and its position along the axis of the shaft (from left to right) for each row of one of the lists of compressor bank configurations.
In the first routine loop 2008, 2009, 2010, 2011, the indices "i", "j", "h", "g", "k" range from 1 to "m _ max" so as to always be different from each other and so as to cover all possible combinations thereof.
In a second routine loop 2012, 2013, 2014, 2015, the index "x" ranges from 1 to "D", the indexes "y", "s", "v" ranges from 1 to "C", and the index "z" ranges from 1 to "M" in order to select all possible types of primary machines for each category of primary machines.
Each row of one of the lists is generated in blocks 2016, 2017, 2018, 2019.
In the result steps 2016, 2017, 2018, 2019, the type of each main machine of the group of compressors of the general row "r" of the list of possible placements and the position along the axis of the shaft (from left to right) are indicated as follows: d (x) ═ r, i, which means that in row "r" of possible machine arrangements, the drive machine is of type "x" and is arranged in position "i"; c (y) ═ r, j, which means that a compressor of type "y" is arranged at position "j" in the described configuration of row "r". The same reasoning applies to compressors C(s) and C (v). Further, m (z) ═ (r, k) indicates that, for the arrangement of the row "r", an auxiliary machine of the type "z" (which may be another compressor) is arranged at the position "k".
For example, referring to the previous numerical example, if x is 3, i is 2, and r is 5, then the meaning of D (3) ═ 5,2 would be: the arrangement of the fifth row has a 2-axis gas turbine at a second position (from the left) of the shaft line.
Blocks 2020, 2021, 2022, 2023, 2024, 2025, 2026, and 2027 are used to change and determine the value of the row index "r" for each list.
Finally, blocks 2031 and 2032 denote the entry and exit of the flow diagram, respectively.
The group configuration generating method thus far described and presented by the flowcharts of fig. 42A, 42B, 42C, 42D, 42E may be easily implemented by those skilled in the art by means of any programming language, such as Visual Basic.
One way to implement the Visual Basic code is through the well-known name "ExcelThe so-called "macro" function of the program.
For example, a new Excel file may be created with a first Excel table populated as follows and a second table called "placements" in which a list of placements will be written to run an Excel macro.
Excel macros can be written in the following Visual Basic code, which implements the production method according to the invention:
Figure BDA0002345406460000521
Figure BDA0002345406460000531
Figure BDA0002345406460000541
Figure BDA0002345406460000551
to generate a list of compressor bank arrangements according to the present disclosure, the above generation method may be used, assuming:
Figure BDA0002345406460000552
"D" ═ 9, i.e., up to nine different kinds of drive machines can be used, where the drive machines are selected from the group consisting of:
-1-axis gas turbine when x is 1;
-1.5-shaft gas turbine when x is 2;
-when x is 3, a 2-axis gas turbine;
-when x is 4, a 2.5-axis gas turbine;
-when x is 5, a 3-axis gas turbine;
-when x is 6, a constant speed electric motor;
-when x is 7, a variable speed electric motor;
-when x is 8, a steam turbine;
-when x is 9, a reciprocating gas engine;
"C" ═ 9, i.e., up to nine different compressor types can be used, and first, second, and thirdThe compressors are each selected from the group consisting of:
-a single-stage beam centrifugal compressor when y-1 or s-1 or v-1;
-when y-2 or s-2 or v-2, a single-stage centrifugal compressor of the suspension type;
-when y-3 or s-3 or v-3, a multistage centrifugal compressor of the direct flow type;
-when y-4 or s-4 or v-4, a multistage back-to-back centrifugal compressor;
-when y-5 or s-5 or v-5, a multistage two-flow centrifugal compressor;
-when y-6 or s-6 or v-6, a multistage centrifugal compressor with a side flow port and/or an extraction port;
-when y-7 or s-7 or v-7, an integrally geared centrifugal compressor;
-when y-8 or s-8 or v-8, a straight-flow axial compressor;
-when y-9 or s-9 or v-9, an axial compressor with a side flow port and/or an extraction port;
Figure BDA0002345406460000562
"M" is 14, and the auxiliary machine or other compressor (as mentioned above, the auxiliary machine of the compressor train may in turn be an additional compressor) is selected from the group consisting of:
-when z is 1, is a generator;
-when z is 2, an electric or steam booster;
-when z is 3, an electric or steam starter;
-when z is 4, electric or steam starter-booster;
-when z is 5, electric or steam starter-booster-generator;
-when z is 6, a single-stage beam centrifugal compressor;
-when z is 7, a single-stage centrifugal compressor of the suspension type;
-when z is 8, a centrifugal compressor of the multistage straight flow type;
-when z is 9, a multistage back-to-back centrifugal compressor;
-when z is 10, a multistage two-flow centrifugal compressor;
-when z is 11, a multistage centrifugal compressor with a side flow port and/or an extraction port;
-when z is 12, an integrally geared centrifugal compressor;
-when z is 13, a straight-flow type axial compressor;
-when z is 14, an axial compressor with a side flow port and/or an extraction port;
the generation method for generating the compressor group configuration has been used to generate a list of compressor group arrangements in four cases, thus alternately for m-2 (block 2028), m-3 (block 2029), m-4 (block 2030) or m-5 (block 2030 branches "N").
For the sake of clarity, the nine types of drive machines are denoted by abbreviations as follows:
-D1 ═ 1-shaft gas turbine;
-D2 ═ 1.5-shaft gas turbine;
-D3 ═ 2-shaft gas turbine;
-D4 ═ 2.5-shaft gas turbine;
-D5 ═ 3-shaft gas turbine;
-D6 ═ constant speed electric motor;
-D7 ═ variable speed electric motor;
-D8 ═ steam turbine;
-D9 ═ reciprocating gas turbine;
for the sake of clarity, the nine types of compression machines are indicated by abbreviations as follows:
-C1 ═ single stage beam centrifugal compressor;
-C2 ═ single stage centrifugal compressor;
-C3 ═ multistage straight-flow centrifugal compressors;
-C4 ═ multistage back-to-back centrifugal compressors;
-C5 ═ multistage two-flow centrifugal compressors;
-C6 ═ a multistage centrifugal compressor with side flow and/or extraction ports;
-C7 ═ an integrally geared centrifugal compressor;
-C8 ═ direct flow axial compressor;
-C9 ═ axial compressors with side flow and/or extraction ports;
for the sake of clarity, the fourteen types of auxiliary machines or other compressors are indicated by abbreviations as follows:
-M1 ═ generator;
-M2 ═ electric or steam power assist;
-M3 ═ electric or steam starter;
-M4 ═ electric or steam starter-booster;
-M5 ═ electric or steam starter-booster-generator;
-C1 ═ single stage beam centrifugal compressor;
-C2 ═ single stage centrifugal compressor;
-C3 ═ multistage straight-flow centrifugal compressors;
-C4 ═ multistage back-to-back centrifugal compressors;
-C5 ═ multistage two-flow centrifugal compressors;
-C6 ═ a multistage centrifugal compressor with side flow and/or extraction ports;
-C7 ═ an integrally geared centrifugal compressor;
-C8 ═ direct flow axial compressor;
-C9 ═ axial compressors with side flow ports;
to provide a clearer understanding of the list of compressor string arrangements produced by the methods of fig. 42A, 42B, 42C, 42D, 42E, the sequentially arranged primary machines of the compressor strings are separated by dashed lines ("-"), as in the following examples: D1-C1-M2-C4. A dashed line ("-") schematically indicates a mechanical coupling between sequentially arranged primary machines. In an actual compressor train, each dashed line may be any one of several possible coupling arrangements. As mentioned above, two sequentially arranged machines of a compressor group may be drivingly coupled to each other, for example by a mechanical coupling arrangement selected from the group of: the device comprises a shaft lever, a rigid coupler, a flexible coupler, a clutch, a gear box and a variable speed transmission device.
The 162 compressor string arrangements produced by the production method when "m-2" (i.e., if the compressor string includes two primary machines) are listed below. This arrangement list is generated by the generation section 2002 of fig. 42A, 42B, 42C, 42D, 42E:
D1-C1;D2-C1;D3-C1;D4-C1;D5-C1;D6-C1;D7-C1;D8-C1;D9-C1;D1-C2:D2-C2;D3-C2;D4-C2;D5-C2;D6-C2;D7-C2;D8-C2;D9-C2;D1-C3;D2-C3;D3-C3;D4-C3;D5-C3;D6-C3;D7-C3;D8-C3;D9-C3;D1-C4;D2-C4;D3-C4;D4-C4;D5-C4;D6-C4;D7-C4;D8-C4;D9-C4;D1-C5;D2-C5;D3-C5;D4-C5;D5-C5;D6-C5;D7-C5;D8-C5;D9-C5;D1-C6;D2-C6;D3-C6;D4-C6;D5-C6;D6-C6;D7-C6;D8-C6;D9-C6;D1-C7;D2-C7;D3-C7;D4-C7;D5-C7;D6-C7;D7-C7;D8-C7;D9-C7;D1-C8;D2-C8;D3-C8;D4-C8;D5-C8;D6-C8;D7-C8;D8-C8;D9-C8;D1-C9;D2-C9;D3-C9;D4-C9;D5-C9;D6-C9;D7-C9;D8-C9;D9-C9;C1-D1;C1-D2;C1-D3;C1-D4;C1-D5;C1-D6;C1-D7;C1-D8;C1-D9;C2-D1;C2-D2;C2-D3;C2-D4;C2-D5;C2-D6;C2-D7;C2-D8;C2-D9;C3-D1;C3-D2;C3-D3;C3-D4;C3-D5;C3-D6;C3-D7;C3-D8;C3-D9;C4-D1;C4-D2;C4-D3;C4-D4;C4-D5;C4-D6;C4-D7;C4-D8;C4-D9;C5-D1;C5-D2;C5-D3;C5-D4;C5-D5;C5-D6;C5-D7;C5-D8;C5-D9;C6-D1;C6-D2;C6-D3;C6-D4;C6-D5;C6-D6;C6-D7;C6-D8;C6-D9;C7-D1;C7-D2;C7-D3;C7-D4;C7-D5;C7-D6;C7-D7;C7-D8;C7-D9;C8-D1;C8-D2;C8-D3;C8-D4;C8-D5;C8-D6;C8-D7;C8-D8;C8-D9;C9-D1;C9-D2;C9-D3;C9-D4;C9-D5;C9-D6;C9-D7;C9-D8;C9-D9。
if "m-3", i.e. if the compressor group comprises three main machines, 6804 different machine arrangements can be produced by the above-described production method. These 6804 arrangements are generated using the generation section 2003 of fig. 42A, 42B, 42C, 42D, 42E and are listed below;
D1-C1-M1;D2-C1-M1;D3-C1-M1;D4-C1-M1;D5-C1-M1;D6-C1-M1;D7-C1-M1;D8-C1-M1;D9-C1-M1;D1-C2-M1;D2-C2-M1;D3-C2-M1;D4-C2-M1;D5-C2-M1;D6-C2-M1;D7-C2-M1;D8-C2-M1;D9-C2-M1;D1-C3-M1;D2-C3-M1;D3-C3-M1;D4-C3-M1;D5-C3-M1;D6-C3-M1;D7-C3-M1;D8-C3-M1;D9-C3-M1;D1-C4-M1;D2-C4-M1;D3-C4-M1;D4-C4-M1;D5-C4-M1;D6-C4-M1;D7-C4-M1;D8-C4-M1;D9-C4-M1;D1-C5-M1;D2-C5-M1;D3-C5-M1;D4-C5-M1;D5-C5-M1;D6-C5-M1;D7-C5-M1;D8-C5-M1;D9-C5-M1;D1-C6-M1;D2-C6-M1;D3-C6-M1;D4-C6-M1;D5-C6-M1;D6-C6-M1;D7-C6-M1;D8-C6-M1;D9-C6-M1;D1-C7-M1;D2-C7-M1;D3-C7-M1;D4-C7-M1;D5-C7-M1;D6-C7-M1;D7-C7-M1;D8-C7-M1;D9-C7-M1;D1-C8-M1;D2-C8-M1;D3-C8-M1;D4-C8-M1;D5-C8-M1;D6-C8-M1;D7-C8-M1;D8-C8-M1;D9-C8-M1;D1-C9-M1;D2-C9-M1;D3-C9-M1;D4-C9-M1;D5-C9-M1;D6-C9-M1;D7-C9-M1;D8-C9-M1;D9-C9-M1;D1-C1-M2;D2-C1-M2;D3-C1-M2;D4-C1-M2;D5-C1-M2;D6-C1-M2;D7-C1-M2;D8-C1-M2;D9-C1-M2;D1-C2-M2;D2-C2-M2;D3-C2-M2;D4-C2-M2;D5-C2-M2;D6-C2-M2;D7-C2-M2;D8-C2-M2;D9-C2-M2;D1-C3-M2;D2-C3-M2;D3-C3-M2;D4-C3-M2;D5-C3-M2;D6-C3-M2;D7-C3-M2;D8-C3-M2;D9-C3-M2;D1-C4-M2;D2-C4-M2;D3-C4-M2;D4-C4-M2;D5-C4-M2;D6-C4-M2;D7-C4-M2;D8-C4-M2;D9-C4-M2;D1-C5-M2;D2-C5-M2;D3-C5-M2;D4-C5-M2;D5-C5-M2;D6-C5-M2;D7-C5-M2;D8-C5-M2;D9-C5-M2;D1-C6-M2;D2-C6-M2;D3-C6-M2;D4-C6-M2;D5-C6-M2;D6-C6-M2;D7-C6-M2;D8-C6-M2;D9-C6-M2;D1-C7-M2;D2-C7-M2;D3-C7-M2;D4-C7-M2;D5-C7-M2;D6-C7-M2;D7-C7-M2;D8-C7-M2;D9-C7-M2;D1-C8-M2;D2-C8-M2;D3-C8-M2;D4-C8-M2;D5-C8-M2;D6-C8-M2;D7-C8-M2;D8-C8-M2;D9-C8-M2;D1-C9-M2;D2-C9-M2;D3-C9-M2;D4-C9-M2;D5-C9-M2;D6-C9-M2;D7-C9-M2;D8-C9-M2;D9-C9-M2;D1-C1-M3;D2-C1-M3;D3-C1-M3;D4-C1-M3;D5-C1-M3;D6-C1-M3;D7-C1-M3;D8-C1-M3;D9-C1-M3;D1-C2-M3;D2-C2-M3;D3-C2-M3;D4-C2-M3;D5-C2-M3;D6-C2-M3;D7-C2-M3;D8-C2-M3;D9-C2-M3;D1-C3-M3;D2-C3-M3;D3-C3-M3;D4-C3-M3;D5-C3-M3;D6-C3-M3;D7-C3-M3;D8-C3-M3;D9-C3-M3;D1-C4-M3;D2-C4-M3;D3-C4-M3;D4-C4-M3;D5-C4-M3;D6-C4-M3;D7-C4-M3;D8-C4-M3;D9-C4-M3;D1-C5-M3;D2-C5-M3;D3-C5-M3;D4-C5-M3;D5-C5-M3;D6-C5-M3;D7-C5-M3;D8-C5-M3;D9-C5-M3;D1-C6-M3;D2-C6-M3;D3-C6-M3;D4-C6-M3;D5-C6-M3;D6-C6-M3;D7-C6-M3;D8-C6-M3;D9-C6-M3;D1-C7-M3;D2-C7-M3;D3-C7-M3;D4-C7-M3;D5-C7-M3;D6-C7-M3;D7-C7-M3;D8-C7-M3;D9-C7-M3;D1-C8-M3;D2-C8-M3;D3-C8-M3;D4-C8-M3;D5-C8-M3;D6-C8-M3;D7-C8-M3;D8-C8-M3;D9-C8-M3;D1-C9-M3;D2-C9-M3;D3-C9-M3;D4-C9-M3;D5-C9-M3;D6-C9-M3;D7-C9-M3;D8-C9-M3;D9-C9-M3;D1-C1-M4;D2-C1-M4;D3-C1-M4;D4-C1-M4;D5-C1-M4;D6-C1-M4;D7-C1-M4;D8-C1-M4;D9-C1-M4;D1-C2-M4;D2-C2-M4;D3-C2-M4;D4-C2-M4;D5-C2-M4;D6-C2-M4;D7-C2-M4;D8-C2-M4;D9-C2-M4;D1-C3-M4;D2-C3-M4;D3-C3-M4;D4-C3-M4;D5-C3-M4;D6-C3-M4;D7-C3-M4;D8-C3-M4;D9-C3-M4;D1-C4-M4;D2-C4-M4;D3-C4-M4;D4-C4-M4;D5-C4-M4;D6-C4-M4;D7-C4-M4;D8-C4-M4;D9-C4-M4;D1-C5-M4;D2-C5-M4;D3-C5-M4;D4-C5-M4;D5-C5-M4;D6-C5-M4;D7-C5-M4;D8-C5-M4;D9-C5-M4;D1-C6-M4;D2-C6-M4;D3-C6-M4;D4-C6-M4;D5-C6-M4;D6-C6-M4;D7-C6-M4;D8-C6-M4;D9-C6-M4;D1-C7-M4;D2-C7-M4;D3-C7-M4;D4-C7-M4;D5-C7-M4;D6-C7-M4;D7-C7-M4;D8-C7-M4;D9-C7-M4;D1-C8-M4;D2-C8-M4;D3-C8-M4;D4-C8-M4;D5-C8-M4;D6-C8-M4;D7-C8-M4;D8-C8-M4;D9-C8-M4;D1-C9-M4;D2-C9-M4;D3-C9-M4;D4-C9-M4;D5-C9-M4;D6-C9-M4;D7-C9-M4;D8-C9-M4;D9-C9-M4;D1-C1-M5;D2-C1-M5;D3-C1-M5;D4-C1-M5;D5-C1-M5;D6-C1-M5;D7-C1-M5;D8-C1-M5;D9-C1-M5;D1-C2-M5;D2-C2-M5;D3-C2-M5;D4-C2-M5;D5-C2-M5;D6-C2-M5;D7-C2-M5;D8-C2-M5;D9-C2-M5;D1-C3-M5;D2-C3-M5;D3-C3-M5;D4-C3-M5;D5-C3-M5;D6-C3-M5;D7-C3-M5;D8-C3-M5;D9-C3-M5;D1-C4-M5;D2-C4-M5;D3-C4-M5;D4-C4-M5;D5-C4-M5;D6-C4-M5;D7-C4-M5;D8-C4-M5;D9-C4-M5;D1-C5-M5;D2-C5-M5;D3-C5-M5;D4-C5-M5;D5-C5-M5;D6-C5-M5;D7-C5-M5;D8-C5-M5;D9-C5-M5;D1-C6-M5;D2-C6-M5;D3-C6-M5;D4-C6-M5;D5-C6-M5;D6-C6-M5;D7-C6-M5;D8-C6-M5;D9-C6-M5;D1-C7-M5;D2-C7-M5;D3-C7-M5;D4-C7-M5;D5-C7-M5;D6-C7-M5;D7-C7-M5;D8-C7-M5;D9-C7-M5;D1-C8-M5;D2-C8-M5;D3-C8-M5;D4-C8-M5;D5-C8-M5;D6-C8-M5;D7-C8-M5;D8-C8-M5;D9-C8-M5;D1-C9-M5;D2-C9-M5;D3-C9-M5;D4-C9-M5;D5-C9-M5;D6-C9-M5;D7-C9-M5;D8-C9-M5;D9-C9-M5;D1-C1-C1;D2-C1-C1;D3-C1-C1;D4-C1-C1;D5-C1-C1;D6-C1-C1;D7-C1-C1;D8-C1-C1;D9-C1-C1;D1-C2-C1;D2-C2-C1;D3-C2-C1;D4-C2-C1;D5-C2-C1;D6-C2-C1;D7-C2-C1;D8-C2-C1;D9-C2-C1;D1-C3-C1;D2-C3-C1;D3-C3-C1;D4-C3-C1;D5-C3-C1;D6-C3-C1;D7-C3-C1;D8-C3-C1;D9-C3-C1;D1-C4-C1;D2-C4-C1;D3-C4-C1;D4-C4-C1;D5-C4-C1;D6-C4-C1;D7-C4-C1;D8-C4-C1;D9-C4-C1;D1-C5-C1;D2-C5-C1;D3-C5-C1;D4-C5-C1;D5-C5-C1;D6-C5-C1;D7-C5-C1;D8-C5-C1;D9-C5-C1;D1-C6-C1;D2-C6-C1;D3-C6-C1;D4-C6-C1;D5-C6-C1;D6-C6-C1;D7-C6-C1;D8-C6-C1;D9-C6-C1;D1-C7-C1;D2-C7-C1;D3-C7-C1;D4-C7-C1;D5-C7-C1;D6-C7-C1;D7-C7-C1;D8-C7-C1;D9-C7-C1;D1-C8-C1;D2-C8-C1;D3-C8-C1;D4-C8-C1;D5-C8-C1;D6-C8-C1;D7-C8-C1;D8-C8-C1;D9-C8-C1;D1-C9-C1;D2-C9-C1;D3-C9-C1;D4-C9-C1;D5-C9-C1;D6-C9-C1;D7-C9-C1;D8-C9-C1;D9-C9-C1;D1-C1-C2;D2-C1-C2;D3-C1-C2;D4-C1-C2;D5-C1-C2;D6-C1-C2;D7-C1-C2;D8-C1-C2;D9-C1-C2;D1-C2-C2;D2-C2-C2;D3-C2-C2;D4-C2-C2;D5-C2-C2;D6-C2-C2;D7-C2-C2;D8-C2-C2;D9-C2-C2;D1-C3-C2;D2-C3-C2;D3-C3-C2;D4-C3-C2;D5-C3-C2;D6-C3-C2;D7-C3-C2;D8-C3-C2;D9-C3-C2;D1-C4-C2;D2-C4-C2;D3-C4-C2;D4-C4-C2;D5-C4-C2;D6-C4-C2;D7-C4-C2;D8-C4-C2;D9-C4-C2;D1-C5-C2;D2-C5-C2;D3-C5-C2;D4-C5-C2;D5-C5-C2;D6-C5-C2;D7-C5-C2;D8-C5-C2;D9-C5-C2;D1-C6-C2;D2-C6-C2;D3-C6-C2;D4-C6-C2;D5-C6-C2;D6-C6-C2;D7-C6-C2;D8-C6-C2;D9-C6-C2;D1-C7-C2;D2-C7-C2;D3-C7-C2;D4-C7-C2;D5-C7-C2;D6-C7-C2:D7-C7-C2;D8-C7-C2;D9-C7-C2;D1-C8-C2;D2-C8-C2;D3-C8-C2;D4-C8-C2;D5-C8-C2;D6-C8-C2;D7-C8-C2;D8-C8-C2;D9-C8-C2;D1-C9-C2;D2-C9-C2;D3-C9-C2;D4-C9-C2;D5-C9-C2;D6-C9-C2;D7-C9-C2;D8-C9-C2;D9-C9-C2;D1-C1-C3;D2-C1-C3;D3-C1-C3;D4-C1-C3;D5-C1-C3;D6-C1-C3;D7-C1-C3;D8-C1-C3;D9-C1-C3;D1-C2-C3;D2-C2-C3;D3-C2-C3;D4-C2-C3;D5-C2-C3;D6-C2-C3;D7-C2-C3;D8-C2-C3;D9-C2-C3;D1-C3-C3;D2-C3-C3;D3-C3-C3;D4-C3-C3;D5-C3-C3;D6-C3-C3;D7-C3-C3;D8-C3-C3;D9-C3-C3;D1-C4-C3;D2-C4-C3;D3-C4-C3;D4-C4-C3;D5-C4-C3;D6-C4-C3;D7-C4-C3;D8-C4-C3;D9-C4-C3;D1-C5-C3;D2-C5-C3;D3-C5-C3;D4-C5-C3;D5-C5-C3;D6-C5-C3;D7-C5-C3;D8-C5-C3;D9-C5-C3;D1-C6-C3;D2-C6-C3;D3-C6-C3;D4-C6-C3;D5-C6-C3;D6-C6-C3;D7-C6-C3;D8-C6-C3;D9-C6-C3;D1-C7-C3;D2-C7-C3;D3-C7-C3;D4-C7-C3;D5-C7-C3;D6-C7-C3;D7-C7-C3;D8-C7-C3;D9-C7-C3;D1-C8-C3;D2-C8-C3;D3-C8-C3;D4-C8-C3;D5-C8-C3;D6-C8-C3;D7-C8-C3;D8-C8-C3;D9-C8-C3;D1-C9-C3;D2-C9-C3;D3-C9-C3;D4-C9-C3;D5-C9-C3;D6-C9-C3;D7-C9-C3;D8-C9-C3;D9-C9-C3;D1-C1-C4;D2-C1-C4;D3-C1-C4;D4-C1-C4;D5-C1-C4;D6-C1-C4;D7-C1-C4;D8-C1-C4;D9-C1-C4;D1-C2-C4;D2-C2-C4;D3-C2-C4;D4-C2-C4;D5-C2-C4;D6-C2-C4;D7-C2-C4;D8-C2-C4;D9-C2-C4;D1-C3-C4;D2-C3-C4;D3-C3-C4;D4-C3-C4;D5-C3-C4;D6-C3-C4;D7-C3-C4;D8-C3-C4;D9-C3-C4;D1-C4-C4;D2-C4-C4;D3-C4-C4;D4-C4-C4;D5-C4-C4;D6-C4-C4;D7-C4-C4;D8-C4-C4;D9-C4-C4;D1-C5-C4;D2-C5-C4;D3-C5-C4;D4-C5-C4;D5-C5-C4;D6-C5-C4;D7-C5-C4;D8-C5-C4;D9-C5-C4;D1-C6-C4;D2-C6-C4;D3-C6-C4;D4-C6-C4;D5-C6-C4;D6-C6-C4;D7-C6-C4;D8-C6-C4;D9-C6-C4;D1-C7-C4;D2-C7-C4;D3-C7-C4;D4-C7-C4;D5-C7-C4;D6-C7-C4;D7-C7-C4;D8-C7-C4;D9-C7-C4;D1-C8-C4;D2-C8-C4;D3-C8-C4;D4-C8-C4;D5-C8-C4;D6-C8-C4;D7-C8-C4;D8-C8-C4;D9-C8-C4;D1-C9-C4;D2-C9-C4;D3-C9-C4;D4-C9-C4;D5-C9-C4;D6-C9-C4;D7-C9-C4;D8-C9-C4;D9-C9-C4;D1-C1-C5;D2-C1-C5;D3-C1-C5;D4-C1-C5;D5-C1-C5;D6-C1-C5;D7-C1-C5;D8-C1-C5;D9-C1-C5;D1-C2-C5;D2-C2-C5;D3-C2-C5;D4-C2-C5;D5-C2-C5;D6-C2-C5;D7-C2-C5;D8-C2-C5;D9-C2-C5;D1-C3-C5;D2-C3-C5;D3-C3-C5;D4-C3-C5;D5-C3-C5;D6-C3-C5;D7-C3-C5;D8-C3-C5;D9-C3-C5;D1-C4-C5;D2-C4-C5;D3-C4-C5;D4-C4-C5;D5-C4-C5;D6-C4-C5;D7-C4-C5;D8-C4-C5;D9-C4-C5;D1-C5-C5;D2-C5-C5;D3-C5-C5;D4-C5-C5;D5-C5-C5;D6-C5-C5;D7-C5-C5;D8-C5-C5;D9-C5-C5;D1-C6-C5;D2-C6-C5;D3-C6-C5;D4-C6-C5;D5-C6-C5;D6-C6-C5;D7-C6-C5;D8-C6-C5;D9-C6-C5;D1-C7-C5;D2-C7-C5;D3-C7-C5;D4-C7-C5;D5-C7-C5;D6-C7-C5;D7-C7-C5;D8-C7-C5;D9-C7-C5;D1-C8-C5;D2-C8-C5;D3-C8-C5;D4-C8-C5;D5-C8-C5;D6-C8-C5;D7-C8-C5;D8-C8-C5;D9-C8-C5;D1-C9-C5;D2-C9-C5;D3-C9-C5;D4-C9-C5;D5-C9-C5;D6-C9-C5;D7-C9-C5;D8-C9-C5;D9-C9-C5;D1-C1-C6;D2-C1-C6;D3-C1-C6;D4-C1-C6;D5-C1-C6;D6-C1-C6;D7-C1-C6;D8-C1-C6;D9-C1-C6;D1-C2-C6;D2-C2-C6;D3-C2-C6;D4-C2-C6;D5-C2-C6;D6-C2-C6;D7-C2-C6;D8-C2-C6;D9-C2-C6;D1-C3-C6;D2-C3-C6;D3-C3-C6;D4-C3-C6;D5-C3-C6;D6-C3-C6;D7-C3-C6;D8-C3-C6;D9-C3-C6;D1-C4-C6;D2-C4-C6;D3-C4-C6;D4-C4-C6;D5-C4-C6;D6-C4-C6;D7-C4-C6;D8-C4-C6;D9-C4-C6;D1-C5-C6;D2-C5-C6;D3-C5-C6;D4-C5-C6;D5-C5-C6;D6-C5-C6;D7-C5-C6;D8-C5-C6;D9-C5-C6;D1-C6-C6;D2-C6-C6;D3-C6-C6;D4-C6-C6;D5-C6-C6;D6-C6-C6;D7-C6-C6;D8-C6-C6;D9-C6-C6;D1-C7-C6;D2-C7-C6;D3-C7-C6;D4-C7-C6;D5-C7-C6;D6-C7-C6;D7-C7-C6;D8-C7-C6;D9-C7-C6;D1-C8-C6;D2-C8-C6;D3-C8-C6;D4-C8-C6;D5-C8-C6;D6-C8-C6;D7-C8-C6;D8-C8-C6;D9-C8-C6;D1-C9-C6;D2-C9-C6;D3-C9-C6;D4-C9-C6;D5-C9-C6;D6-C9-C6;D7-C9-C6;D8-C9-C6;D9-C9-C6;D1-C1-C7;D2-C1-C7;D3-C1-C7;D4-C1-C7;D5-C1-C7;D6-C1-C7;D7-C1-C7;D8-C1-C7;D9-C1-C7;D1-C2-C7;D2-C2-C7;D3-C2-C7;D4-C2-C7;D5-C2-C7;D6-C2-C7;D7-C2-C7;D8-C2-C7;D9-C2-C7;D1-C3-C7;D2-C3-C7;D3-C3-C7;D4-C3-C7;D5-C3-C7;D6-C3-C7;D7-C3-C7;D8-C3-C7;D9-C3-C7;D1-C4-C7;D2-C4-C7;D3-C4-C7;D4-C4-C7;D5-C4-C7;D6-C4-C7;D7-C4-C7;D8-C4-C7;D9-C4-C7;D1-C5-C7;D2-C5-C7;D3-C5-C7;D4-C5-C7;D5-C5-C7;D6-C5-C7;D7-C5-C7;D8-C5-C7;D9-C5-C7;D1-C6-C7;D2-C6-C7;D3-C6-C7;D4-C6-C7;D5-C6-C7;D6-C6-C7;D7-C6-C7;D8-C6-C7;D9-C6-C7;D1-C7-C7;D2-C7-C7;D3-C7-C7;D4-C7-C7;D5-C7-C7;D6-C7-C7;D7-C7-C7;D8-C7-C7;D9-C7-C7;D1-C8-C7;D2-C8-C7;D3-C8-C7;D4-C8-C7;D5-C8-C7;D6-C8-C7;D7-C8-C7;D8-C8-C7;D9-C8-C7;D1-C9-C7;D2-C9-C7;D3-C9-C7;D4-C9-C7;D5-C9-C7;D6-C9-C7;D7-C9-C7;D8-C9-C7;D9-C9-C7;D1-C1-C8;D2-C1-C8;D3-C1-C8;D4-C1-C8;D5-C1-C8;D6-C1-C8;D7-C1-C8;D8-C1-C8;D9-C1-C8;D1-C2-C8;D2-C2-C8;D3-C2-C8;D4-C2-C8;D5-C2-C8;D6-C2-C8;D7-C2-C8;D8-C2-C8;D9-C2-C8;D1-C3-C8;D2-C3-C8;D3-C3-C8;D4-C3-C8;D5-C3-C8;D6-C3-C8;D7-C3-C8;D8-C3-C8;D9-C3-C8;D1-C4-C8;D2-C4-C8;D3-C4-C8;D4-C4-C8;D5-C4-C8;D6-C4-C8;D7-C4-C8;D8-C4-C8;D9-C4-C8;D1-C5-C8;D2-C5-C8;D3-C5-C8;D4-C5-C8;D5-C5-C8;D6-C5-C8;D7-C5-C8;D8-C5-C8;D9-C5-C8;D1-C6-C8;D2-C6-C8;D3-C6-C8;D4-C6-C8;D5-C6-C8;D6-C6-C8;D7-C6-C8;D8-C6-C8;D9-C6-C8;D1-C7-C8;D2-C7-C8;D3-C7-C8;D4-C7-C8;D5-C7-C8;D6-C7-C8;D7-C7-C8;D8-C7-C8;D9-C7-C8;D1-C8-C8;D2-C8-C8;D3-C8-C8;D4-C8-C8;D5-C8-C8;D6-C8-C8;D7-C8-C8;D8-C8-C8;D9-C8-C8;D1-C9-C8;D2-C9-C8;D3-C9-C8;D4-C9-C8;D5-C9-C8;D6-C9-C8;D7-C9-C8;D8-C9-C8;D9-C9-C8;D1-C1-C9;D2-C1-C9;D3-C1-C9;D4-C1-C9;D5-C1-C9;D6-C1-C9;D7-C1-C9;D8-C1-C9;D9-C1-C9;D1-C2-C9;D2-C2-C9;D3-C2-C9;D4-C2-C9;D5-C2-C9;D6-C2-C9;D7-C2-C9;D8-C2-C9;D9-C2-C9;D1-C3-C9;D2-C3-C9;D3-C3-C9;D4-C3-C9;D5-C3-C9;D6-C3-C9;D7-C3-C9;D8-C3-C9;D9-C3-C9;D1-C4-C9;D2-C4-C9;D3-C4-C9;D4-C4-C9;D5-C4-C9;D6-C4-C9;D7-C4-C9;D8-C4-C9;D9-C4-C9;D1-C5-C9;D2-C5-C9;D3-C5-C9;D4-C5-C9;D5-C5-C9;D6-C5-C9;D7-C5-C9;D8-C5-C9;D9-C5-C9;D1-C6-C9;D2-C6-C9;D3-C6-C9;D4-C6-C9;D5-C6-C9;D6-C6-C9;D7-C6-C9;D8-C6-C9;D9-C6-C9;D1-C7-C9;D2-C7-C9;D3-C7-C9;D4-C7-C9;D5-C7-C9;D6-C7-C9;D7-C7-C9;D8-C7-C9;D9-C7-C9;D1-C8-C9;D2-C8-C9;D3-C8-C9;D4-C8-C9;D5-C8-C9;D6-C8-C9;D7-C8-C9;D8-C8-C9;D9-C8-C9;D1-C9-C9;D2-C9-C9;D3-C9-C9;D4-C9-C9;D5-C9-C9;D6-C9-C9;D7-C9-C9;D8-C9-C9;D9-C9-C9;D1-M1-C1;D2-M1-C1;D3-M1-C1;D4-M1-C1;D5-M1-C1;D6-M1-C1;D7-M1-C1;D8-M1-C1;D9-M1-C1;D1-M1-C2;D2-M1-C2;D3-M1-C2;D4-M1-C2;D5-M1-C2;D6-M1-C2;D7-M1-C2;D8-M1-C2;D9-M1-C2;D1-M1-C3;D2-M1-C3;D3-M1-C3;D4-M1-C3;D5-M1-C3;D6-M1-C3;D7-M1-C3;D8-M1-C3;D9-M1-C3;D1-M1-C4;D2-M1-C4;D3-M1-C4;D4-M1-C4;D5-M1-C4;D6-M1-C4;D7-M1-C4;D8-M1-C4;D9-M1-C4;D1-M1-C5;D2-M1-C5;D3-M1-C5;D4-M1-C5;D5-M1-C5;D6-M1-C5;D7-M1-C5;D8-M1-C5;D9-M1-C5;D1-M1-C6;D2-M1-C6;D3-M1-C6;D4-M1-C6;D5-M1-C6;D6-M1-C6;D7-M1-C6;D8-M1-C6;D9-M1-C6;D1-M1-C7;D2-M1-C7;D3-M1-C7;D4-M1-C7;D5-M1-C7;D6-M1-C7;D7-M1-C7;D8-M1-C7;D9-M1-C7;D1-M1-C8;D2-M1-C8;D3-M1-C8;D4-M1-C8;D5-M1-C8;D6-M1-C8;D7-M1-C8;D8-M1-C8;D9-M1-C8;D1-M1-C9;D2-M1-C9;D3-M1-C9;D4-M1-C9;D5-M1-C9;D6-M1-C9;D7-M1-C9;D8-M1-C9;D9-M1-C9;D1-M2-C1;D2-M2-C1;D3-M2-C1;D4-M2-C1;D5-M2-C1;D6-M2-C1;D7-M2-C1;D8-M2-C1;D9-M2-C1;D1-M2-C2;D2-M2-C2;D3-M2-C2;D4-M2-C2;D5-M2-C2;D6-M2-C2;D7-M2-C2;D8-M2-C2;D9-M2-C2;D1-M2-C3;D2-M2-C3;D3-M2-C3;D4-M2-C3;D5-M2-C3;D6-M2-C3;D7-M2-C3;D8-M2-C3;D9-M2-C3;D1-M2-C4;D2-M2-C4;D3-M2-C4;D4-M2-C4;D5-M2-C4;D6-M2-C4;D7-M2-C4;D8-M2-C4;D9-M2-C4;D1-M2-C5;D2-M2-C5;D3-M2-C5;D4-M2-C5;D5-M2-C5;D6-M2-C5;D7-M2-C5;D8-M2-C5;D9-M2-C5;D1-M2-C6;D2-M2-C6;D3-M2-C6;D4-M2-C6;D5-M2-C6;D6-M2-C6;D7-M2-C6;D8-M2-C6;D9-M2-C6;D1-M2-C7;D2-M2-C7;D3-M2-C7;D4-M2-C7;D5-M2-C7;D6-M2-C7;D7-M2-C7;D8-M2-C7;D9-M2-C7;D1-M2-C8;D2-M2-C8;D3-M2-C8;D4-M2-C8;D5-M2-C8;D6-M2-C8;D7-M2-C8;D8-M2-C8;D9-M2-C8;D1-M2-C9;D2-M2-C9;D3-M2-C9;D4-M2-C9;D5-M2-C9;D6-M2-C9;D7-M2-C9;D8-M2-C9;D9-M2-C9;D1-M3-C1;D2-M3-C1;D3-M3-C1;D4-M3-C1;D5-M3-C1;D6-M3-C1;D7-M3-C1;D8-M3-C1;D9-M3-C1;D1-M3-C2;D2-M3-C2;D3-M3-C2;D4-M3-C2;D5-M3-C2;D6-M3-C2;D7-M3-C2;D8-M3-C2;D9-M3-C2;D1-M3-C3;D2-M3-C3;D3-M3-C3;D4-M3-C3;D5-M3-C3;D6-M3-C3;D7-M3-C3;D8-M3-C3;D9-M3-C3;D1-M3-C4;D2-M3-C4;D3-M3-C4;D4-M3-C4;D5-M3-C4;D6-M3-C4;D7-M3-C4;D8-M3-C4;D9-M3-C4;D1-M3-C5;D2-M3-C5;D3-M3-C5;D4-M3-C5;D5-M3-C5;D6-M3-C5;D7-M3-C5;D8-M3-C5;D9-M3-C5;D1-M3-C6;D2-M3-C6;D3-M3-C6;D4-M3-C6;D5-M3-C6;D6-M3-C6;D7-M3-C6;D8-M3-C6;D9-M3-C6;D1-M3-C7;D2-M3-C7;D3-M3-C7;D4-M3-C7;D5-M3-C7;D6-M3-C7;D7-M3-C7;D8-M3-C7;D9-M3-C7;D1-M3-C8;D2-M3-C8;D3-M3-C8;D4-M3-C8;D5-M3-C8;D6-M3-C8;D7-M3-C8;D8-M3-C8;D9-M3-C8;D1-M3-C9;D2-M3-C9;D3-M3-C9;D4-M3-C9;D5-M3-C9;D6-M3-C9;D7-M3-C9;D8-M3-C9;D9-M3-C9;D1-M4-C1;D2-M4-C1;D3-M4-C1;D4-M4-C1;D5-M4-C1;D6-M4-C1;D7-M4-C1;D8-M4-C1;D9-M4-C1;D1-M4-C2;D2-M4-C2;D3-M4-C2;D4-M4-C2;D5-M4-C2;D6-M4-C2;D7-M4-C2;D8-M4-C2;D9-M4-C2;D1-M4-C3;D2-M4-C3;D3-M4-C3;D4-M4-C3;D5-M4-C3;D6-M4-C3;D7-M4-C3;D8-M4-C3;D9-M4-C3;D1-M4-C4;D2-M4-C4;D3-M4-C4;D4-M4-C4;D5-M4-C4;D6-M4-C4;D7-M4-C4;D8-M4-C4;D9-M4-C4;D1-M4-C5;D2-M4-C5;D3-M4-C5;D4-M4-C5;D5-M4-C5;D6-M4-C5;D7-M4-C5;D8-M4-C5;D9-M4-C5;D1-M4-C6;D2-M4-C6;D3-M4-C6;D4-M4-C6;D5-M4-C6;D6-M4-C6;D7-M4-C6;D8-M4-C6;D9-M4-C6;D1-M4-C7;D2-M4-C7;D3-M4-C7;D4-M4-C7;D5-M4-C7;D6-M4-C7;D7-M4-C7;D8-M4-C7;D9-M4-C7;D1-M4-C8;D2-M4-C8;D3-M4-C8;D4-M4-C8;D5-M4-C8;D6-M4-C8;D7-M4-C8;D8-M4-C8;D9-M4-C8;D1-M4-C9;D2-M4-C9;D3-M4-C9;D4-M4-C9;D5-M4-C9;D6-M4-C9;D7-M4-C9;D8-M4-C9;D9-M4-C9;D1-M5-C1;D2-M5-C1;D3-M5-C1;D4-M5-C1;D5-M5-C1;D6-M5-C1;D7-M5-C1;D8-M5-C1;D9-M5-C1;D1-M5-C2;D2-M5-C2;D3-M5-C2;D4-M5-C2;D5-M5-C2;D6-M5-C2;D7-M5-C2;D8-M5-C2;D9-M5-C2;D1-M5-C3;D2-M5-C3;D3-M5-C3;D4-M5-C3;D5-M5-C3;D6-M5-C3;D7-M5-C3;D8-M5-C3;D9-M5-C3;D1-M5-C4;D2-M5-C4;D3-M5-C4;D4-M5-C4;D5-M5-C4;D6-M5-C4;D7-M5-C4;D8-M5-C4;D9-M5-C4;D1-M5-C5;D2-M5-C5;D3-M5-C5;D4-M5-C5;D5-M5-C5;D6-M5-C5;D7-M5-C5;D8-M5-C5;D9-M5-C5;D1-M5-C6;D2-M5-C6;D3-M5-C6;D4-M5-C6;D5-M5-C6;D6-M5-C6;D7-M5-C6;D8-M5-C6;D9-M5-C6;D1-M5-C7;D2-M5-C7;D3-M5-C7;D4-M5-C7;D5-M5-C7;D6-M5-C7;D7-M5-C7;D8-M5-C7;D9-M5-C7;D1-M5-C8;D2-M5-C8;D3-M5-C8;D4-M5-C8;D5-M5-C8;D6-M5-C8;D7-M5-C8;D8-M5-C8;D9-M5-C8;D1-M5-C9;D2-M5-C9;D3-M5-C9;D4-M5-C9;D5-M5-C9;D6-M5-C9;D7-M5-C9;D8-M5-C9;D9-M5-C9;D1-C1-C1;D2-C1-C1;D3-C1-C1;D4-C1-C1;D5-C1-C1;D6-C1-C1;D7-C1-C1;D8-C1-C1;D9-C1-C1;D1-C1-C2;D2-C1-C2;D3-C1-C2;D4-C1-C2;D5-C1-C2;D6-C1-C2;D7-C1-C2;D8-C1-C2;D9-C1-C2;D1-C1-C3;D2-C1-C3;D3-C1-C3;D4-C1-C3;D5-C1-C3;D6-C1-C3;D7-C1-C3;D8-C1-C3;D9-C1-C3;D1-C1-C4;D2-C1-C4;D3-C1-C4;D4-C1-C4;D5-C1-C4;D6-C1-C4;D7-C1-C4;D8-C1-C4;D9-C1-C4;D1-C1-C5;D2-C1-C5;D3-C1-C5;D4-C1-C5;D5-C1-C5;D6-C1-C5;D7-C1-C5;D8-C1-C5;D9-C1-C5;D1-C1-C6;D2-C1-C6;D3-C1-C6;D4-C1-C6;D5-C1-C6;D6-C1-C6;D7-C1-C6;D8-C1-C6;D9-C1-C6;D1-C1-C7;D2-C1-C7;D3-C1-C7;D4-C1-C7;D5-C1-C7;D6-C1-C7;D7-C1-C7;D8-C1-C7;D9-C1-C7;D1-C1-C8;D2-C1-C8;D3-C1-C8;D4-C1-C8;D5-C1-C8;D6-C1-C8;D7-C1-C8;D8-C1-C8;D9-C1-C8;D1-C1-C9;D2-C1-C9;D3-C1-C9;D4-C1-C9;D5-C1-C9;D6-C1-C9;D7-C1-C9;D8-C1-C9;D9-C1-C9;D1-C2-C1;D2-C2-C1;D3-C2-C1;D4-C2-C1;D5-C2-C1;D6-C2-C1;D7-C2-C1;D8-C2-C1;D9-C2-C1;D1-C2-C2;D2-C2-C2;D3-C2-C2;D4-C2-C2;D5-C2-C2;D6-C2-C2;D7-C2-C2;D8-C2-C2;D9-C2-C2;D1-C2-C3;D2-C2-C3;D3-C2-C3;D4-C2-C3;D5-C2-C3;D6-C2-C3;D7-C2-C3;D8-C2-C3;D9-C2-C3;D1-C2-C4;D2-C2-C4;D3-C2-C4;D4-C2-C4;D5-C2-C4;D6-C2-C4;D7-C2-C4;D8-C2-C4;D9-C2-C4;D1-C2-C5;D2-C2-C5;D3-C2-C5;D4-C2-C5;D5-C2-C5;D6-C2-C5;D7-C2-C5;D8-C2-C5;D9-C2-C5;D1-C2-C6;D2-C2-C6;D3-C2-C6;D4-C2-C6;D5-C2-C6;D6-C2-C6;D7-C2-C6;D8-C2-C6;D9-C2-C6;D1-C2-C7;D2-C2-C7;D3-C2-C7;D4-C2-C7;D5-C2-C7;D6-C2-C7;D7-C2-C7;D8-C2-C7;D9-C2-C7;D1-C2-C8;D2-C2-C8;D3-C2-C8;D4-C2-C8;D5-C2-C8;D6-C2-C8;D7-C2-C8;D8-C2-C8;D9-C2-C8;D1-C2-C9;D2-C2-C9;D3-C2-C9;D4-C2-C9;D5-C2-C9;D6-C2-C9;D7-C2-C9;D8-C2-C9;D9-C2-C9;D1-C3-C1;D2-C3-C1;D3-C3-C1;D4-C3-C1;D5-C3-C1;D6-C3-C1;D7-C3-C1;D8-C3-C1;D9-C3-C1;D1-C3-C2;D2-C3-C2;D3-C3-C2;D4-C3-C2;D5-C3-C2;D6-C3-C2;D7-C3-C2;D8-C3-C2;D9-C3-C2;D1-C3-C3;D2-C3-C3;D3-C3-C3;D4-C3-C3;D5-C3-C3;D6-C3-C3;D7-C3-C3;D8-C3-C3;D9-C3-C3;D1-C3-C4;D2-C3-C4;D3-C3-C4;D4-C3-C4;D5-C3-C4;D6-C3-C4;D7-C3-C4;D8-C3-C4;D9-C3-C4;D1-C3-C5;D2-C3-C5;D3-C3-C5;D4-C3-C5;D5-C3-C5;D6-C3-C5;D7-C3-C5;D8-C3-C5;D9-C3-C5;D1-C3-C6;D2-C3-C6;D3-C3-C6;D4-C3-C6;D5-C3-C6;D6-C3-C6;D7-C3-C6;D8-C3-C6;D9-C3-C6;D1-C3-C7;D2-C3-C7;D3-C3-C7;D4-C3-C7;D5-C3-C7;D6-C3-C7;D7-C3-C7;D8-C3-C7;D9-C3-C7;D1-C3-C8;D2-C3-C8;D3-C3-C8;D4-C3-C8;D5-C3-C8;D6-C3-C8;D7-C3-C8;D8-C3-C8;D9-C3-C8;D1-C3-C9;D2-C3-C9;D3-C3-C9;D4-C3-C9;D5-C3-C9;D6-C3-C9;D7-C3-C9;D8-C3-C9;D9-C3-C9;D1-C4-C1;D2-C4-C1;D3-C4-C1;D4-C4-C1;D5-C4-C1;D6-C4-C1;D7-C4-C1;D8-C4-C1;D9-C4-C1;D1-C4-C2;D2-C4-C2;D3-C4-C2;D4-C4-C2;D5-C4-C2;D6-C4-C2;D7-C4-C2;D8-C4-C2;D9-C4-C2;D1-C4-C3;D2-C4-C3;D3-C4-C3;D4-C4-C3;D5-C4-C3;D6-C4-C3;D7-C4-C3;D8-C4-C3;D9-C4-C3;D1-C4-C4;D2-C4-C4;D3-C4-C4;D4-C4-C4;D5-C4-C4;D6-C4-C4;D7-C4-C4;D8-C4-C4;D9-C4-C4;D1-C4-C5;D2-C4-C5;D3-C4-C5;D4-C4-C5;D5-C4-C5;D6-C4-C5;D7-C4-C5;D8-C4-C5;D9-C4-C5;D1-C4-C6;D2-C4-C6;D3-C4-C6;D4-C4-C6;D5-C4-C6;D6-C4-C6;D7-C4-C6;D8-C4-C6;D9-C4-C6;D1-C4-C7;D2-C4-C7;D3-C4-C7;D4-C4-C7;D5-C4-C7;D6-C4-C7;D7-C4-C7;D8-C4-C7;D9-C4-C7;D1-C4-C8;D2-C4-C8;D3-C4-C8;D4-C4-C8;D5-C4-C8;D6-C4-C8;D7-C4-C8;D8-C4-C8;D9-C4-C8;D1-C4-C9;D2-C4-C9;D3-C4-C9;D4-C4-C9;D5-C4-C9;D6-C4-C9;D7-C4-C9;D8-C4-C9;D9-C4-C9;D1-C5-C1;D2-C5-C1;D3-C5-C1;D4-C5-C1;D5-C5-C1;D6-C5-C1;D7-C5-C1;D8-C5-C1;D9-C5-C1;D1-C5-C2;D2-C5-C2;D3-C5-C2;D4-C5-C2;D5-C5-C2;D6-C5-C2;D7-C5-C2;D8-C5-C2;D9-C5-C2;D1-C5-C3;D2-C5-C3;D3-C5-C3;D4-C5-C3;D5-C5-C3;D6-C5-C3;D7-C5-C3;D8-C5-C3;D9-C5-C3;D1-C5-C4;D2-C5-C4;D3-C5-C4;D4-C5-C4;D5-C5-C4;D6-C5-C4;D7-C5-C4;D8-C5-C4;D9-C5-C4;D1-C5-C5;D2-C5-C5;D3-C5-C5;D4-C5-C5;D5-C5-C5;D6-C5-C5;D7-C5-C5;D8-C5-C5;D9-C5-C5;D1-C5-C6;D2-C5-C6;D3-C5-C6;D4-C5-C6;D5-C5-C6;D6-C5-C6;D7-C5-C6;D8-C5-C6;D9-C5-C6;D1-C5-C7;D2-C5-C7;D3-C5-C7;D4-C5-C7;D5-C5-C7;D6-C5-C7;D7-C5-C7;D8-C5-C7;D9-C5-C7;D1-C5-C8;D2-C5-C8;D3-C5-C8;D4-C5-C8;D5-C5-C8;D6-C5-C8;D7-C5-C8;D8-C5-C8;D9-C5-C8;D1-C5-C9;D2-C5-C9;D3-C5-C9;D4-C5-C9;D5-C5-C9;D6-C5-C9;D7-C5-C9;D8-C5-C9;D9-C5-C9;D1-C6-C1;D2-C6-C1;D3-C6-C1;D4-C6-C1;D5-C6-C1;D6-C6-C1;D7-C6-C1;D8-C6-C1;D9-C6-C1;D1-C6-C2;D2-C6-C2;D3-C6-C2;D4-C6-C2;D5-C6-C2;D6-C6-C2;D7-C6-C2;D8-C6-C2;D9-C6-C2;D1-C6-C3;D2-C6-C3;D3-C6-C3;D4-C6-C3;D5-C6-C3;D6-C6-C3;D7-C6-C3;D8-C6-C3;D9-C6-C3;D1-C6-C4;D2-C6-C4;D3-C6-C4;D4-C6-C4;D5-C6-C4;D6-C6-C4;D7-C6-C4;D8-C6-C4;D9-C6-C4;D1-C6-C5;D2-C6-C5;D3-C6-C5;D4-C6-C5;D5-C6-C5;D6-C6-C5;D7-C6-C5;D8-C6-C5;D9-C6-C5;D1-C6-C6;D2-C6-C6;D3-C6-C6;D4-C6-C6;D5-C6-C6;D6-C6-C6;D7-C6-C6;D8-C6-C6;D9-C6-C6;D1-C6-C7;D2-C6-C7;D3-C6-C7;D4-C6-C7;D5-C6-C7;D6-C6-C7;D7-C6-C7;D8-C6-C7;D9-C6-C7;D1-C6-C8;D2-C6-C8;D3-C6-C8;D4-C6-C8;D5-C6-C8;D6-C6-C8;D7-C6-C8;D8-C6-C8;D9-C6-C8;D1-C6-C9;D2-C6-C9;D3-C6-C9;D4-C6-C9;D5-C6-C9;D6-C6-C9;D7-C6-C9;D8-C6-C9;D9-C6-C9;D1-C7-C1;D2-C7-C1;D3-C7-C1;D4-C7-C1;D5-C7-C1;D6-C7-C1;D7-C7-C1;D8-C7-C1;D9-C7-C1;D1-C7-C2;D2-C7-C2;D3-C7-C2;D4-C7-C2;D5-C7-C2;D6-C7-C2;D7-C7-C2;D8-C7-C2;D9-C7-C2;D1-C7-C3;D2-C7-C3;D3-C7-C3;D4-C7-C3;D5-C7-C3;D6-C7-C3;D7-C7-C3;D8-C7-C3;D9-C7-C3;D1-C7-C4;D2-C7-C4;D3-C7-C4;D4-C7-C4;D5-C7-C4;D6-C7-C4;D7-C7-C4;D8-C7-C4;D9-C7-C4;D1-C7-C5;D2-C7-C5;D3-C7-C5;D4-C7-C5;D5-C7-C5;D6-C7-C5;D7-C7-C5;D8-C7-C5;D9-C7-C5;D1-C7-C6;D2-C7-C6;D3-C7-C6;D4-C7-C6;D5-C7-C6;D6-C7-C6;D7-C7-C6;D8-C7-C6;D9-C7-C6;D1-C7-C7;D2-C7-C7;D3-C7-C7;D4-C7-C7;D5-C7-C7;D6-C7-C7;D7-C7-C7;D8-C7-C7;D9-C7-C7;D1-C7-C8;D2-C7-C8;D3-C7-C8;D4-C7-C8;D5-C7-C8;D6-C7-C8;D7-C7-C8;D8-C7-C8;D9-C7-C8;D1-C7-C9;D2-C7-C9;D3-C7-C9;D4-C7-C9;D5-C7-C9;D6-C7-C9;D7-C7-C9;D8-C7-C9;D9-C7-C9;D1-C8-C1;D2-C8-C1;D3-C8-C1;D4-C8-C1;D5-C8-C1;D6-C8-C1;D7-C8-C1;D8-C8-C1;D9-C8-C1;D1-C8-C2;D2-C8-C2;D3-C8-C2;D4-C8-C2;D5-C8-C2;D6-C8-C2;D7-C8-C2;D8-C8-C2;D9-C8-C2;D1-C8-C3;D2-C8-C3;D3-C8-C3;D4-C8-C3;D5-C8-C3;D6-C8-C3;D7-C8-C3;D8-C8-C3;D9-C8-C3;D1-C8-C4;D2-C8-C4;D3-C8-C4;D4-C8-C4;D5-C8-C4;D6-C8-C4;D7-C8-C4;D8-C8-C4;D9-C8-C4;D1-C8-C5;D2-C8-C5;D3-C8-C5;D4-C8-C5;D5-C8-C5;D6-C8-C5;D7-C8-C5;D8-C8-C5;D9-C8-C5;D1-C8-C6;D2-C8-C6;D3-C8-C6;D4-C8-C6;D5-C8-C6;D6-C8-C6;D7-C8-C6;D8-C8-C6;D9-C8-C6;D1-C8-C7;D2-C8-C7;D3-C8-C7;D4-C8-C7;D5-C8-C7;D6-C8-C7;D7-C8-C7;D8-C8-C7;D9-C8-C7;D1-C8-C8;D2-C8-C8;D3-C8-C8;D4-C8-C8;D5-C8-C8;D6-C8-C8;D7-C8-C8;D8-C8-C8;D9-C8-C8;D1-C8-C9;D2-C8-C9;D3-C8-C9;D4-C8-C9;D5-C8-C9;D6-C8-C9;D7-C8-C9;D8-C8-C9;D9-C8-C9;D1-C9-C1;D2-C9-C1;D3-C9-C1;D4-C9-C1;D5-C9-C1;D6-C9-C1;D7-C9-C1;D8-C9-C1;D9-C9-C1;D1-C9-C2;D2-C9-C2;D3-C9-C2;D4-C9-C2;D5-C9-C2;D6-C9-C2;D7-C9-C2;D8-C9-C2;D9-C9-C2;D1-C9-C3;D2-C9-C3;D3-C9-C3;D4-C9-C3;D5-C9-C3;D6-C9-C3;D7-C9-C3;D8-C9-C3;D9-C9-C3;D1-C9-C4;D2-C9-C4;D3-C9-C4;D4-C9-C4;D5-C9-C4;D6-C9-C4;D7-C9-C4;D8-C9-C4;D9-C9-C4;D1-C9-C5;D2-C9-C5;D3-C9-C5;D4-C9-C5;D5-C9-C5;D6-C9-C5;D7-C9-C5;D8-C9-C5;D9-C9-C5;D1-C9-C6;D2-C9-C6;D3-C9-C6;D4-C9-C6;D5-C9-C6;D6-C9-C6;D7-C9-C6;D8-C9-C6;D9-C9-C6;D1-C9-C7;D2-C9-C7;D3-C9-C7;D4-C9-C7;D5-C9-C7;D6-C9-C7;D7-C9-C7;D8-C9-C7;D9-C9-C7;D1-C9-C8;D2-C9-C8;D3-C9-C8;D4-C9-C8;D5-C9-C8;D6-C9-C8;D7-C9-C8;D8-C9-C8;D9-C9-C8;D1-C9-C9;D2-C9-C9;D3-C9-C9;D4-C9-C9;D5-C9-C9;D6-C9-C9;D7-C9-C9;D8-C9-C9;D9-C9-C9;C1-D1-M1;C1-D2-M1;C1-D3-M1;C1-D4-M1;C1-D5-M1;C1-D6-M1;C1-D7-M1;C1-D8-M1;C1-D9-M1;C2-D1-M1;C2-D2-M1;C2-D3-M1;C2-D4-M1;C2-D5-M1;C2-D6-M1;C2-D7-M1;C2-D8-M1;C2-D9-M1;C3-D1-M1;C3-D2-M1;C3-D3-M1;C3-D4-M1;C3-D5-M1;C3-D6-M1;C3-D7-M1;C3-D8-M1;C3-D9-M1;C4-D1-M1;C4-D2-M1;C4-D3-M1;C4-D4-M1;C4-D5-M1;C4-D6-M1;C4-D7-M1;C4-D8-M1;C4-D9-M1;C5-D1-M1;C5-D2-M1;C5-D3-M1;C5-D4-M1;C5-D5-M1;C5-D6-M1;C5-D7-M1;C5-D8-M1;C5-D9-M1;C6-D1-M1;C6-D2-M1;C6-D3-M1;C6-D4-M1;C6-D5-M1;C6-D6-M1;C6-D7-M1;C6-D8-M1;C6-D9-M1;C7-D1-M1;C7-D2-M1;C7-D3-M1;C7-D4-M1;C7-D5-M1;C7-D6-M1;C7-D7-M1;C7-D8-M1;C7-D9-M1;C8-D1-M1;C8-D2-M1;C8-D3-M1;C8-D4-M1;C8-D5-M1;C8-D6-M1;C8-D7-M1;C8-D8-M1;C8-D9-M1;C9-D1-M1;C9-D2-M1;C9-D3-M1;C9-D4-M1;C9-D5-M1;C9-D6-M1;C9-D7-M1;C9-D8-M1;C9-D9-M1;C1-D1-M2;C1-D2-M2;C1-D3-M2;C1-D4-M2;C1-D5-M2;C1-D6-M2;C1-D7-M2;C1-D8-M2;C1-D9-M2;C2-D1-M2;C2-D2-M2;C2-D3-M2;C2-D4-M2;C2-D5-M2;C2-D6-M2;C2-D7-M2;C2-D8-M2;C2-D9-M2;C3-D1-M2;C3-D2-M2;C3-D3-M2;C3-D4-M2;C3-D5-M2;C3-D6-M2;C3-D7-M2;C3-D8-M2;C3-D9-M2;C4-D1-M2;C4-D2-M2;C4-D3-M2;C4-D4-M2;C4-D5-M2;C4-D6-M2;C4-D7-M2;C4-D8-M2;C4-D9-M2;C5-D1-M2;C5-D2-M2;C5-D3-M2;C5-D4-M2;C5-D5-M2;C5-D6-M2;C5-D7-M2;C5-D8-M2;C5-D9-M2;C6-D1-M2;C6-D2-M2;C6-D3-M2;C6-D4-M2;C6-D5-M2;C6-D6-M2;C6-D7-M2;C6-D8-M2;C6-D9-M2;C7-D1-M2;C7-D2-M2;C7-D3-M2;C7-D4-M2;C7-D5-M2;C7-D6-M2;C7-D7-M2;C7-D8-M2;C7-D9-M2;C8-D1-M2;C8-D2-M2;C8-D3-M2;C8-D4-M2;C8-D5-M2;C8-D6-M2;C8-D7-M2;C8-D8-M2;C8-D9-M2;C9-D1-M2;C9-D2-M2;C9-D3-M2;C9-D4-M2;C9-D5-M2;C9-D6-M2;C9-D7-M2;C9-D8-M2;C9-D9-M2;C1-D1-M3;C1-D2-M3;C1-D3-M3;C1-D4-M3;C1-D5-M3;C1-D6-M3;C1-D7-M3;C1-D8-M3;C1-D9-M3;C2-D1-M3;C2-D2-M3;C2-D3-M3;C2-D4-M3;C2-D5-M3;C2-D6-M3;C2-D7-M3;C2-D8-M3;C2-D9-M3;C3-D1-M3;C3-D2-M3;C3-D3-M3;C3-D4-M3;C3-D5-M3;C3-D6-M3;C3-D7-M3;C3-D8-M3;C3-D9-M3;C4-D1-M3;C4-D2-M3;C4-D3-M3;C4-D4-M3;C4-D5-M3;C4-D6-M3;C4-D7-M3;C4-D8-M3;C4-D9-M3;C5-D1-M3;C5-D2-M3;C5-D3-M3;C5-D4-M3;C5-D5-M3;C5-D6-M3;C5-D7-M3;C5-D8-M3;C5-D9-M3;C6-D1-M3;C6-D2-M3;C6-D3-M3;C6-D4-M3;C6-D5-M3;C6-D6-M3;C6-D7-M3;C6-D8-M3;C6-D9-M3;C7-D1-M3;C7-D2-M3;C7-D3-M3;C7-D4-M3;C7-D5-M3;C7-D6-M3;C7-D7-M3;C7-D8-M3;C7-D9-M3;C8-D1-M3;C8-D2-M3;C8-D3-M3;C8-D4-M3;C8-D5-M3;C8-D6-M3;C8-D7-M3;C8-D8-M3;C8-D9-M3;C9-D1-M3;C9-D2-M3;C9-D3-M3;C9-D4-M3;C9-D5-M3;C9-D6-M3;C9-D7-M3;C9-D8-M3;C9-D9-M3;C1-D1-M4;C1-D2-M4;C1-D3-M4;C1-D4-M4;C1-D5-M4;C1-D6-M4;C1-D7-M4;C1-D8-M4;C1-D9-M4;C2-D1-M4;C2-D2-M4;C2-D3-M4;C2-D4-M4;C2-D5-M4;C2-D6-M4;C2-D7-M4;C2-D8-M4;C2-D9-M4;C3-D1-M4;C3-D2-M4;C3-D3-M4;C3-D4-M4;C3-D5-M4;C3-D6-M4;C3-D7-M4;C3-D8-M4;C3-D9-M4;C4-D1-M4;C4-D2-M4;C4-D3-M4;C4-D4-M4;C4-D5-M4;C4-D6-M4;C4-D7-M4;C4-D8-M4;C4-D9-M4;C5-D1-M4;C5-D2-M4;C5-D3-M4;C5-D4-M4;C5-D5-M4;C5-D6-M4;C5-D7-M4;C5-D8-M4;C5-D9-M4;C6-D1-M4;C6-D2-M4;C6-D3-M4;C6-D4-M4;C6-D5-M4;C6-D6-M4;C6-D7-M4;C6-D8-M4;C6-D9-M4;C7-D1-M4;C7-D2-M4;C7-D3-M4;C7-D4-M4;C7-D5-M4;C7-D6-M4;C7-D7-M4;C7-D8-M4;C7-D9-M4;C8-D1-M4;C8-D2-M4;C8-D3-M4;C8-D4-M4;C8-D5-M4;C8-D6-M4;C8-D7-M4;C8-D8-M4;C8-D9-M4;C9-D1-M4;C9-D2-M4;C9-D3-M4;C9-D4-M4;C9-D5-M4;C9-D6-M4;C9-D7-M4;C9-D8-M4;C9-D9-M4;C1-D1-M5;C1-D2-M5;C1-D3-M5;C1-D4-M5;C1-D5-M5;C1-D6-M5;C1-D7-M5;C1-D8-M5;C1-D9-M5;C2-D1-M5;C2-D2-M5;C2-D3-M5;C2-D4-M5;C2-D5-M5;C2-D6-M5;C2-D7-M5;C2-D8-M5;C2-D9-M5;C3-D1-M5;C3-D2-M5;C3-D3-M5;C3-D4-M5;C3-D5-M5;C3-D6-M5;C3-D7-M5;C3-D8-M5;C3-D9-M5;C4-D1-M5;C4-D2-M5;C4-D3-M5;C4-D4-M5;C4-D5-M5;C4-D6-M5;C4-D7-M5;C4-D8-M5;C4-D9-M5;C5-D1-M5;C5-D2-M5;C5-D3-M5;C5-D4-M5;C5-D5-M5;C5-D6-M5;C5-D7-M5;C5-D8-M5;C5-D9-M5;C6-D1-M5;C6-D2-M5;C6-D3-M5;C6-D4-M5;C6-D5-M5;C6-D6-M5;C6-D7-M5;C6-D8-M5;C6-D9-M5;C7-D1-M5;C7-D2-M5;C7-D3-M5;C7-D4-M5;C7-D5-M5;C7-D6-M5;C7-D7-M5;C7-D8-M5;C7-D9-M5;C8-D1-M5;C8-D2-M5;C8-D3-M5;C8-D4-M5;C8-D5-M5;C8-D6-M5;C8-D7-M5;C8-D8-M5;C8-D9-M5;C9-D1-M5;C9-D2-M5;C9-D3-M5;C9-D4-M5;C9-D5-M5;C9-D6-M5;C9-D7-M5;C9-D8-M5;C9-D9-M5;C1-D1-C1;C1-D2-C1;C1-D3-C1;C1-D4-C1;C1-D5-C1;C1-D6-C1;C1-D7-C1;C1-D8-C1;C1-D9-C1;C2-D1-C1;C2-D2-C1;C2-D3-C1;C2-D4-C1;C2-D5-C1;C2-D6-C1;C2-D7-C1;C2-D8-C1;C2-D9-C1;C3-D1-C1;C3-D2-C1;C3-D3-C1;C3-D4-C1;C3-D5-C1;C3-D6-C1;C3-D7-C1;C3-D8-C1;C3-D9-C1;C4-D1-C1;C4-D2-C1;C4-D3-C1;C4-D4-C1;C4-D5-C1;C4-D6-C1;C4-D7-C1;C4-D8-C1;C4-D9-C1;C5-D1-C1;C5-D2-C1;C5-D3-C1;C5-D4-C1;C5-D5-C1;C5-D6-C1;C5-D7-C1;C5-D8-C1;C5-D9-C1;C6-D1-C1;C6-D2-C1;C6-D3-C1;C6-D4-C1;C6-D5-C1;C6-D6-C1;C6-D7-C1;C6-D8-C1;C6-D9-C1;C7-D1-C1;C7-D2-C1;C7-D3-C1;C7-D4-C1;C7-D5-C1;C7-D6-C1;C7-D7-C1;C7-D8-C1;C7-D9-C1;C8-D1-C1;C8-D2-C1;C8-D3-C1;C8-D4-C1;C8-D5-C1;C8-D6-C1;C8-D7-C1;C8-D8-C1;C8-D9-C1;C9-D1-C1;C9-D2-C1;C9-D3-C1;C9-D4-C1;C9-D5-C1;C9-D6-C1;C9-D7-C1;C9-D8-C1;C9-D9-C1;C1-D1-C2;C1-D2-C2;C1-D3-C2;C1-D4-C2;C1-D5-C2;C1-D6-C2;C1-D7-C2;C1-D8-C2;C1-D9-C2;C2-D1-C2;C2-D2-C2;C2-D3-C2;C2-D4-C2;C2-D5-C2;C2-D6-C2;C2-D7-C2;C2-D8-C2;C2-D9-C2;C3-D1-C2;C3-D2-C2;C3-D3-C2;C3-D4-C2;C3-D5-C2;C3-D6-C2;C3-D7-C2;C3-D8-C2;C3-D9-C2;C4-D1-C2;C4-D2-C2;C4-D3-C2;C4-D4-C2;C4-D5-C2;C4-D6-C2;C4-D7-C2;C4-D8-C2;C4-D9-C2;C5-D1-C2;C5-D2-C2;C5-D3-C2;C5-D4-C2;C5-D5-C2;C5-D6-C2;C5-D7-C2;C5-D8-C2;C5-D9-C2;C6-D1-C2;C6-D2-C2;C6-D3-C2;C6-D4-C2;C6-D5-C2;C6-D6-C2;C6-D7-C2;C6-D8-C2;C6-D9-C2;C7-D1-C2;C7-D2-C2;C7-D3-C2;C7-D4-C2;C7-D5-C2;C7-D6-C2;C7-D7-C2;C7-D8-C2;C7-D9-C2;C8-D1-C2;C8-D2-C2;C8-D3-C2;C8-D4-C2;C8-D5-C2;C8-D6-C2;C8-D7-C2;C8-D8-C2;C8-D9-C2;C9-D1-C2;C9-D2-C2;C9-D3-C2;C9-D4-C2;C9-D5-C2;C9-D6-C2;C9-D7-C2;C9-D8-C2;C9-D9-C2;C1-D1-C3;C1-D2-C3;C1-D3-C3;C1-D4-C3;C1-D5-C3;C1-D6-C3;C1-D7-C3;C1-D8-C3;C1-D9-C3;C2-D1-C3;C2-D2-C3;C2-D3-C3;C2-D4-C3;C2-D5-C3;C2-D6-C3;C2-D7-C3;C2-D8-C3;C2-D9-C3;C3-D1-C3;C3-D2-C3;C3-D3-C3;C3-D4-C3;C3-D5-C3;C3-D6-C3;C3-D7-C3;C3-D8-C3;C3-D9-C3;C4-D1-C3;C4-D2-C3;C4-D3-C3;C4-D4-C3;C4-D5-C3;C4-D6-C3;C4-D7-C3;C4-D8-C3;C4-D9-C3;C5-D1-C3;C5-D2-C3;C5-D3-C3;C5-D4-C3;C5-D5-C3;C5-D6-C3;C5-D7-C3;C5-D8-C3;C5-D9-C3;C6-D1-C3;C6-D2-C3;C6-D3-C3;C6-D4-C3;C6-D5-C3;C6-D6-C3;C6-D7-C3;C6-D8-C3;C6-D9-C3;C7-D1-C3;C7-D2-C3;C7-D3-C3;C7-D4-C3;C7-D5-C3;C7-D6-C3;C7-D7-C3;C7-D8-C3;C7-D9-C3;C8-D1-C3;C8-D2-C3;C8-D3-C3;C8-D4-C3;C8-D5-C3;C8-D6-C3;C8-D7-C3;C8-D8-C3;C8-D9-C3;C9-D1-C3;C9-D2-C3;C9-D3-C3;C9-D4-C3;C9-D5-C3;C9-D6-C3;C9-D7-C3;C9-D8-C3;C9-D9-C3;C1-D1-C4;C1-D2-C4;C1-D3-C4;C1-D4-C4;C1-D5-C4;C1-D6-C4;C1-D7-C4;C1-D8-C4;C1-D9-C4;C2-D1-C4;C2-D2-C4;C2-D3-C4;C2-D4-C4;C2-D5-C4;C2-D6-C4;C2-D7-C4;C2-D8-C4;C2-D9-C4;C3-D1-C4;C3-D2-C4;C3-D3-C4;C3-D4-C4;C3-D5-C4;C3-D6-C4;C3-D7-C4;C3-D8-C4;C3-D9-C4;C4-D1-C4;C4-D2-C4;C4-D3-C4;C4-D4-C4;C4-D5-C4;C4-D6-C4;C4-D7-C4;C4-D8-C4;C4-D9-C4;C5-D1-C4;C5-D2-C4;C5-D3-C4;C5-D4-C4;C5-D5-C4;C5-D6-C4;C5-D7-C4;C5-D8-C4;C5-D9-C4;C6-D1-C4;C6-D2-C4;C6-D3-C4;C6-D4-C4;C6-D5-C4;C6-D6-C4;C6-D7-C4;C6-D8-C4;C6-D9-C4;C7-D1-C4;C7-D2-C4;C7-D3-C4;C7-D4-C4;C7-D5-C4;C7-D6-C4;C7-D7-C4;C7-D8-C4;C7-D9-C4;C8-D1-C4;C8-D2-C4;C8-D3-C4;C8-D4-C4;C8-D5-C4;C8-D6-C4;C8-D7-C4;C8-D8-C4;C8-D9-C4;C9-D1-C4;C9-D2-C4;C9-D3-C4;C9-D4-C4;C9-D5-C4;C9-D6-C4;C9-D7-C4;C9-D8-C4;C9-D9-C4;C1-D1-C5;C1-D2-C5;C1-D3-C5;C1-D4-C5;C1-D5-C5;C1-D6-C5;C1-D7-C5;C1-D8-C5;C1-D9-C5;C2-D1-C5;C2-D2-C5;C2-D3-C5;C2-D4-C5;C2-D5-C5;C2-D6-C5;C2-D7-C5;C2-D8-C5;C2-D9-C5;C3-D1-C5;C3-D2-C5;C3-D3-C5;C3-D4-C5;C3-D5-C5;C3-D6-C5;C3-D7-C5;C3-D8-C5;C3-D9-C5;C4-D1-C5;C4-D2-C5;C4-D3-C5;C4-D4-C5;C4-D5-C5;C4-D6-C5;C4-D7-C5;C4-D8-C5;C4-D9-C5;C5-D1-C5;C5-D2-C5;C5-D3-C5;C5-D4-C5;C5-D5-C5;C5-D6-C5;C5-D7-C5;C5-D8-C5;C5-D9-C5;C6-D1-C5;C6-D2-C5;C6-D3-C5;C6-D4-C5;C6-D5-C5;C6-D6-C5;C6-D7-C5;C6-D8-C5;C6-D9-C5;C7-D1-C5;C7-D2-C5;C7-D3-C5;C7-D4-C5;C7-D5-C5;C7-D6-C5;C7-D7-C5;C7-D8-C5;C7-D9-C5;C8-D1-C5;C8-D2-C5;C8-D3-C5;C8-D4-C5;C8-D5-C5;C8-D6-C5;C8-D7-C5;C8-D8-C5;C8-D9-C5;C9-D1-C5;C9-D2-C5;C9-D3-C5;C9-D4-C5;C9-D5-C5;C9-D6-C5;C9-D7-C5;C9-D8-C5;C9-D9-C5;C1-D1-C6;C1-D2-C6;C1-D3-C6;C1-D4-C6;C1-D5-C6;C1-D6-C6;C1-D7-C6;C1-D8-C6;C1-D9-C6;C2-D1-C6;C2-D2-C6;C2-D3-C6;C2-D4-C6;C2-D5-C6;C2-D6-C6;C2-D7-C6;C2-D8-C6;C2-D9-C6;C3-D1-C6;C3-D2-C6;C3-D3-C6;C3-D4-C6;C3-D5-C6;C3-D6-C6;C3-D7-C6;C3-D8-C6;C3-D9-C6;C4-D1-C6;C4-D2-C6;C4-D3-C6;C4-D4-C6;C4-D5-C6;C4-D6-C6;C4-D7-C6;C4-D8-C6;C4-D9-C6;C5-D1-C6;C5-D2-C6;C5-D3-C6;C5-D4-C6;C5-D5-C6;C5-D6-C6;C5-D7-C6;C5-D8-C6;C5-D9-C6;C6-D1-C6;C6-D2-C6;C6-D3-C6;C6-D4-C6;C6-D5-C6;C6-D6-C6;C6-D7-C6;C6-D8-C6;C6-D9-C6;C7-D1-C6;C7-D2-C6;C7-D3-C6;C7-D4-C6;C7-D5-C6;C7-D6-C6;C7-D7-C6;C7-D8-C6;C7-D9-C6;C8-D1-C6;C8-D2-C6;C8-D3-C6;C8-D4-C6;C8-D5-C6;C8-D6-C6;C8-D7-C6;C8-D8-C6;C8-D9-C6;C9-D1-C6;C9-D2-C6;C9-D3-C6;C9-D4-C6;C9-D5-C6;C9-D6-C6;C9-D7-C6;C9-D8-C6;C9-D9-C6;C1-D1-C7;C1-D2-C7;C1-D3-C7;C1-D4-C7;C1-D5-C7;C1-D6-C7;C1-D7-C7;C1-D8-C7;C1-D9-C7;C2-D1-C7;C2-D2-C7;C2-D3-C7;C2-D4-C7;C2-D5-C7;C2-D6-C7;C2-D7-C7;C2-D8-C7;C2-D9-C7;C3-D1-C7;C3-D2-C7;C3-D3-C7;C3-D4-C7;C3-D5-C7;C3-D6-C7;C3-D7-C7;C3-D8-C7;C3-D9-C7;C4-D1-C7;C4-D2-C7;C4-D3-C7;C4-D4-C7;C4-D5-C7;C4-D6-C7;C4-D7-C7;C4-D8-C7;C4-D9-C7;C5-D1-C7;C5-D2-C7;C5-D3-C7;C5-D4-C7;C5-D5-C7;C5-D6-C7;C5-D7-C7;C5-D8-C7;C5-D9-C7;C6-D1-C7;C6-D2-C7;C6-D3-C7;C6-D4-C7;C6-D5-C7;C6-D6-C7;C6-D7-C7;C6-D8-C7;C6-D9-C7;C7-D1-C7;C7-D2-C7;C7-D3-C7;C7-D4-C7;C7-D5-C7;C7-D6-C7;C7-D7-C7;C7-D8-C7;C7-D9-C7;C8-D1-C7;C8-D2-C7;C8-D3-C7;C8-D4-C7;C8-D5-C7;C8-D6-C7;C8-D7-C7;C8-D8-C7;C8-D9-C7;C9-D1-C7;C9-D2-C7;C9-D3-C7;C9-D4-C7;C9-D5-C7;C9-D6-C7;C9-D7-C7;C9-D8-C7;C9-D9-C7;C1-D1-C8;C1-D2-C8;C1-D3-C8;C1-D4-C8;C1-D5-C8;C1-D6-C8;C1-D7-C8;C1-D8-C8;C1-D9-C8;C2-D1-C8;C2-D2-C8;C2-D3-C8;C2-D4-C8;C2-D5-C8;C2-D6-C8;C2-D7-C8;C2-D8-C8;C2-D9-C8;C3-D1-C8;C3-D2-C8;C3-D3-C8;C3-D4-C8;C3-D5-C8;C3-D6-C8;C3-D7-C8;C3-D8-C8;C3-D9-C8;C4-D1-C8;C4-D2-C8;C4-D3-C8;C4-D4-C8;C4-D5-C8;C4-D6-C8;C4-D7-C8;C4-D8-C8;C4-D9-C8;C5-D1-C8;C5-D2-C8;C5-D3-C8;C5-D4-C8;C5-D5-C8;C5-D6-C8;C5-D7-C8;C5-D8-C8;C5-D9-C8;C6-D1-C8;C6-D2-C8;C6-D3-C8;C6-D4-C8;C6-D5-C8;C6-D6-C8;C6-D7-C8;C6-D8-C8;C6-D9-C8;C7-D1-C8;C7-D2-C8;C7-D3-C8;C7-D4-C8;C7-D5-C8;C7-D6-C8;C7-D7-C8;C7-D8-C8;C7-D9-C8;C8-D1-C8;C8-D2-C8;C8-D3-C8;C8-D4-C8;C8-D5-C8;C8-D6-C8;C8-D7-C8;C8-D8-C8;C8-D9-C8;C9-D1-C8;C9-D2-C8;C9-D3-C8;C9-D4-C8;C9-D5-C8;C9-D6-C8;C9-D7-C8;C9-D8-C8;C9-D9-C8;C1-D1-C9;C1-D2-C9;C1-D3-C9;C1-D4-C9;C1-D5-C9;C1-D6-C9;C1-D7-C9;C1-D8-C9;C1-D9-C9;C2-D1-C9;C2-D2-C9;C2-D3-C9;C2-D4-C9;C2-D5-C9;C2-D6-C9;C2-D7-C9;C2-D8-C9;C2-D9-C9;C3-D1-C9;C3-D2-C9;C3-D3-C9;C3-D4-C9;C3-D5-C9;C3-D6-C9;C3-D7-C9;C3-D8-C9;C3-D9-C9;C4-D1-C9;C4-D2-C9;C4-D3-C9;C4-D4-C9;C4-D5-C9;C4-D6-C9;C4-D7-C9;C4-D8-C9;C4-D9-C9;C5-D1-C9;C5-D2-C9;C5-D3-C9;C5-D4-C9;C5-D5-C9;C5-D6-C9;C5-D7-C9;C5-D8-C9;C5-D9-C9;C6-D1-C9;C6-D2-C9;C6-D3-C9;C6-D4-C9;C6-D5-C9;C6-D6-C9;C6-D7-C9;C6-D8-C9;C6-D9-C9;C7-D1-C9;C7-D2-C9;C7-D3-C9;C7-D4-C9;C7-D5-C9;C7-D6-C9;C7-D7-C9;C7-D8-C9;C7-D9-C9;C8-D1-C9;C8-D2-C9;C8-D3-C9;C8-D4-C9;C8-D5-C9;C8-D6-C9;C8-D7-C9;C8-D8-C9;C8-D9-C9;C9-D1-C9;C9-D2-C9;C9-D3-C9;C9-D4-C9;C9-D5-C9;C9-D6-C9;C9-D7-C9;C9-D8-C9;C9-D9-C9;M1-D1-C1;M1-D2-C1;M1-D3-C1;M1-D4-C1;M1-D5-C1;M1-D6-C1;M1-D7-C1;M1-D8-C1;M1-D9-C1;M1-D1-C2;M1-D2-C2;M1-D3-C2;M1-D4-C2;M1-D5-C2;M1-D6-C2;M1-D7-C2;M1-D8-C2;M1-D9-C2;M1-D1-C3;M1-D2-C3;M1-D3-C3;M1-D4-C3;M1-D5-C3;M1-D6-C3;M1-D7-C3;M1-D8-C3;M1-D9-C3;M1-D1-C4;M1-D2-C4;M1-D3-C4;M1-D4-C4;M1-D5-C4;M1-D6-C4;M1-D7-C4;M1-D8-C4;M1-D9-C4;M1-D1-C5;M1-D2-C5;M1-D3-C5;M1-D4-C5;M1-D5-C5;M1-D6-C5;M1-D7-C5;M1-D8-C5;M1-D9-C5;M1-D1-C6;M1-D2-C6;M1-D3-C6;M1-D4-C6;M1-D5-C6;M1-D6-C6;M1-D7-C6;M1-D8-C6;M1-D9-C6;M1-D1-C7;M1-D2-C7;M1-D3-C7;M1-D4-C7;M1-D5-C7;M1-D6-C7;M1-D7-C7;M1-D8-C7;M1-D9-C7;M1-D1-C8;M1-D2-C8;M1-D3-C8;M1-D4-C8;M1-D5-C8;M1-D6-C8;M1-D7-C8;M1-D8-C8;M1-D9-C8;M1-D1-C9;M1-D2-C9;M1-D3-C9;M1-D4-C9;M1-D5-C9;M1-D6-C9;M1-D7-C9;M1-D8-C9;M1-D9-C9;M2-D1-C1;M2-D2-C1;M2-D3-C1;M2-D4-C1;M2-D5-C1;M2-D6-C1;M2-D7-C1;M2-D8-C1;M2-D9-C1;M2-D1-C2;M2-D2-C2;M2-D3-C2;M2-D4-C2;M2-D5-C2;M2-D6-C2;M2-D7-C2;M2-D8-C2;M2-D9-C2;M2-D1-C3;M2-D2-C3;M2-D3-C3;M2-D4-C3;M2-D5-C3;M2-D6-C3;M2-D7-C3;M2-D8-C3;M2-D9-C3;M2-D1-C4;M2-D2-C4;M2-D3-C4;M2-D4-C4;M2-D5-C4;M2-D6-C4;M2-D7-C4;M2-D8-C4;M2-D9-C4;M2-D1-C5;M2-D2-C5;M2-D3-C5;M2-D4-C5;M2-D5-C5;M2-D6-C5;M2-D7-C5;M2-D8-C5;M2-D9-C5;M2-D1-C6;M2-D2-C6;M2-D3-C6;M2-D4-C6;M2-D5-C6;M2-D6-C6;M2-D7-C6;M2-D8-C6;M2-D9-C6;M2-D1-C7;M2-D2-C7;M2-D3-C7;M2-D4-C7;M2-D5-C7;M2-D6-C7;M2-D7-C7;M2-D8-C7;M2-D9-C7;M2-D1-C8;M2-D2-C8;M2-D3-C8;M2-D4-C8;M2-D5-C8;M2-D6-C8;M2-D7-C8;M2-D8-C8;M2-D9-C8;M2-D1-C9;M2-D2-C9;M2-D3-C9;M2-D4-C9;M2-D5-C9;M2-D6-C9;M2-D7-C9;M2-D8-C9;M2-D9-C9;M3-D1-C1;M3-D2-C1;M3-D3-C1;M3-D4-C1;M3-D5-C1;M3-D6-C1;M3-D7-C1;M3-D8-C1;M3-D9-C1;M3-D1-C2;M3-D2-C2;M3-D3-C2;M3-D4-C2;M3-D5-C2;M3-D6-C2;M3-D7-C2;M3-D8-C2;M3-D9-C2;M3-D1-C3;M3-D2-C3;M3-D3-C3;M3-D4-C3;M3-D5-C3;M3-D6-C3;M3-D7-C3;M3-D8-C3;M3-D9-C3;M3-D1-C4;M3-D2-C4;M3-D3-C4;M3-D4-C4;M3-D5-C4;M3-D6-C4;M3-D7-C4;M3-D8-C4;M3-D9-C4;M3-D1-C5;M3-D2-C5;M3-D3-C5;M3-D4-C5;M3-D5-C5;M3-D6-C5;M3-D7-C5;M3-D8-C5;M3-D9-C5;M3-D1-C6;M3-D2-C6;M3-D3-C6;M3-D4-C6;M3-D5-C6;M3-D6-C6;M3-D7-C6;M3-D8-C6;M3-D9-C6;M3-D1-C7;M3-D2-C7;M3-D3-C7;M3-D4-C7;M3-D5-C7;M3-D6-C7;M3-D7-C7;M3-D8-C7;M3-D9-C7;M3-D1-C8;M3-D2-C8;M3-D3-C8;M3-D4-C8;M3-D5-C8;M3-D6-C8;M3-D7-C8;M3-D8-C8;M3-D9-C8;M3-D1-C9;M3-D2-C9;M3-D3-C9;M3-D4-C9;M3-D5-C9;M3-D6-C9;M3-D7-C9;M3-D8-C9;M3-D9-C9;M4-D1-C1;M4-D2-C1;M4-D3-C1;M4-D4-C1;M4-D5-C1;M4-D6-C1;M4-D7-C1;M4-D8-C1;M4-D9-C1;M4-D1-C2;M4-D2-C2;M4-D3-C2;M4-D4-C2;M4-D5-C2;M4-D6-C2;M4-D7-C2;M4-D8-C2;M4-D9-C2;M4-D1-C3;M4-D2-C3;M4-D3-C3;M4-D4-C3;M4-D5-C3;M4-D6-C3;M4-D7-C3;M4-D8-C3;M4-D9-C3;M4-D1-C4;M4-D2-C4;M4-D3-C4;M4-D4-C4;M4-D5-C4;M4-D6-C4;M4-D7-C4;M4-D8-C4;M4-D9-C4;M4-D1-C5;M4-D2-C5;M4-D3-C5;M4-D4-C5;M4-D5-C5;M4-D6-C5;M4-D7-C5;M4-D8-C5;M4-D9-C5;M4-D1-C6;M4-D2-C6;M4-D3-C6;M4-D4-C6;M4-D5-C6;M4-D6-C6;M4-D7-C6;M4-D8-C6;M4-D9-C6;M4-D1-C7;M4-D2-C7;M4-D3-C7;M4-D4-C7;M4-D5-C7;M4-D6-C7;M4-D7-C7;M4-D8-C7;M4-D9-C7;M4-D1-C8;M4-D2-C8;M4-D3-C8;M4-D4-C8;M4-D5-C8;M4-D6-C8;M4-D7-C8;M4-D8-C8;M4-D9-C8;M4-D1-C9;M4-D2-C9;M4-D3-C9;M4-D4-C9;M4-D5-C9;M4-D6-C9;M4-D7-C9;M4-D8-C9;M4-D9-C9;M5-D1-C1;M5-D2-C1;M5-D3-C1;M5-D4-C1;M5-D5-C1;M5-D6-C1;M5-D7-C1;M5-D8-C1;M5-D9-C1;M5-D1-C2;M5-D2-C2;M5-D3-C2;M5-D4-C2;M5-D5-C2;M5-D6-C2;M5-D7-C2;M5-D8-C2;M5-D9-C2;M5-D1-C3;M5-D2-C3;M5-D3-C3;M5-D4-C3;M5-D5-C3;M5-D6-C3;M5-D7-C3;M5-D8-C3;M5-D9-C3;M5-D1-C4;M5-D2-C4;M5-D3-C4;M5-D4-C4;M5-D5-C4;M5-D6-C4;M5-D7-C4;M5-D8-C4;M5-D9-C4;M5-D1-C5;M5-D2-C5;M5-D3-C5;M5-D4-C5;M5-D5-C5;M5-D6-C5;M5-D7-C5;M5-D8-C5;M5-D9-C5;M5-D1-C6;M5-D2-C6;M5-D3-C6;M5-D4-C6;M5-D5-C6;M5-D6-C6;M5-D7-C6;M5-D8-C6;M5-D9-C6;M5-D1-C7;M5-D2-C7;M5-D3-C7;M5-D4-C7;M5-D5-C7;M5-D6-C7;M5-D7-C7;M5-D8-C7;M5-D9-C7;M5-D1-C8;M5-D2-C8;M5-D3-C8;M5-D4-C8;M5-D5-C8;M5-D6-C8;M5-D7-C8;M5-D8-C8;M5-D9-C8;M5-D1-C9;M5-D2-C9;M5-D3-C9;M5-D4-C9;M5-D5-C9;M5-D6-C9;M5-D7-C9;M5-D8-C9;M5-D9-C9;C1-D1-C1;C1-D2-C1;C1-D3-C1;C1-D4-C1;C1-D5-C1;C1-D6-C1;C1-D7-C1;C1-D8-C1;C1-D9-C1;C1-D1-C2;C1-D2-C2;C1-D3-C2;C1-D4-C2;C1-D5-C2;C1-D6-C2;C1-D7-C2;C1-D8-C2;C1-D9-C2;C1-D1-C3;C1-D2-C3;C1-D3-C3;C1-D4-C3;C1-D5-C3;C1-D6-C3;C1-D7-C3;C1-D8-C3;C1-D9-C3;C1-D1-C4;C1-D2-C4;C1-D3-C4;C1-D4-C4;C1-D5-C4;C1-D6-C4;C1-D7-C4;C1-D8-C4;C1-D9-C4;C1-D1-C5;C1-D2-C5;C1-D3-C5;C1-D4-C5;C1-D5-C5;C1-D6-C5;C1-D7-C5;C1-D8-C5;C1-D9-C5;C1-D1-C6;C1-D2-C6;C1-D3-C6;C1-D4-C6;C1-D5-C6;C1-D6-C6;C1-D7-C6;C1-D8-C6;C1-D9-C6;C1-D1-C7;C1-D2-C7;C1-D3-C7;C1-D4-C7;C1-D5-C7;C1-D6-C7;C1-D7-C7;C1-D8-C7;C1-D9-C7;C1-D1-C8;C1-D2-C8;C1-D3-C8;C1-D4-C8;C1-D5-C8;C1-D6-C8;C1-D7-C8;C1-D8-C8;C1-D9-C8;C1-D1-C9;C1-D2-C9;C1-D3-C9;C1-D4-C9;C1-D5-C9;C1-D6-C9;C1-D7-C9;C1-D8-C9;C1-D9-C9;C2-D1-C1;C2-D2-C1;C2-D3-C1;C2-D4-C1;C2-D5-C1;C2-D6-C1;C2-D7-C1;C2-D8-C1;C2-D9-C1;C2-D1-C2;C2-D2-C2;C2-D3-C2;C2-D4-C2;C2-D5-C2;C2-D6-C2;C2-D7-C2;C2-D8-C2;C2-D9-C2;C2-D1-C3;C2-D2-C3;C2-D3-C3;C2-D4-C3;C2-D5-C3;C2-D6-C3;C2-D7-C3;C2-D8-C3;C2-D9-C3;C2-D1-C4;C2-D2-C4;C2-D3-C4;C2-D4-C4;C2-D5-C4;C2-D6-C4;C2-D7-C4;C2-D8-C4;C2-D9-C4;C2-D1-C5;C2-D2-C5;C2-D3-C5;C2-D4-C5;C2-D5-C5;C2-D6-C5;C2-D7-C5;C2-D8-C5;C2-D9-C5;C2-D1-C6;C2-D2-C6;C2-D3-C6;C2-D4-C6;C2-D5-C6;C2-D6-C6;C2-D7-C6;C2-D8-C6;C2-D9-C6;C2-D1-C7;C2-D2-C7;C2-D3-C7;C2-D4-C7;C2-D5-C7;C2-D6-C7;C2-D7-C7;C2-D8-C7;C2-D9-C7;C2-D1-C8;C2-D2-C8;C2-D3-C8;C2-D4-C8;C2-D5-C8;C2-D6-C8;C2-D7-C8;C2-D8-C8;C2-D9-C8;C2-D1-C9;C2-D2-C9;C2-D3-C9;C2-D4-C9;C2-D5-C9;C2-D6-C9;C2-D7-C9;C2-D8-C9;C2-D9-C9;C3-D1-C1;C3-D2-C1;C3-D3-C1;C3-D4-C1;C3-D5-C1;C3-D6-C1;C3-D7-C1;C3-D8-C1;C3-D9-C1;C3-D1-C2;C3-D2-C2;C3-D3-C2;C3-D4-C2;C3-D5-C2;C3-D6-C2;C3-D7-C2;C3-D8-C2;C3-D9-C2;C3-D1-C3;C3-D2-C3;C3-D3-C3;C3-D4-C3;C3-D5-C3;C3-D6-C3;C3-D7-C3;C3-D8-C3;C3-D9-C3;C3-D1-C4;C3-D2-C4;C3-D3-C4;C3-D4-C4;C3-D5-C4;C3-D6-C4;C3-D7-C4;C3-D8-C4;C3-D9-C4;C3-D1-C5;C3-D2-C5;C3-D3-C5;C3-D4-C5;C3-D5-C5;C3-D6-C5;C3-D7-C5;C3-D8-C5;C3-D9-C5;C3-D1-C6;C3-D2-C6;C3-D3-C6;C3-D4-C6;C3-D5-C6;C3-D6-C6;C3-D7-C6;C3-D8-C6;C3-D9-C6;C3-D1-C7;C3-D2-C7;C3-D3-C7;C3-D4-C7;C3-D5-C7;C3-D6-C7;C3-D7-C7;C3-D8-C7;C3-D9-C7;C3-D1-C8;C3-D2-C8;C3-D3-C8;C3-D4-C8;C3-D5-C8;C3-D6-C8;C3-D7-C8;C3-D8-C8;C3-D9-C8;C3-D1-C9;C3-D2-C9;C3-D3-C9;C3-D4-C9;C3-D5-C9;C3-D6-C9;C3-D7-C9;C3-D8-C9;C3-D9-C9;C4-D1-C1;C4-D2-C1;C4-D3-C1;C4-D4-C1;C4-D5-C1;C4-D6-C1;C4-D7-C1;C4-D8-C1;C4-D9-C1;C4-D1-C2;C4-D2-C2;C4-D3-C2;C4-D4-C2;C4-D5-C2;C4-D6-C2;C4-D7-C2;C4-D8-C2;C4-D9-C2;C4-D1-C3;C4-D2-C3;C4-D3-C3;C4-D4-C3;C4-D5-C3;C4-D6-C3;C4-D7-C3;C4-D8-C3;C4-D9-C3;C4-D1-C4;C4-D2-C4;C4-D3-C4;C4-D4-C4;C4-D5-C4;C4-D6-C4;C4-D7-C4;C4-D8-C4;C4-D9-C4;C4-D1-C5;C4-D2-C5;C4-D3-C5;C4-D4-C5;C4-D5-C5;C4-D6-C5;C4-D7-C5;C4-D8-C5;C4-D9-C5;C4-D1-C6;C4-D2-C6;C4-D3-C6;C4-D4-C6;C4-D5-C6;C4-D6-C6;C4-D7-C6;C4-D8-C6;C4-D9-C6;C4-D1-C7;C4-D2-C7;C4-D3-C7;C4-D4-C7;C4-D5-C7;C4-D6-C7;C4-D7-C7;C4-D8-C7;C4-D9-C7;C4-D1-C8;C4-D2-C8;C4-D3-C8;C4-D4-C8;C4-D5-C8;C4-D6-C8;C4-D7-C8;C4-D8-C8;C4-D9-C8;C4-D1-C9;C4-D2-C9;C4-D3-C9;C4-D4-C9;C4-D5-C9;C4-D6-C9;C4-D7-C9;C4-D8-C9;C4-D9-C9;C5-D1-C1;C5-D2-C1;C5-D3-C1;C5-D4-C1;C5-D5-C1;C5-D6-C1;C5-D7-C1;C5-D8-C1;C5-D9-C1;C5-D1-C2;C5-D2-C2;C5-D3-C2;C5-D4-C2;C5-D5-C2;C5-D6-C2;C5-D7-C2;C5-D8-C2;C5-D9-C2;C5-D1-C3;C5-D2-C3;C5-D3-C3;C5-D4-C3;C5-D5-C3;C5-D6-C3;C5-D7-C3;C5-D8-C3;C5-D9-C3;C5-D1-C4;C5-D2-C4;C5-D3-C4;C5-D4-C4;C5-D5-C4;C5-D6-C4;C5-D7-C4;C5-D8-C4;C5-D9-C4;C5-D1-C5;C5-D2-C5;C5-D3-C5;C5-D4-C5;C5-D5-C5;C5-D6-C5;C5-D7-C5;C5-D8-C5;C5-D9-C5;C5-D1-C6;C5-D2-C6;C5-D3-C6;C5-D4-C6;C5-D5-C6;C5-D6-C6;C5-D7-C6;C5-D8-C6;C5-D9-C6;C5-D1-C7;C5-D2-C7;C5-D3-C7;C5-D4-C7;C5-D5-C7;C5-D6-C7;C5-D7-C7;C5-D8-C7;C5-D9-C7;C5-D1-C8;C5-D2-C8;C5-D3-C8;C5-D4-C8;C5-D5-C8;C5-D6-C8;C5-D7-C8;C5-D8-C8;C5-D9-C8;C5-D1-C9;C5-D2-C9;C5-D3-C9;C5-D4-C9;C5-D5-C9;C5-D6-C9;C5-D7-C9;C5-D8-C9;C5-D9-C9;C6-D1-C1;C6-D2-C1;C6-D3-C1;C6-D4-C1;C6-D5-C1;C6-D6-C1;C6-D7-C1;C6-D8-C1;C6-D9-C1;C6-D1-C2;C6-D2-C2;C6-D3-C2;C6-D4-C2;C6-D5-C2;C6-D6-C2;C6-D7-C2;C6-D8-C2;C6-D9-C2;C6-D1-C3;C6-D2-C3;C6-D3-C3;C6-D4-C3;C6-D5-C3;C6-D6-C3;C6-D7-C3;C6-D8-C3;C6-D9-C3;C6-D1-C4;C6-D2-C4;C6-D3-C4;C6-D4-C4;C6-D5-C4;C6-D6-C4;C6-D7-C4;C6-D8-C4;C6-D9-C4;C6-D1-C5;C6-D2-C5;C6-D3-C5;C6-D4-C5;C6-D5-C5;C6-D6-C5;C6-D7-C5;C6-D8-C5;C6-D9-C5;C6-D1-C6;C6-D2-C6;C6-D3-C6;C6-D4-C6;C6-D5-C6;C6-D6-C6;C6-D7-C6;C6-D8-C6;C6-D9-C6;C6-D1-C7;C6-D2-C7;C6-D3-C7;C6-D4-C7;C6-D5-C7;C6-D6-C7;C6-D7-C7;C6-D8-C7;C6-D9-C7;C6-D1-C8;C6-D2-C8;C6-D3-C8;C6-D4-C8;C6-D5-C8;C6-D6-C8;C6-D7-C8;C6-D8-C8;C6-D9-C8;C6-D1-C9;C6-D2-C9;C6-D3-C9;C6-D4-C9;C6-D5-C9;C6-D6-C9;C6-D7-C9;C6-D8-C9;C6-D9-C9;C7-D1-C1;C7-D2-C1;C7-D3-C1;C7-D4-C1;C7-D5-C1;C7-D6-C1;C7-D7-C1;C7-D8-C1;C7-D9-C1;C7-D1-C2;C7-D2-C2;C7-D3-C2;C7-D4-C2;C7-D5-C2;C7-D6-C2;C7-D7-C2;C7-D8-C2;C7-D9-C2;C7-D1-C3;C7-D2-C3;C7-D3-C3;C7-D4-C3;C7-D5-C3;C7-D6-C3;C7-D7-C3;C7-D8-C3;C7-D9-C3;C7-D1-C4;C7-D2-C4;C7-D3-C4;C7-D4-C4;C7-D5-C4;C7-D6-C4;C7-D7-C4;C7-D8-C4;C7-D9-C4;C7-D1-C5;C7-D2-C5;C7-D3-C5;C7-D4-C5;C7-D5-C5;C7-D6-C5;C7-D7-C5;C7-D8-C5;C7-D9-C5;C7-D1-C6;C7-D2-C6;C7-D3-C6;C7-D4-C6;C7-D5-C6;C7-D6-C6;C7-D7-C6;C7-D8-C6;C7-D9-C6;C7-D1-C7;C7-D2-C7;C7-D3-C7;C7-D4-C7;C7-D5-C7;C7-D6-C7;C7-D7-C7;C7-D8-C7;C7-D9-C7;C7-D1-C8;C7-D2-C8;C7-D3-C8;C7-D4-C8;C7-D5-C8;C7-D6-C8;C7-D7-C8;C7-D8-C8;C7-D9-C8;C7-D1-C9;C7-D2-C9;C7-D3-C9;C7-D4-C9;C7-D5-C9;C7-D6-C9;C7-D7-C9;C7-D8-C9;C7-D9-C9;C8-D1-C1;C8-D2-C1;C8-D3-C1;C8-D4-C1;C8-D5-C1;C8-D6-C1;C8-D7-C1;C8-D8-C1;C8-D9-C1;C8-D1-C2;C8-D2-C2;C8-D3-C2;C8-D4-C2;C8-D5-C2;C8-D6-C2;C8-D7-C2;C8-D8-C2;C8-D9-C2;C8-D1-C3;C8-D2-C3;C8-D3-C3;C8-D4-C3;C8-D5-C3;C8-D6-C3;C8-D7-C3;C8-D8-C3;C8-D9-C3;C8-D1-C4;C8-D2-C4;C8-D3-C4;C8-D4-C4;C8-D5-C4;C8-D6-C4;C8-D7-C4;C8-D8-C4;C8-D9-C4;C8-D1-C5;C8-D2-C5;C8-D3-C5;C8-D4-C5;C8-D5-C5;C8-D6-C5;C8-D7-C5;C8-D8-C5;C8-D9-C5;C8-D1-C6;C8-D2-C6;C8-D3-C6;C8-D4-C6;C8-D5-C6;C8-D6-C6;C8-D7-C6;C8-D8-C6;C8-D9-C6;C8-D1-C7;C8-D2-C7;C8-D3-C7;C8-D4-C7;C8-D5-C7;C8-D6-C7;C8-D7-C7;C8-D8-C7;C8-D9-C7;C8-D1-C8;C8-D2-C8;C8-D3-C8;C8-D4-C8;C8-D5-C8;C8-D6-C8;C8-D7-C8;C8-D8-C8;C8-D9-C8;C8-D1-C9;C8-D2-C9;C8-D3-C9;C8-D4-C9;C8-D5-C9;C8-D6-C9;C8-D7-C9;C8-D8-C9;C8-D9-C9;C9-D1-C1;C9-D2-C1;C9-D3-C1;C9-D4-C1;C9-D5-C1;C9-D6-C1;C9-D7-C1;C9-D8-C1;C9-D9-C1;C9-D1-C2;C9-D2-C2;C9-D3-C2;C9-D4-C2;C9-D5-C2;C9-D6-C2;C9-D7-C2;C9-D8-C2;C9-D9-C2;C9-D1-C3;C9-D2-C3;C9-D3-C3;C9-D4-C3;C9-D5-C3;C9-D6-C3;C9-D7-C3;C9-D8-C3;C9-D9-C3;C9-D1-C4;C9-D2-C4;C9-D3-C4;C9-D4-C4;C9-D5-C4;C9-D6-C4;C9-D7-C4;C9-D8-C4;C9-D9-C4;C9-D1-C5;C9-D2-C5;C9-D3-C5;C9-D4-C5;C9-D5-C5;C9-D6-C5;C9-D7-C5;C9-D8-C5;C9-D9-C5;C9-D1-C6;C9-D2-C6;C9-D3-C6;C9-D4-C6;C9-D5-C6;C9-D6-C6;C9-D7-C6;C9-D8-C6;C9-D9-C6;C9-D1-C7;C9-D2-C7;C9-D3-C7;C9-D4-C7;C9-D5-C7;C9-D6-C7;C9-D7-C7;C9-D8-C7;C9-D9-C7;C9-D1-C8;C9-D2-C8;C9-D3-C8;C9-D4-C8;C9-D5-C8;C9-D6-C8;C9-D7-C8;C9-D8-C8;C9-D9-C8;C9-D1-C9;C9-D2-C9;C9-D3-C9;C9-D4-C9;C9-D5-C9;C9-D6-C9;C9-D7-C9;C9-D8-C9;C9-D9-C9;C1-M1-D1;C1-M1-D2;C1-M1-D3;C1-M1-D4;C1-M1-D5;C1-M1-D6;C1-M1-D7;C1-M1-D8;C1-M1-D9;C2-M1-D1;C2-M1-D2;C2-M1-D3;C2-M1-D4;C2-M1-D5;C2-M1-D6;C2-M1-D7;C2-M1-D8;C2-M1-D9;C3-M1-D1;C3-M1-D2;C3-M1-D3;C3-M1-D4;C3-M1-D5;C3-M1-D6;C3-M1-D7;C3-M1-D8;C3-M1-D9;C4-M1-D1;C4-M1-D2;C4-M1-D3;C4-M1-D4;C4-M1-D5;C4-M1-D6;C4-M1-D7;C4-M1-D8;C4-M1-D9;C5-M1-D1;C5-M1-D2;C5-M1-D3;C5-M1-D4;C5-M1-D5;C5-M1-D6;C5-M1-D7;C5-M1-D8;C5-M1-D9;C6-M1-D1;C6-M1-D2;C6-M1-D3;C6-M1-D4;C6-M1-D5;C6-M1-D6;C6-M1-D7;C6-M1-D8;C6-M1-D9;C7-M1-D1;C7-M1-D2;C7-M1-D3;C7-M1-D4;C7-M1-D5;C7-M1-D6;C7-M1-D7;C7-M1-D8;C7-M1-D9;C8-M1-D1;C8-M1-D2;C8-M1-D3;C8-M1-D4;C8-M1-D5;C8-M1-D6;C8-M1-D7;C8-M1-D8;C8-M1-D9;C9-M1-D1;C9-M1-D2;C9-M1-D3;C9-M1-D4;C9-M1-D5;C9-M1-D6;C9-M1-D7;C9-M1-D8;C9-M1-D9;C1-M2-D1;C1-M2-D2;C1-M2-D3;C1-M2-D4;C1-M2-D5;C1-M2-D6;C1-M2-D7;C1-M2-D8;C1-M2-D9;C2-M2-D1;C2-M2-D2;C2-M2-D3;C2-M2-D4;C2-M2-D5;C2-M2-D6;C2-M2-D7;C2-M2-D8;C2-M2-D9;C3-M2-D1;C3-M2-D2;C3-M2-D3;C3-M2-D4;C3-M2-D5;C3-M2-D6;C3-M2-D7;C3-M2-D8;C3-M2-D9;C4-M2-D1;C4-M2-D2;C4-M2-D3;C4-M2-D4;C4-M2-D5;C4-M2-D6;C4-M2-D7;C4-M2-D8;C4-M2-D9;C5-M2-D1;C5-M2-D2;C5-M2-D3;C5-M2-D4;C5-M2-D5;C5-M2-D6;C5-M2-D7;C5-M2-D8;C5-M2-D9;C6-M2-D1;C6-M2-D2;C6-M2-D3;C6-M2-D4;C6-M2-D5;C6-M2-D6;C6-M2-D7;C6-M2-D8;C6-M2-D9;C7-M2-D1;C7-M2-D2;C7-M2-D3;C7-M2-D4;C7-M2-D5;C7-M2-D6;C7-M2-D7;C7-M2-D8;C7-M2-D9;C8-M2-D1;C8-M2-D2;C8-M2-D3;C8-M2-D4;C8-M2-D5;C8-M2-D6;C8-M2-D7;C8-M2-D8;C8-M2-D9;C9-M2-D1;C9-M2-D2;C9-M2-D3;C9-M2-D4;C9-M2-D5;C9-M2-D6;C9-M2-D7;C9-M2-D8;C9-M2-D9;C1-M3-D1;C1-M3-D2;C1-M3-D3;C1-M3-D4;C1-M3-D5;C1-M3-D6;C1-M3-D7;C1-M3-D8;C1-M3-D9;C2-M3-D1;C2-M3-D2;C2-M3-D3;C2-M3-D4;C2-M3-D5;C2-M3-D6;C2-M3-D7;C2-M3-D8;C2-M3-D9;C3-M3-D1;C3-M3-D2;C3-M3-D3;C3-M3-D4;C3-M3-D5;C3-M3-D6;C3-M3-D7;C3-M3-D8;C3-M3-D9;C4-M3-D1;C4-M3-D2;C4-M3-D3;C4-M3-D4;C4-M3-D5;C4-M3-D6;C4-M3-D7;C4-M3-D8;C4-M3-D9;C5-M3-D1;C5-M3-D2;C5-M3-D3;C5-M3-D4;C5-M3-D5;C5-M3-D6;C5-M3-D7;C5-M3-D8;C5-M3-D9;C6-M3-D1;C6-M3-D2;C6-M3-D3;C6-M3-D4;C6-M3-D5;C6-M3-D6;C6-M3-D7;C6-M3-D8;C6-M3-D9;C7-M3-D1;C7-M3-D2;C7-M3-D3;C7-M3-D4;C7-M3-D5;C7-M3-D6;C7-M3-D7;C7-M3-D8;C7-M3-D9;C8-M3-D1;C8-M3-D2;C8-M3-D3;C8-M3-D4;C8-M3-D5;C8-M3-D6;C8-M3-D7;C8-M3-D8;C8-M3-D9;C9-M3-D1;C9-M3-D2;C9-M3-D3;C9-M3-D4;C9-M3-D5;C9-M3-D6;C9-M3-D7;C9-M3-D8;C9-M3-D9;C1-M4-D1;C1-M4-D2;C1-M4-D3;C1-M4-D4;C1-M4-D5;C1-M4-D6;C1-M4-D7;C1-M4-D8;C1-M4-D9;C2-M4-D1;C2-M4-D2;C2-M4-D3;C2-M4-D4;C2-M4-D5;C2-M4-D6;C2-M4-D7;C2-M4-D8;C2-M4-D9;C3-M4-D1;C3-M4-D2;C3-M4-D3;C3-M4-D4;C3-M4-D5;C3-M4-D6;C3-M4-D7;C3-M4-D8;C3-M4-D9;C4-M4-D1;C4-M4-D2;C4-M4-D3;C4-M4-D4;C4-M4-D5;C4-M4-D6;C4-M4-D7;C4-M4-D8;C4-M4-D9;C5-M4-D1;C5-M4-D2;C5-M4-D3;C5-M4-D4;C5-M4-D5;C5-M4-D6;C5-M4-D7;C5-M4-D8;C5-M4-D9;C6-M4-D1;C6-M4-D2;C6-M4-D3;C6-M4-D4;C6-M4-D5;C6-M4-D6;C6-M4-D7;C6-M4-D8;C6-M4-D9;C7-M4-D1;C7-M4-D2;C7-M4-D3;C7-M4-D4;C7-M4-D5;C7-M4-D6;C7-M4-D7;C7-M4-D8;C7-M4-D9;C8-M4-D1;C8-M4-D2;C8-M4-D3;C8-M4-D4;C8-M4-D5;C8-M4-D6;C8-M4-D7;C8-M4-D8;C8-M4-D9;C9-M4-D1;C9-M4-D2;C9-M4-D3;C9-M4-D4;C9-M4-D5;C9-M4-D6;C9-M4-D7;C9-M4-D8;C9-M4-D9;C1-M5-D1;C1-M5-D2;C1-M5-D3;C1-M5-D4;C1-M5-D5;C1-M5-D6;C1-M5-D7;C1-M5-D8;C1-M5-D9;C2-M5-D1;C2-M5-D2;C2-M5-D3;C2-M5-D4;C2-M5-D5;C2-M5-D6;C2-M5-D7;C2-M5-D8;C2-M5-D9;C3-M5-D1;C3-M5-D2;C3-M5-D3;C3-M5-D4;C3-M5-D5;C3-M5-D6;C3-M5-D7;C3-M5-D8;C3-M5-D9;C4-M5-D1;C4-M5-D2;C4-M5-D3;C4-M5-D4;C4-M5-D5;C4-M5-D6;C4-M5-D7;C4-M5-D8;C4-M5-D9;C5-M5-D1;C5-M5-D2;C5-M5-D3;C5-M5-D4;C5-M5-D5;C5-M5-D6;C5-M5-D7;C5-M5-D8;C5-M5-D9;C6-M5-D1;C6-M5-D2;C6-M5-D3;C6-M5-D4;C6-M5-D5;C6-M5-D6;C6-M5-D7;C6-M5-D8;C6-M5-D9;C7-M5-D1;C7-M5-D2;C7-M5-D3;C7-M5-D4;C7-M5-D5;C7-M5-D6;C7-M5-D7;C7-M5-D8;C7-M5-D9;C8-M5-D1;C8-M5-D2;C8-M5-D3;C8-M5-D4;C8-M5-D5;C8-M5-D6;C8-M5-D7;C8-M5-D8;C8-M5-D9;C9-M5-D1;C9-M5-D2;C9-M5-D3;C9-M5-D4;C9-M5-D5;C9-M5-D6;C9-M5-D7;C9-M5-D8;C9-M5-D9;C1-C1-D1;C1-C1-D2;C1-C1-D3;C1-C1-D4;C1-C1-D5;C1-C1-D6;C1-C1-D7;C1-C1-D8;C1-C1-D9;C2-C1-D1;C2-C1-D2;C2-C1-D3;C2-C1-D4;C2-C1-D5;C2-C1-D6;C2-C1-D7;C2-C1-D8;C2-C1-D9;C3-C1-D1;C3-C1-D2;C3-C1-D3;C3-C1-D4;C3-C1-D5;C3-C1-D6;C3-C1-D7;C3-C1-D8;C3-C1-D9;C4-C1-D1;C4-C1-D2;C4-C1-D3;C4-C1-D4;C4-C1-D5;C4-C1-D6;C4-C1-D7;C4-C1-D8;C4-C1-D9;C5-C1-D1;C5-C1-D2;C5-C1-D3;C5-C1-D4;C5-C1-D5;C5-C1-D6;C5-C1-D7;C5-C1-D8;C5-C1-D9;C6-C1-D1;C6-C1-D2;C6-C1-D3;C6-C1-D4;C6-C1-D5;C6-C1-D6;C6-C1-D7;C6-C1-D8;C6-C1-D9;C7-C1-D1;C7-C1-D2;C7-C1-D3;C7-C1-D4;C7-C1-D5;C7-C1-D6;C7-C1-D7;C7-C1-D8;C7-C1-D9;C8-C1-D1;C8-C1-D2;C8-C1-D3;C8-C1-D4;C8-C1-D5;C8-C1-D6;C8-C1-D7;C8-C1-D8;C8-C1-D9;C9-C1-D1;C9-C1-D2;C9-C1-D3;C9-C1-D4;C9-C1-D5;C9-C1-D6;C9-C1-D7;C9-C1-D8;C9-C1-D9;C1-C2-D1;C1-C2-D2;C1-C2-D3;C1-C2-D4;C1-C2-D5;C1-C2-D6;C1-C2-D7;C1-C2-D8;C1-C2-D9;C2-C2-D1;C2-C2-D2;C2-C2-D3;C2-C2-D4;C2-C2-D5;C2-C2-D6;C2-C2-D7;C2-C2-D8;C2-C2-D9;C3-C2-D1;C3-C2-D2;C3-C2-D3;C3-C2-D4;C3-C2-D5;C3-C2-D6;C3-C2-D7;C3-C2-D8;C3-C2-D9;C4-C2-D1;C4-C2-D2;C4-C2-D3;C4-C2-D4;C4-C2-D5;C4-C2-D6;C4-C2-D7;C4-C2-D8;C4-C2-D9;C5-C2-D1;C5-C2-D2;C5-C2-D3;C5-C2-D4;C5-C2-D5;C5-C2-D6;C5-C2-D7;C5-C2-D8;C5-C2-D9;C6-C2-D1;C6-C2-D2;C6-C2-D3;C6-C2-D4;C6-C2-D5;C6-C2-D6;C6-C2-D7;C6-C2-D8;C6-C2-D9;C7-C2-D1;C7-C2-D2;C7-C2-D3;C7-C2-D4;C7-C2-D5;C7-C2-D6;C7-C2-D7;C7-C2-D8;C7-C2-D9;C8-C2-D1;C8-C2-D2;C8-C2-D3;C8-C2-D4;C8-C2-D5;C8-C2-D6;C8-C2-D7;C8-C2-D8;C8-C2-D9;C9-C2-D1;C9-C2-D2;C9-C2-D3;C9-C2-D4;C9-C2-D5;C9-C2-D6;C9-C2-D7;C9-C2-D8;C9-C2-D9;C1-C3-D1;C1-C3-D2;C1-C3-D3;C1-C3-D4;C1-C3-D5;C1-C3-D6;C1-C3-D7;C1-C3-D8;C1-C3-D9;C2-C3-D1;C2-C3-D2;C2-C3-D3;C2-C3-D4;C2-C3-D5;C2-C3-D6;C2-C3-D7;C2-C3-D8;C2-C3-D9;C3-C3-D1;C3-C3-D2;C3-C3-D3;C3-C3-D4;C3-C3-D5;C3-C3-D6;C3-C3-D7;C3-C3-D8;C3-C3-D9;C4-C3-D1;C4-C3-D2;C4-C3-D3;C4-C3-D4;C4-C3-D5;C4-C3-D6;C4-C3-D7;C4-C3-D8;C4-C3-D9;C5-C3-D1;C5-C3-D2;C5-C3-D3;C5-C3-D4;C5-C3-D5;C5-C3-D6;C5-C3-D7;C5-C3-D8;C5-C3-D9;C6-C3-D1;C6-C3-D2;C6-C3-D3;C6-C3-D4;C6-C3-D5;C6-C3-D6;C6-C3-D7;C6-C3-D8;C6-C3-D9;C7-C3-D1;C7-C3-D2;C7-C3-D3;C7-C3-D4;C7-C3-D5;C7-C3-D6;C7-C3-D7;C7-C3-D8;C7-C3-D9;C8-C3-D1;C8-C3-D2;C8-C3-D3;C8-C3-D4;C8-C3-D5;C8-C3-D6;C8-C3-D7;C8-C3-D8;C8-C3-D9;C9-C3-D1;C9-C3-D2;C9-C3-D3;C9-C3-D4;C9-C3-D5;C9-C3-D6;C9-C3-D7;C9-C3-D8;C9-C3-D9;C1-C4-D1;C1-C4-D2;C1-C4-D3;C1-C4-D4;C1-C4-D5;C1-C4-D6;C1-C4-D7;C1-C4-D8;C1-C4-D9;C2-C4-D1;C2-C4-D2;C2-C4-D3;C2-C4-D4;C2-C4-D5;C2-C4-D6;C2-C4-D7;C2-C4-D8;C2-C4-D9;C3-C4-D1;C3-C4-D2;C3-C4-D3;C3-C4-D4;C3-C4-D5;C3-C4-D6;C3-C4-D7;C3-C4-D8;C3-C4-D9;C4-C4-D1;C4-C4-D2;C4-C4-D3;C4-C4-D4;C4-C4-D5;C4-C4-D6;C4-C4-D7;C4-C4-D8;C4-C4-D9;C5-C4-D1;C5-C4-D2;C5-C4-D3;C5-C4-D4;C5-C4-D5;C5-C4-D6;C5-C4-D7;C5-C4-D8;C5-C4-D9;C6-C4-D1;C6-C4-D2;C6-C4-D3;C6-C4-D4;C6-C4-D5;C6-C4-D6;C6-C4-D7;C6-C4-D8;C6-C4-D9;C7-C4-D1;C7-C4-D2;C7-C4-D3;C7-C4-D4;C7-C4-D5;C7-C4-D6;C7-C4-D7;C7-C4-D8;C7-C4-D9;C8-C4-D1;C8-C4-D2;C8-C4-D3;C8-C4-D4;C8-C4-D5;C8-C4-D6;C8-C4-D7;C8-C4-D8;C8-C4-D9;C9-C4-D1;C9-C4-D2;C9-C4-D3;C9-C4-D4;C9-C4-D5;C9-C4-D6;C9-C4-D7;C9-C4-D8;C9-C4-D9;C1-C5-D1;C1-C5-D2;C1-C5-D3;C1-C5-D4;C1-C5-D5;C1-C5-D6;C1-C5-D7;C1-C5-D8;C1-C5-D9;C2-C5-D1;C2-C5-D2;C2-C5-D3;C2-C5-D4;C2-C5-D5;C2-C5-D6;C2-C5-D7;C2-C5-D8;C2-C5-D9;C3-C5-D1;C3-C5-D2;C3-C5-D3;C3-C5-D4;C3-C5-D5;C3-C5-D6;C3-C5-D7;C3-C5-D8;C3-C5-D9;C4-C5-D1;C4-C5-D2;C4-C5-D3;C4-C5-D4;C4-C5-D5;C4-C5-D6;C4-C5-D7;C4-C5-D8;C4-C5-D9;C5-C5-D1;C5-C5-D2;C5-C5-D3;C5-C5-D4;C5-C5-D5;C5-C5-D6;C5-C5-D7;C5-C5-D8;C5-C5-D9;C6-C5-D1;C6-C5-D2;C6-C5-D3;C6-C5-D4;C6-C5-D5;C6-C5-D6;C6-C5-D7;C6-C5-D8;C6-C5-D9;C7-C5-D1;C7-C5-D2;C7-C5-D3;C7-C5-D4;C7-C5-D5;C7-C5-D6;C7-C5-D7;C7-C5-D8;C7-C5-D9;C8-C5-D1;C8-C5-D2;C8-C5-D3;C8-C5-D4;C8-C5-D5;C8-C5-D6;C8-C5-D7;C8-C5-D8;C8-C5-D9;C9-C5-D1;C9-C5-D2;C9-C5-D3;C9-C5-D4;C9-C5-D5;C9-C5-D6;C9-C5-D7;C9-C5-D8;C9-C5-D9;C1-C6-D1;C1-C6-D2;C1-C6-D3;C1-C6-D4;C1-C6-D5;C1-C6-D6;C1-C6-D7;C1-C6-D8;C1-C6-D9;C2-C6-D1;C2-C6-D2;C2-C6-D3;C2-C6-D4;C2-C6-D5;C2-C6-D6;C2-C6-D7;C2-C6-D8;C2-C6-D9;C3-C6-D1;C3-C6-D2;C3-C6-D3;C3-C6-D4;C3-C6-D5;C3-C6-D6;C3-C6-D7;C3-C6-D8;C3-C6-D9;C4-C6-D1;C4-C6-D2;C4-C6-D3;C4-C6-D4;C4-C6-D5;C4-C6-D6;C4-C6-D7;C4-C6-D8;C4-C6-D9;C5-C6-D1;C5-C6-D2;C5-C6-D3;C5-C6-D4;C5-C6-D5;C5-C6-D6;C5-C6-D7;C5-C6-D8;C5-C6-D9;C6-C6-D1;C6-C6-D2;C6-C6-D3;C6-C6-D4;C6-C6-D5;C6-C6-D6;C6-C6-D7;C6-C6-D8;C6-C6-D9;C7-C6-D1;C7-C6-D2;C7-C6-D3;C7-C6-D4;C7-C6-D5;C7-C6-D6;C7-C6-D7;C7-C6-D8;C7-C6-D9;C8-C6-D1;C8-C6-D2;C8-C6-D3;C8-C6-D4;C8-C6-D5;C8-C6-D6;C8-C6-D7;C8-C6-D8;C8-C6-D9;C9-C6-D1;C9-C6-D2;C9-C6-D3;C9-C6-D4;C9-C6-D5;C9-C6-D6;C9-C6-D7;C9-C6-D8;C9-C6-D9;C1-C7-D1;C1-C7-D2;C1-C7-D3;C1-C7-D4;C1-C7-D5;C1-C7-D6;C1-C7-D7;C1-C7-D8;C1-C7-D9;C2-C7-D1;C2-C7-D2;C2-C7-D3;C2-C7-D4;C2-C7-D5;C2-C7-D6;C2-C7-D7;C2-C7-D8;C2-C7-D9;C3-C7-D1;C3-C7-D2;C3-C7-D3;C3-C7-D4;C3-C7-D5;C3-C7-D6;C3-C7-D7;C3-C7-D8;C3-C7-D9;C4-C7-D1;C4-C7-D2;C4-C7-D3;C4-C7-D4;C4-C7-D5;C4-C7-D6;C4-C7-D7;C4-C7-D8;C4-C7-D9;C5-C7-D1;C5-C7-D2;C5-C7-D3;C5-C7-D4;C5-C7-D5;C5-C7-D6;C5-C7-D7;C5-C7-D8;C5-C7-D9;C6-C7-D1;C6-C7-D2;C6-C7-D3;C6-C7-D4;C6-C7-D5;C6-C7-D6;C6-C7-D7;C6-C7-D8;C6-C7-D9;C7-C7-D1;C7-C7-D2;C7-C7-D3;C7-C7-D4;C7-C7-D5;C7-C7-D6;C7-C7-D7;C7-C7-D8;C7-C7-D9;C8-C7-D1;C8-C7-D2;C8-C7-D3;C8-C7-D4;C8-C7-D5;C8-C7-D6;C8-C7-D7;C8-C7-D8;C8-C7-D9;C9-C7-D1;C9-C7-D2;C9-C7-D3;C9-C7-D4;C9-C7-D5;C9-C7-D6;C9-C7-D7;C9-C7-D8;C9-C7-D9;C1-C8-D1;C1-C8-D2;C1-C8-D3;C1-C8-D4;C1-C8-D5;C1-C8-D6;C1-C8-D7;C1-C8-D8;C1-C8-D9;C2-C8-D1;C2-C8-D2;C2-C8-D3;C2-C8-D4;C2-C8-D5;C2-C8-D6;C2-C8-D7;C2-C8-D8;C2-C8-D9;C3-C8-D1;C3-C8-D2;C3-C8-D3;C3-C8-D4;C3-C8-D5;C3-C8-D6;C3-C8-D7;C3-C8-D8;C3-C8-D9;C4-C8-D1;C4-C8-D2;C4-C8-D3;C4-C8-D4;C4-C8-D5;C4-C8-D6;C4-C8-D7;C4-C8-D8;C4-C8-D9;C5-C8-D1;C5-C8-D2;C5-C8-D3;C5-C8-D4;C5-C8-D5;C5-C8-D6;C5-C8-D7;C5-C8-D8;C5-C8-D9;C6-C8-D1;C6-C8-D2;C6-C8-D3;C6-C8-D4;C6-C8-D5;C6-C8-D6;C6-C8-D7;C6-C8-D8;C6-C8-D9;C7-C8-D1;C7-C8-D2;C7-C8-D3;C7-C8-D4;C7-C8-D5;C7-C8-D6;C7-C8-D7;C7-C8-D8;C7-C8-D9;C8-C8-D1;C8-C8-D2;C8-C8-D3;C8-C8-D4;C8-C8-D5;C8-C8-D6;C8-C8-D7;C8-C8-D8;C8-C8-D9;C9-C8-D1;C9-C8-D2;C9-C8-D3;C9-C8-D4;C9-C8-D5;C9-C8-D6;C9-C8-D7;C9-C8-D8;C9-C8-D9;C1-C9-D1;C1-C9-D2;C1-C9-D3;C1-C9-D4;C1-C9-D5;C1-C9-D6;C1-C9-D7;C1-C9-D8;C1-C9-D9;C2-C9-D1;C2-C9-D2;C2-C9-D3;C2-C9-D4;C2-C9-D5;C2-C9-D6;C2-C9-D7;C2-C9-D8;C2-C9-D9;C3-C9-D1;C3-C9-D2;C3-C9-D3;C3-C9-D4;C3-C9-D5;C3-C9-D6;C3-C9-D7;C3-C9-D8;C3-C9-D9;C4-C9-D1;C4-C9-D2;C4-C9-D3;C4-C9-D4;C4-C9-D5;C4-C9-D6;C4-C9-D7;C4-C9-D8;C4-C9-D9;C5-C9-D1;C5-C9-D2;C5-C9-D3;C5-C9-D4;C5-C9-D5;C5-C9-D6;C5-C9-D7;C5-C9-D8;C5-C9-D9;C6-C9-D1;C6-C9-D2;C6-C9-D3;C6-C9-D4;C6-C9-D5;C6-C9-D6;C6-C9-D7;C6-C9-D8;C6-C9-D9;C7-C9-D1;C7-C9-D2;C7-C9-D3;C7-C9-D4;C7-C9-D5;C7-C9-D6;C7-C9-D7;C7-C9-D8;C7-C9-D9;C8-C9-D1;C8-C9-D2;C8-C9-D3;C8-C9-D4;C8-C9-D5;C8-C9-D6;C8-C9-D7;C8-C9-D8;C8-C9-D9;C9-C9-D1;C9-C9-D2;C9-C9-D3;C9-C9-D4;C9-C9-D5;C9-C9-D6;C9-C9-D7;C9-C9-D8;C9-C9-D9;M1-C1-D1;M1-C1-D2;M1-C1-D3;M1-C1-D4;M1-C1-D5;M1-C1-D6;M1-C1-D7;M1-C1-D8;M1-C1-D9;M1-C2-D1;M1-C2-D2;M1-C2-D3;M1-C2-D4;M1-C2-D5;M1-C2-D6;M1-C2-D7;M1-C2-D8;M1-C2-D9;M1-C3-D1;M1-C3-D2;M1-C3-D3;M1-C3-D4;M1-C3-D5;M1-C3-D6;M1-C3-D7;M1-C3-D8;M1-C3-D9;M1-C4-D1;M1-C4-D2;M1-C4-D3;M1-C4-D4;M1-C4-D5;M1-C4-D6;M1-C4-D7;M1-C4-D8;M1-C4-D9;M1-C5-D1;M1-C5-D2;M1-C5-D3;M1-C5-D4;M1-C5-D5;M1-C5-D6;M1-C5-D7;M1-C5-D8;M1-C5-D9;M1-C6-D1;M1-C6-D2;M1-C6-D3;M1-C6-D4;M1-C6-D5;M1-C6-D6;M1-C6-D7;M1-C6-D8;M1-C6-D9;M1-C7-D1;M1-C7-D2;M1-C7-D3;M1-C7-D4;M1-C7-D5;M1-C7-D6;M1-C7-D7;M1-C7-D8;M1-C7-D9;M1-C8-D1;M1-C8-D2;M1-C8-D3;M1-C8-D4;M1-C8-D5;M1-C8-D6;M1-C8-D7;M1-C8-D8;M1-C8-D9;M1-C9-D1;M1-C9-D2;M1-C9-D3;M1-C9-D4;M1-C9-D5;M1-C9-D6;M1-C9-D7;M1-C9-D8;M1-C9-D9;M2-C1-D1;M2-C1-D2;M2-C1-D3;M2-C1-D4;M2-C1-D5;M2-C1-D6;M2-C1-D7;M2-C1-D8;M2-C1-D9;M2-C2-D1;M2-C2-D2;M2-C2-D3;M2-C2-D4;M2-C2-D5;M2-C2-D6;M2-C2-D7;M2-C2-D8;M2-C2-D9;M2-C3-D1;M2-C3-D2;M2-C3-D3;M2-C3-D4;M2-C3-D5;M2-C3-D6;M2-C3-D7;M2-C3-D8;M2-C3-D9;M2-C4-D1;M2-C4-D2;M2-C4-D3;M2-C4-D4;M2-C4-D5;M2-C4-D6;M2-C4-D7;M2-C4-D8;M2-C4-D9;M2-C5-D1;M2-C5-D2;M2-C5-D3;M2-C5-D4;M2-C5-D5;M2-C5-D6;M2-C5-D7;M2-C5-D8;M2-C5-D9;M2-C6-D1;M2-C6-D2;M2-C6-D3;M2-C6-D4;M2-C6-D5;M2-C6-D6;M2-C6-D7;M2-C6-D8;M2-C6-D9;M2-C7-D1;M2-C7-D2;M2-C7-D3;M2-C7-D4;M2-C7-D5;M2-C7-D6;M2-C7-D7;M2-C7-D8;M2-C7-D9;M2-C8-D1;M2-C8-D2;M2-C8-D3;M2-C8-D4;M2-C8-D5;M2-C8-D6;M2-C8-D7;M2-C8-D8;M2-C8-D9;M2-C9-D1;M2-C9-D2;M2-C9-D3;M2-C9-D4;M2-C9-D5;M2-C9-D6;M2-C9-D7;M2-C9-D8;M2-C9-D9;M3-C1-D1;M3-C1-D2;M3-C1-D3;M3-C1-D4;M3-C1-D5;M3-C1-D6;M3-C1-D7;M3-C1-D8;M3-C1-D9;M3-C2-D1;M3-C2-D2;M3-C2-D3;M3-C2-D4;M3-C2-D5;M3-C2-D6;M3-C2-D7;M3-C2-D8;M3-C2-D9;M3-C3-D1;M3-C3-D2;M3-C3-D3;M3-C3-D4;M3-C3-D5;M3-C3-D6;M3-C3-D7;M3-C3-D8;M3-C3-D9;M3-C4-D1;M3-C4-D2;M3-C4-D3;M3-C4-D4;M3-C4-D5;M3-C4-D6;M3-C4-D7;M3-C4-D8;M3-C4-D9;M3-C5-D1;M3-C5-D2;M3-C5-D3;M3-C5-D4;M3-C5-D5;M3-C5-D6;M3-C5-D7;M3-C5-D8;M3-C5-D9;M3-C6-D1;M3-C6-D2;M3-C6-D3;M3-C6-D4;M3-C6-D5;M3-C6-D6;M3-C6-D7;M3-C6-D8;M3-C6-D9;M3-C7-D1;M3-C7-D2;M3-C7-D3;M3-C7-D4;M3-C7-D5;M3-C7-D6;M3-C7-D7;M3-C7-D8;M3-C7-D9;M3-C8-D1;M3-C8-D2;M3-C8-D3;M3-C8-D4;M3-C8-D5;M3-C8-D6;M3-C8-D7;M3-C8-D8;M3-C8-D9;M3-C9-D1;M3-C9-D2;M3-C9-D3;M3-C9-D4;M3-C9-D5;M3-C9-D6;M3-C9-D7;M3-C9-D8;M3-C9-D9;M4-C1-D1;M4-C1-D2;M4-C1-D3;M4-C1-D4;M4-C1-D5;M4-C1-D6;M4-C1-D7;M4-C1-D8;M4-C1-D9;M4-C2-D1;M4-C2-D2;M4-C2-D3;M4-C2-D4;M4-C2-D5;M4-C2-D6;M4-C2-D7;M4-C2-D8;M4-C2-D9;M4-C3-D1;M4-C3-D2;M4-C3-D3;M4-C3-D4;M4-C3-D5;M4-C3-D6;M4-C3-D7;M4-C3-D8;M4-C3-D9;M4-C4-D1;M4-C4-D2;M4-C4-D3;M4-C4-D4;M4-C4-D5;M4-C4-D6;M4-C4-D7;M4-C4-D8;M4-C4-D9;M4-C5-D1;M4-C5-D2;M4-C5-D3;M4-C5-D4;M4-C5-D5;M4-C5-D6;M4-C5-D7;M4-C5-D8;M4-C5-D9;M4-C6-D1;M4-C6-D2;M4-C6-D3;M4-C6-D4;M4-C6-D5;M4-C6-D6;M4-C6-D7;M4-C6-D8;M4-C6-D9;M4-C7-D1;M4-C7-D2;M4-C7-D3;M4-C7-D4;M4-C7-D5;M4-C7-D6;M4-C7-D7;M4-C7-D8;M4-C7-D9;M4-C8-D1;M4-C8-D2;M4-C8-D3;M4-C8-D4;M4-C8-D5;M4-C8-D6;M4-C8-D7;M4-C8-D8;M4-C8-D9;M4-C9-D1;M4-C9-D2;M4-C9-D3;M4-C9-D4;M4-C9-D5;M4-C9-D6;M4-C9-D7;M4-C9-D8;M4-C9-D9;M5-C1-D1;M5-C1-D2;M5-C1-D3;M5-C1-D4;M5-C1-D5;M5-C1-D6;M5-C1-D7;M5-C1-D8;M5-C1-D9;M5-C2-D1;M5-C2-D2;M5-C2-D3;M5-C2-D4;M5-C2-D5;M5-C2-D6;M5-C2-D7;M5-C2-D8;M5-C2-D9;M5-C3-D1;M5-C3-D2;M5-C3-D3;M5-C3-D4;M5-C3-D5;M5-C3-D6;M5-C3-D7;M5-C3-D8;M5-C3-D9;M5-C4-D1;M5-C4-D2;M5-C4-D3;M5-C4-D4;M5-C4-D5;M5-C4-D6;M5-C4-D7;M5-C4-D8;M5-C4-D9;M5-C5-D1;M5-C5-D2;M5-C5-D3;M5-C5-D4;M5-C5-D5;M5-C5-D6;M5-C5-D7;M5-C5-D8;M5-C5-D9;M5-C6-D1;M5-C6-D2;M5-C6-D3;M5-C6-D4;M5-C6-D5;M5-C6-D6;M5-C6-D7;M5-C6-D8;M5-C6-D9;M5-C7-D1;M5-C7-D2;M5-C7-D3;M5-C7-D4;M5-C7-D5;M5-C7-D6;M5-C7-D7;M5-C7-D8;M5-C7-D9;M5-C8-D1;M5-C8-D2;M5-C8-D3;M5-C8-D4;M5-C8-D5;M5-C8-D6;M5-C8-D7;M5-C8-D8;M5-C8-D9;M5-C9-D1;M5-C9-D2;M5-C9-D3;M5-C9-D4;M5-C9-D5;M5-C9-D6;M5-C9-D7;M5-C9-D8;M5-C9-D9;C1-C1-D1;C1-C1-D2;C1-C1-D3;C1-C1-D4;C1-C1-D5;C1-C1-D6;C1-C1-D7;C1-C1-D8;C1-C1-D9;C1-C2-D1;C1-C2-D2;C1-C2-D3;C1-C2-D4;C1-C2-D5;C1-C2-D6;C1-C2-D7;C1-C2-D8;C1-C2-D9;C1-C3-D1;C1-C3-D2;C1-C3-D3;C1-C3-D4;C1-C3-D5;C1-C3-D6;C1-C3-D7;C1-C3-D8;C1-C3-D9;C1-C4-D1;C1-C4-D2;C1-C4-D3;C1-C4-D4;C1-C4-D5;C1-C4-D6;C1-C4-D7;C1-C4-D8;C1-C4-D9;C1-C5-D1;C1-C5-D2;C1-C5-D3;C1-C5-D4;C1-C5-D5;C1-C5-D6;C1-C5-D7;C1-C5-D8;C1-C5-D9;C1-C6-D1;C1-C6-D2;C1-C6-D3;C1-C6-D4;C1-C6-D5;C1-C6-D6;C1-C6-D7;C1-C6-D8;C1-C6-D9;C1-C7-D1;C1-C7-D2;C1-C7-D3;C1-C7-D4;C1-C7-D5;C1-C7-D6;C1-C7-D7;C1-C7-D8;C1-C7-D9;C1-C8-D1;C1-C8-D2;C1-C8-D3;C1-C8-D4;C1-C8-D5;C1-C8-D6;C1-C8-D7;C1-C8-D8;C1-C8-D9;C1-C9-D1;C1-C9-D2;C1-C9-D3;C1-C9-D4;C1-C9-D5;C1-C9-D6;C1-C9-D7;C1-C9-D8;C1-C9-D9;C2-C1-D1;C2-C1-D2;C2-C1-D3;C2-C1-D4;C2-C1-D5;C2-C1-D6;C2-C1-D7;C2-C1-D8;C2-C1-D9;C2-C2-D1;C2-C2-D2;C2-C2-D3;C2-C2-D4;C2-C2-D5;C2-C2-D6;C2-C2-D7;C2-C2-D8;C2-C2-D9;C2-C3-D1;C2-C3-D2;C2-C3-D3;C2-C3-D4;C2-C3-D5;C2-C3-D6;C2-C3-D7;C2-C3-D8;C2-C3-D9;C2-C4-D1;C2-C4-D2;C2-C4-D3;C2-C4-D4;C2-C4-D5;C2-C4-D6;C2-C4-D7;C2-C4-D8;C2-C4-D9;C2-C5-D1;C2-C5-D2;C2-C5-D3;C2-C5-D4;C2-C5-D5;C2-C5-D6;C2-C5-D7;C2-C5-D8;C2-C5-D9;C2-C6-D1;C2-C6-D2;C2-C6-D3;C2-C6-D4;C2-C6-D5;C2-C6-D6;C2-C6-D7;C2-C6-D8;C2-C6-D9;C2-C7-D1;C2-C7-D2;C2-C7-D3;C2-C7-D4;C2-C7-D5;C2-C7-D6;C2-C7-D7;C2-C7-D8;C2-C7-D9;C2-C8-D1;C2-C8-D2;C2-C8-D3;C2-C8-D4;C2-C8-D5;C2-C8-D6;C2-C8-D7;C2-C8-D8;C2-C8-D9;C2-C9-D1;C2-C9-D2;C2-C9-D3;C2-C9-D4;C2-C9-D5;C2-C9-D6;C2-C9-D7;C2-C9-D8;C2-C9-D9;C3-C1-D1;C3-C1-D2;C3-C1-D3;C3-C1-D4;C3-C1-D5;C3-C1-D6;C3-C1-D7;C3-C1-D8;C3-C1-D9;C3-C2-D1;C3-C2-D2;C3-C2-D3;C3-C2-D4;C3-C2-D5;C3-C2-D6;C3-C2-D7;C3-C2-D8;C3-C2-D9;C3-C3-D1;C3-C3-D2;C3-C3-D3;C3-C3-D4;C3-C3-D5;C3-C3-D6;C3-C3-D7;C3-C3-D8;C3-C3-D9;C3-C4-D1;C3-C4-D2;C3-C4-D3;C3-C4-D4;C3-C4-D5;C3-C4-D6;C3-C4-D7;C3-C4-D8;C3-C4-D9;C3-C5-D1;C3-C5-D2;C3-C5-D3;C3-C5-D4;C3-C5-D5;C3-C5-D6;C3-C5-D7;C3-C5-D8;C3-C5-D9;C3-C6-D1;C3-C6-D2;C3-C6-D3;C3-C6-D4;C3-C6-D5;C3-C6-D6;C3-C6-D7;C3-C6-D8;C3-C6-D9;C3-C7-D1;C3-C7-D2;C3-C7-D3;C3-C7-D4;C3-C7-D5;C3-C7-D6;C3-C7-D7;C3-C7-D8;C3-C7-D9;C3-C8-D1;C3-C8-D2;C3-C8-D3;C3-C8-D4;C3-C8-D5;C3-C8-D6;C3-C8-D7;C3-C8-D8;C3-C8-D9;C3-C9-D1;C3-C9-D2;C3-C9-D3;C3-C9-D4;C3-C9-D5;C3-C9-D6;C3-C9-D7;C3-C9-D8;C3-C9-D9;C4-C1-D1;C4-C1-D2;C4-C1-D3;C4-C1-D4;C4-C1-D5;C4-C1-D6;C4-C1-D7;C4-C1-D8;C4-C1-D9;C4-C2-D1;C4-C2-D2;C4-C2-D3;C4-C2-D4;C4-C2-D5;C4-C2-D6;C4-C2-D7;C4-C2-D8;C4-C2-D9;C4-C3-D1;C4-C3-D2;C4-C3-D3;C4-C3-D4;C4-C3-D5;C4-C3-D6;C4-C3-D7;C4-C3-D8;C4-C3-D9;C4-C4-D1;C4-C4-D2;C4-C4-D3;C4-C4-D4;C4-C4-D5;C4-C4-D6;C4-C4-D7;C4-C4-D8;C4-C4-D9;C4-C5-D1;C4-C5-D2;C4-C5-D3;C4-C5-D4;C4-C5-D5;C4-C5-D6;C4-C5-D7;C4-C5-D8;C4-C5-D9;C4-C6-D1;C4-C6-D2;C4-C6-D3;C4-C6-D4;C4-C6-D5;C4-C6-D6;C4-C6-D7;C4-C6-D8;C4-C6-D9;C4-C7-D1;C4-C7-D2;C4-C7-D3;C4-C7-D4;C4-C7-D5;C4-C7-D6;C4-C7-D7;C4-C7-D8;C4-C7-D9;C4-C8-D1;C4-C8-D2;C4-C8-D3;C4-C8-D4;C4-C8-D5;C4-C8-D6;C4-C8-D7;C4-C8-D8;C4-C8-D9;C4-C9-D1;C4-C9-D2;C4-C9-D3;C4-C9-D4;C4-C9-D5;C4-C9-D6;C4-C9-D7;C4-C9-D8;C4-C9-D9;C5-C1-D1;C5-C1-D2;C5-C1-D3;C5-C1-D4;C5-C1-D5;C5-C1-D6;C5-C1-D7;C5-C1-D8;C5-C1-D9;C5-C2-D1;C5-C2-D2;C5-C2-D3;C5-C2-D4;C5-C2-D5;C5-C2-D6;C5-C2-D7;C5-C2-D8;C5-C2-D9;C5-C3-D1;C5-C3-D2;C5-C3-D3;C5-C3-D4;C5-C3-D5;C5-C3-D6;C5-C3-D7;C5-C3-D8;C5-C3-D9;C5-C4-D1;C5-C4-D2;C5-C4-D3;C5-C4-D4;C5-C4-D5;C5-C4-D6;C5-C4-D7;C5-C4-D8;C5-C4-D9;C5-C5-D1;C5-C5-D2;C5-C5-D3;C5-C5-D4;C5-C5-D5;C5-C5-D6;C5-C5-D7;C5-C5-D8;C5-C5-D9;C5-C6-D1;C5-C6-D2;C5-C6-D3;C5-C6-D4;C5-C6-D5;C5-C6-D6;C5-C6-D7;C5-C6-D8;C5-C6-D9;C5-C7-D1;C5-C7-D2;C5-C7-D3;C5-C7-D4;C5-C7-D5;C5-C7-D6;C5-C7-D7;C5-C7-D8;C5-C7-D9;C5-C8-D1;C5-C8-D2;C5-C8-D3;C5-C8-D4;C5-C8-D5;C5-C8-D6;C5-C8-D7;C5-C8-D8;C5-C8-D9;C5-C9-D1;C5-C9-D2;C5-C9-D3;C5-C9-D4;C5-C9-D5;C5-C9-D6;C5-C9-D7;C5-C9-D8;C5-C9-D9;C6-C1-D1;C6-C1-D2;C6-C1-D3;C6-C1-D4;C6-C1-D5;C6-C1-D6;C6-C1-D7;C6-C1-D8;C6-C1-D9;C6-C2-D1;C6-C2-D2;C6-C2-D3;C6-C2-D4;C6-C2-D5;C6-C2-D6;C6-C2-D7;C6-C2-D8;C6-C2-D9;C6-C3-D1;C6-C3-D2;C6-C3-D3;C6-C3-D4;C6-C3-D5;C6-C3-D6;C6-C3-D7;C6-C3-D8;C6-C3-D9;C6-C4-D1;C6-C4-D2;C6-C4-D3;C6-C4-D4;C6-C4-D5;C6-C4-D6;C6-C4-D7;C6-C4-D8;C6-C4-D9;C6-C5-D1;C6-C5-D2;C6-C5-D3;C6-C5-D4;C6-C5-D5;C6-C5-D6;C6-C5-D7;C6-C5-D8;C6-C5-D9;C6-C6-D1;C6-C6-D2;C6-C6-D3;C6-C6-D4;C6-C6-D5;C6-C6-D6;C6-C6-D7;C6-C6-D8;C6-C6-D9;C6-C7-D1;C6-C7-D2;C6-C7-D3;C6-C7-D4;C6-C7-D5;C6-C7-D6;C6-C7-D7;C6-C7-D8;C6-C7-D9;C6-C8-D1;C6-C8-D2;C6-C8-D3;C6-C8-D4;C6-C8-D5;C6-C8-D6;C6-C8-D7;C6-C8-D8;C6-C8-D9;C6-C9-D1;C6-C9-D2;C6-C9-D3;C6-C9-D4;C6-C9-D5;C6-C9-D6;C6-C9-D7;C6-C9-D8;C6-C9-D9;C7-C1-D1;C7-C1-D2;C7-C1-D3;C7-C1-D4;C7-C1-D5;C7-C1-D6;C7-C1-D7;C7-C1-D8;C7-C1-D9;C7-C2-D1;C7-C2-D2;C7-C2-D3;C7-C2-D4;C7-C2-D5;C7-C2-D6;C7-C2-D7;C7-C2-D8;C7-C2-D9;C7-C3-D1;C7-C3-D2;C7-C3-D3;C7-C3-D4;C7-C3-D5;C7-C3-D6;C7-C3-D7;C7-C3-D8;C7-C3-D9;C7-C4-D1;C7-C4-D2;C7-C4-D3;C7-C4-D4;C7-C4-D5;C7-C4-D6;C7-C4-D7;C7-C4-D8;C7-C4-D9;C7-C5-D1;C7-C5-D2;C7-C5-D3;C7-C5-D4;C7-C5-D5;C7-C5-D6;C7-C5-D7;C7-C5-D8;C7-C5-D9;C7-C6-D1;C7-C6-D2;C7-C6-D3;C7-C6-D4;C7-C6-D5;C7-C6-D6;C7-C6-D7;C7-C6-D8;C7-C6-D9;C7-C7-D1;C7-C7-D2;C7-C7-D3;C7-C7-D4;C7-C7-D5;C7-C7-D6;C7-C7-D7;C7-C7-D8;C7-C7-D9;C7-C8-D1;C7-C8-D2;C7-C8-D3;C7-C8-D4;C7-C8-D5;C7-C8-D6;C7-C8-D7;C7-C8-D8;C7-C8-D9;C7-C9-D1;C7-C9-D2;C7-C9-D3;C7-C9-D4;C7-C9-D5;C7-C9-D6;C7-C9-D7;C7-C9-D8;C7-C9-D9;C8-C1-D1;C8-C1-D2;C8-C1-D3;C8-C1-D4;C8-C1-D5;C8-C1-D6;C8-C1-D7;C8-C1-D8;C8-C1-D9;C8-C2-D1;C8-C2-D2;C8-C2-D3;C8-C2-D4;C8-C2-D5;C8-C2-D6;C8-C2-D7;C8-C2-D8;C8-C2-D9;C8-C3-D1;C8-C3-D2;C8-C3-D3;C8-C3-D4;C8-C3-D5;C8-C3-D6;C8-C3-D7;C8-C3-D8;C8-C3-D9;C8-C4-D1;C8-C4-D2;C8-C4-D3;C8-C4-D4;C8-C4-D5;C8-C4-D6;C8-C4-D7;C8-C4-D8;C8-C4-D9;C8-C5-D1;C8-C5-D2;C8-C5-D3;C8-C5-D4;C8-C5-D5;C8-C5-D6;C8-C5-D7;C8-C5-D8;C8-C5-D9;C8-C6-D1;C8-C6-D2;C8-C6-D3;C8-C6-D4;C8-C6-D5;C8-C6-D6;C8-C6-D7;C8-C6-D8;C8-C6-D9;C8-C7-D1;C8-C7-D2;C8-C7-D3;C8-C7-D4;C8-C7-D5;C8-C7-D6;C8-C7-D7;C8-C7-D8;C8-C7-D9;C8-C8-D1;C8-C8-D2;C8-C8-D3;C8-C8-D4;C8-C8-D5;C8-C8-D6;C8-C8-D7;C8-C8-D8;C8-C8-D9;C8-C9-D1;C8-C9-D2;C8-C9-D3;C8-C9-D4;C8-C9-D5;C8-C9-D6;C8-C9-D7;C8-C9-D8;C8-C9-D9;C9-C1-D1;C9-C1-D2;C9-C1-D3;C9-C1-D4;C9-C1-D5;C9-C1-D6;C9-C1-D7;C9-C1-D8;C9-C1-D9;C9-C2-D1;C9-C2-D2;C9-C2-D3;C9-C2-D4;C9-C2-D5;C9-C2-D6;C9-C2-D7;C9-C2-D8;C9-C2-D9;C9-C3-D1;C9-C3-D2;C9-C3-D3;C9-C3-D4;C9-C3-D5;C9-C3-D6;C9-C3-D7;C9-C3-D8;C9-C3-D9;C9-C4-D1;C9-C4-D2;C9-C4-D3;C9-C4-D4;C9-C4-D5;C9-C4-D6;C9-C4-D7;C9-C4-D8;C9-C4-D9;C9-C5-D1;C9-C5-D2;C9-C5-D3;C9-C5-D4;C9-C5-D5;C9-C5-D6;C9-C5-D7;C9-C5-D8;C9-C5-D9;C9-C6-D1;C9-C6-D2;C9-C6-D3;C9-C6-D4;C9-C6-D5;C9-C6-D6;C9-C6-D7;C9-C6-D8;C9-C6-D9;C9-C7-D1;C9-C7-D2;C9-C7-D3;C9-C7-D4;C9-C7-D5;C9-C7-D6;C9-C7-D7;C9-C7-D8;C9-C7-D9;C9-C8-D1;C9-C8-D2;C9-C8-D3;C9-C8-D4;C9-C8-D5;C9-C8-D6;C9-C8-D7;C9-C8-D8;C9-C8-D9;C9-C9-D1;C9-C9-D2;C9-C9-D3;C9-C9-D4;C9-C9-D5;C9-C9-D6;C9-C9-D7;C9-C9-D8;C9-C9-D9。
as can be appreciated from the above list, in the first 1134 arrangements, the driver machine is located at a first position along the axis of the shaft, so i is 1, the first compressor is located at a second position, so j is 2, and the auxiliary machine or another compressor is located at a third position, so k is 3.
In a subsequent 1134 arrangement, the driver machine is in the first position, so i is 1, the first compressor is in the third position, so j is 3, and the auxiliary machine or another compressor is in the second position, so k is 2.
In a subsequent 1134 arrangement, the driver machine is in the second position, so i is 2, the first compressor is in the first position, so j is 1, and the auxiliary machine or another compressor is in the third position, so k is 3.
In a subsequent 1134 arrangement, the driver machine is in the second position, so i is 2, the first compressor is in the third position, so j is 3, and the auxiliary machine or another compressor is in the first position, so k is 1.
In a subsequent 1134 arrangement, the driver machine is in the third position, so i is 3, the first compressor is in the first position, so j is 1, and the auxiliary machine or another compressor is in the second position, so k is 2.
In a subsequent 1134 arrangement, the driver machine is in the third position, so i is 3, the first compressor is in the second position, so j is 2, and the auxiliary machine or another compressor is in the first position, so k is 1.
When "m ═ 4", the generation method uses the generation section 2004 of fig. 42A, 42B, 42C, 42D, 42E, and generates 244944 possible arrangements. Only the first 800 arrangements and the last 800 arrangements are listed below. All other arrangements can be readily obtained by those skilled in the art using the above-described generation method and looking at the flowcharts of fig. 42A, 42B, 42C, 42D, 42E.
The first 800 arrangements are:
D1-C1-M1-C1;D2-C1-M1-C1;D3-C1-M1-C1;D4-C1-M1-C1;D5-C1-M1-C1;D6-C1-M1-C1;D7-C1-M1-C1;D8-C1-M1-C1;D9-C1-M1-C1;D1-C2-M1-C1;D2-C2-M1-C1;D3-C2-M1-C1;D4-C2-M1-C1;D5-C2-M1-C1;D6-C2-M1-C1;D7-C2-M1-C1;D8-C2-M1-C1;D9-C2-M1-C1;D1-C3-M1-C1;D2-C3-M1-C1;D3-C3-M1-C1;D4-C3-M1-C1;D5-C3-M1-C1;D6-C3-M1-C1;D7-C3-M1-C1;D8-C3-M1-C1;D9-C3-M1-C1;D1-C4-M1-C1;D2-C4-M1-C1;D3-C4-M1-C1;D4-C4-M1-C1;D5-C4-M1-C1;D6-C4-M1-C1;D7-C4-M1-C1;D8-C4-M1-C1;D9-C4-M1-C1;D1-C5-M1-C1;D2-C5-M1-C1;D3-C5-M1-C1;D4-C5-M1-C1;D5-C5-M1-C1;D6-C5-M1-C1;D7-C5-M1-C1;D8-C5-M1-C1;D9-C5-M1-C1;D1-C6-M1-C1;D2-C6-M1-C1;D3-C6-M1-C1;D4-C6-M1-C1;D5-C6-M1-C1;D6-C6-M1-C1;D7-C6-M1-C1;D8-C6-M1-C1;D9-C6-M1-C1;D1-C7-M1-C1;D2-C7-M1-C1;D3-C7-M1-C1;D4-C7-M1-C1;D5-C7-M1-C1;D6-C7-M1-C1;D7-C7-M1-C1;D8-C7-M1-C1;D9-C7-M1-C1;D1-C8-M1-C1;D2-C8-M1-C1;D3-C8-M1-C1;D4-C8-M1-C1;D5-C8-M1-C1;D6-C8-M1-C1;D7-C8-M1-C1;D8-C8-M1-C1;D9-C8-M1-C1;D1-C9-M1-C1;D2-C9-M1-C1;D3-C9-M1-C1;D4-C9-M1-C1;D5-C9-M1-C1;D6-C9-M1-C1;D7-C9-M1-C1;D8-C9-M1-C1;D9-C9-M1-C1;D1-C1-M1-C2;D2-C1-M1-C2;D3-C1-M1-C2;D4-C1-M1-C2;D5-C1-M1-C2;D6-C1-M1-C2;D7-C1-M1-C2;D8-C1-M1-C2;D9-C1-M1-C2;D1-C2-M1-C2;D2-C2-M1-C2;D3-C2-M1-C2;D4-C2-M1-C2;D5-C2-M1-C2;D6-C2-M1-C2;D7-C2-M1-C2;D8-C2-M1-C2;D9-C2-M1-C2;D1-C3-M1-C2;D2-C3-M1-C2;D3-C3-M1-C2;D4-C3-M1-C2;D5-C3-M1-C2;D6-C3-M1-C2;D7-C3-M1-C2;D8-C3-M1-C2;D9-C3-M1-C2;D1-C4-M1-C2;D2-C4-M1-C2;D3-C4-M1-C2;D4-C4-M1-C2;D5-C4-M1-C2;D6-C4-M1-C2;D7-C4-M1-C2;D8-C4-M1-C2;D9-C4-M1-C2;D1-C5-M1-C2;D2-C5-M1-C2;D3-C5-M1-C2;D4-C5-M1-C2;D5-C5-M1-C2;D6-C5-M1-C2;D7-C5-M1-C2;D8-C5-M1-C2;D9-C5-M1-C2;D1-C6-M1-C2;D2-C6-M1-C2;D3-C6-M1-C2;D4-C6-M1-C2;D5-C6-M1-C2;D6-C6-M1-C2;D7-C6-M1-C2;D8-C6-M1-C2;D9-C6-M1-C2;D1-C7-M1-C2;D2-C7-M1-C2;D3-C7-M1-C2;D4-C7-M1-C2;D5-C7-M1-C2;D6-C7-M1-C2;D7-C7-M1-C2;D8-C7-M1-C2;D9-C7-M1-C2;D1-C8-M1-C2;D2-C8-M1-C2;D3-C8-M1-C2;D4-C8-M1-C2;D5-C8-M1-C2;D6-C8-M1-C2;D7-C8-M1-C2;D8-C8-M1-C2;D9-C8-M1-C2;D1-C9-M1-C2;D2-C9-M1-C2;D3-C9-M1-C2;D4-C9-M1-C2;D5-C9-M1-C2;D6-C9-M1-C2;D7-C9-M1-C2;D8-C9-M1-C2;D9-C9-M1-C2;D1-C1-M1-C3;D2-C1-M1-C3;D3-C1-M1-C3;D4-C1-M1-C3;D5-C1-M1-C3;D6-C1-M1-C3;D7-C1-M1-C3;D8-C1-M1-C3;D9-C1-M1-C3;D1-C2-M1-C3;D2-C2-M1-C3;D3-C2-M1-C3;D4-C2-M1-C3;D5-C2-M1-C3;D6-C2-M1-C3;D7-C2-M1-C3;D8-C2-M1-C3;D9-C2-M1-C3;D1-C3-M1-C3;D2-C3-M1-C3;D3-C3-M1-C3;D4-C3-M1-C3;D5-C3-M1-C3;D6-C3-M1-C3;D7-C3-M1-C3;D8-C3-M1-C3;D9-C3-M1-C3;D1-C4-M1-C3;D2-C4-M1-C3;D3-C4-M1-C3;D4-C4-M1-C3;D5-C4-M1-C3;D6-C4-M1-C3;D7-C4-M1-C3;D8-C4-M1-C3;D9-C4-M1-C3;D1-C5-M1-C3;D2-C5-M1-C3;D3-C5-M1-C3;D4-C5-M1-C3;D5-C5-M1-C3;D6-C5-M1-C3;D7-C5-M1-C3;D8-C5-M1-C3;D9-C5-M1-C3;D1-C6-M1-C3;D2-C6-M1-C3;D3-C6-M1-C3;D4-C6-M1-C3;D5-C6-M1-C3;D6-C6-M1-C3;D7-C6-M1-C3;D8-C6-M1-C3;D9-C6-M1-C3;D1-C7-M1-C3;D2-C7-M1-C3;D3-C7-M1-C3;D4-C7-M1-C3;D5-C7-M1-C3;D6-C7-M1-C3;D7-C7-M1-C3;D8-C7-M1-C3;D9-C7-M1-C3;D1-C8-M1-C3;D2-C8-M1-C3;D3-C8-M1-C3;D4-C8-M1-C3;D5-C8-M1-C3;D6-C8-M1-C3;D7-C8-M1-C3;D8-C8-M1-C3;D9-C8-M1-C3;D1-C9-M1-C3;D2-C9-M1-C3;D3-C9-M1-C3;D4-C9-M1-C3;D5-C9-M1-C3;D6-C9-M1-C3;D7-C9-M1-C3;D8-C9-M1-C3;D9-C9-M1-C3;D1-C1-M1-C4;D2-C1-M1-C4;D3-C1-M1-C4;D4-C1-M1-C4;D5-C1-M1-C4;D6-C1-M1-C4;D7-C1-M1-C4;D8-C1-M1-C4;D9-C1-M1-C4;D1-C2-M1-C4;D2-C2-M1-C4;D3-C2-M1-C4;D4-C2-M1-C4;D5-C2-M1-C4;D6-C2-M1-C4;D7-C2-M1-C4;D8-C2-M1-C4;D9-C2-M1-C4;D1-C3-M1-C4;D2-C3-M1-C4;D3-C3-M1-C4;D4-C3-M1-C4;D5-C3-M1-C4;D6-C3-M1-C4;D7-C3-M1-C4;D8-C3-M1-C4;D9-C3-M1-C4;D1-C4-M1-C4;D2-C4-M1-C4;D3-C4-M1-C4;D4-C4-M1-C4;D5-C4-M1-C4;D6-C4-M1-C4;D7-C4-M1-C4;D8-C4-M1-C4;D9-C4-M1-C4;D1-C5-M1-C4;D2-C5-M1-C4;D3-C5-M1-C4;D4-C5-M1-C4;D5-C5-M1-C4;D6-C5-M1-C4;D7-C5-M1-C4;D8-C5-M1-C4;D9-C5-M1-C4;D1-C6-M1-C4;D2-C6-M1-C4;D3-C6-M1-C4;D4-C6-M1-C4;D5-C6-M1-C4;D6-C6-M1-C4;D7-C6-M1-C4;D8-C6-M1-C4;D9-C6-M1-C4;D1-C7-M1-C4;D2-C7-M1-C4;D3-C7-M1-C4;D4-C7-M1-C4;D5-C7-M1-C4;D6-C7-M1-C4;D7-C7-M1-C4;D8-C7-M1-C4;D9-C7-M1-C4;D1-C8-M1-C4;D2-C8-M1-C4;D3-C8-M1-C4;D4-C8-M1-C4;D5-C8-M1-C4;D6-C8-M1-C4;D7-C8-M1-C4;D8-C8-M1-C4;D9-C8-M1-C4;D1-C9-M1-C4;D2-C9-M1-C4;D3-C9-M1-C4;D4-C9-M1-C4;D5-C9-M1-C4;D6-C9-M1-C4;D7-C9-M1-C4;D8-C9-M1-C4;D9-C9-M1-C4;D1-C1-M1-C5;D2-C1-M1-C5;D3-C1-M1-C5;D4-C1-M1-C5;D5-C1-M1-C5;D6-C1-M1-C5;D7-C1-M1-C5;D8-C1-M1-C5;D9-C1-M1-C5;D1-C2-M1-C5;D2-C2-M1-C5;D3-C2-M1-C5;D4-C2-M1-C5;D5-C2-M1-C5;D6-C2-M1-C5;D7-C2-M1-C5;D8-C2-M1-C5;D9-C2-M1-C5;D1-C3-M1-C5;D2-C3-M1-C5;D3-C3-M1-C5;D4-C3-M1-C5;D5-C3-M1-C5;D6-C3-M1-C5;D7-C3-M1-C5;D8-C3-M1-C5;D9-C3-M1-C5;D1-C4-M1-C5;D2-C4-M1-C5;D3-C4-M1-C5;D4-C4-M1-C5;D5-C4-M1-C5;D6-C4-M1-C5;D7-C4-M1-C5;D8-C4-M1-C5;D9-C4-M1-C5;D1-C5-M1-C5;D2-C5-M1-C5;D3-C5-M1-C5;D4-C5-M1-C5;D5-C5-M1-C5;D6-C5-M1-C5;D7-C5-M1-C5;D8-C5-M1-C5;D9-C5-M1-C5;D1-C6-M1-C5;D2-C6-M1-C5;D3-C6-M1-C5;D4-C6-M1-C5;D5-C6-M1-C5;D6-C6-M1-C5;D7-C6-M1-C5;D8-C6-M1-C5;D9-C6-M1-C5;D1-C7-M1-C5;D2-C7-M1-C5;D3-C7-M1-C5;D4-C7-M1-C5;D5-C7-M1-C5;D6-C7-M1-C5;D7-C7-M1-C5;D8-C7-M1-C5;D9-C7-M1-C5;D1-C8-M1-C5;D2-C8-M1-C5;D3-C8-M1-C5;D4-C8-M1-C5;D5-C8-M1-C5;D6-C8-M1-C5;D7-C8-M1-C5;D8-C8-M1-C5;D9-C8-M1-C5;D1-C9-M1-C5;D2-C9-M1-C5;D3-C9-M1-C5;D4-C9-M1-C5;D5-C9-M1-C5;D6-C9-M1-C5;D7-C9-M1-C5;D8-C9-M1-C5;D9-C9-M1-C5;D1-C1-M1-C6;D2-C1-M1-C6;D3-C1-M1-C6;D4-C1-M1-C6;D5-C1-M1-C6;D6-C1-M1-C6;D7-C1-M1-C6;D8-C1-M1-C6;D9-C1-M1-C6;D1-C2-M1-C6;D2-C2-M1-C6;D3-C2-M1-C6;D4-C2-M1-C6;D5-C2-M1-C6;D6-C2-M1-C6;D7-C2-M1-C6;D8-C2-M1-C6;D9-C2-M1-C6;D1-C3-M1-C6;D2-C3-M1-C6;D3-C3-M1-C6;D4-C3-M1-C6;D5-C3-M1-C6;D6-C3-M1-C6;D7-C3-M1-C6;D8-C3-M1-C6;D9-C3-M1-C6;D1-C4-M1-C6;D2-C4-M1-C6;D3-C4-M1-C6;D4-C4-M1-C6;D5-C4-M1-C6;D6-C4-M1-C6;D7-C4-M1-C6;D8-C4-M1-C6;D9-C4-M1-C6;D1-C5-M1-C6;D2-C5-M1-C6;D3-C5-M1-C6;D4-C5-M1-C6;D5-C5-M1-C6;D6-C5-M1-C6;D7-C5-M1-C6;D8-C5-M1-C6;D9-C5-M1-C6;D1-C6-M1-C6;D2-C6-M1-C6;D3-C6-M1-C6;D4-C6-M1-C6;D5-C6-M1-C6;D6-C6-M1-C6;D7-C6-M1-C6;D8-C6-M1-C6;D9-C6-M1-C6;D1-C7-M1-C6;D2-C7-M1-C6;D3-C7-M1-C6;D4-C7-M1-C6;D5-C7-M1-C6;D6-C7-M1-C6;D7-C7-M1-C6;D8-C7-M1-C6;D9-C7-M1-C6;D1-C8-M1-C6;D2-C8-M1-C6;D3-C8-M1-C6;D4-C8-M1-C6;D5-C8-M1-C6;D6-C8-M1-C6;D7-C8-M1-C6;D8-C8-M1-C6;D9-C8-M1-C6;D1-C9-M1-C6;D2-C9-M1-C6;D3-C9-M1-C6;D4-C9-M1-C6;D5-C9-M1-C6;D6-C9-M1-C6;D7-C9-M1-C6;D8-C9-M1-C6;D9-C9-M1-C6;D1-C1-M1-C7;D2-C1-M1-C7;D3-C1-M1-C7;D4-C1-M1-C7;D5-C1-M1-C7;D6-C1-M1-C7;D7-C1-M1-C7;D8-C1-M1-C7;D9-C1-M1-C7;D1-C2-M1-C7;D2-C2-M1-C7;D3-C2-M1-C7;D4-C2-M1-C7;D5-C2-M1-C7;D6-C2-M1-C7;D7-C2-M1-C7;D8-C2-M1-C7;D9-C2-M1-C7;D1-C3-M1-C7;D2-C3-M1-C7;D3-C3-M1-C7;D4-C3-M1-C7;D5-C3-M1-C7;D6-C3-M1-C7;D7-C3-M1-C7;D8-C3-M1-C7;D9-C3-M1-C7;D1-C4-M1-C7;D2-C4-M1-C7;D3-C4-M1-C7;D4-C4-M1-C7;D5-C4-M1-C7;D6-C4-M1-C7;D7-C4-M1-C7;D8-C4-M1-C7;D9-C4-M1-C7;D1-C5-M1-C7;D2-C5-M1-C7;D3-C5-M1-C7;D4-C5-M1-C7;D5-C5-M1-C7;D6-C5-M1-C7;D7-C5-M1-C7;D8-C5-M1-C7;D9-C5-M1-C7;D1-C6-M1-C7;D2-C6-M1-C7;D3-C6-M1-C7;D4-C6-M1-C7;D5-C6-M1-C7;D6-C6-M1-C7;D7-C6-M1-C7;D8-C6-M1-C7;D9-C6-M1-C7;D1-C7-M1-C7;D2-C7-M1-C7;D3-C7-M1-C7;D4-C7-M1-C7;D5-C7-M1-C7;D6-C7-M1-C7;D7-C7-M1-C7;D8-C7-M1-C7;D9-C7-M1-C7;D1-C8-M1-C7;D2-C8-M1-C7;D3-C8-M1-C7;D4-C8-M1-C7;D5-C8-M1-C7;D6-C8-M1-C7;D7-C8-M1-C7;D8-C8-M1-C7;D9-C8-M1-C7;D1-C9-M1-C7;D2-C9-M1-C7;D3-C9-M1-C7;D4-C9-M1-C7;D5-C9-M1-C7;D6-C9-M1-C7;D7-C9-M1-C7;D8-C9-M1-C7;D9-C9-M1-C7;D1-C1-M1-C8;D2-C1-M1-C8;D3-C1-M1-C8;D4-C1-M1-C8;D5-C1-M1-C8;D6-C1-M1-C8;D7-C1-M1-C8;D8-C1-M1-C8;D9-C1-M1-C8;D1-C2-M1-C8;D2-C2-M1-C8;D3-C2-M1-C8;D4-C2-M1-C8;D5-C2-M1-C8;D6-C2-M1-C8;D7-C2-M1-C8;D8-C2-M1-C8;D9-C2-M1-C8;D1-C3-M1-C8;D2-C3-M1-C8;D3-C3-M1-C8;D4-C3-M1-C8;D5-C3-M1-C8;D6-C3-M1-C8;D7-C3-M1-C8;D8-C3-M1-C8;D9-C3-M1-C8;D1-C4-M1-C8;D2-C4-M1-C8;D3-C4-M1-C8;D4-C4-M1-C8;D5-C4-M1-C8;D6-C4-M1-C8;D7-C4-M1-C8;D8-C4-M1-C8;D9-C4-M1-C8;D1-C5-M1-C8;D2-C5-M1-C8;D3-C5-M1-C8;D4-C5-M1-C8;D5-C5-M1-C8;D6-C5-M1-C8;D7-C5-M1-C8;D8-C5-M1-C8;D9-C5-M1-C8;D1-C6-M1-C8;D2-C6-M1-C8;D3-C6-M1-C8;D4-C6-M1-C8;D5-C6-M1-C8;D6-C6-M1-C8;D7-C6-M1-C8;D8-C6-M1-C8;D9-C6-M1-C8;D1-C7-M1-C8;D2-C7-M1-C8;D3-C7-M1-C8;D4-C7-M1-C8;D5-C7-M1-C8;D6-C7-M1-C8;D7-C7-M1-C8;D8-C7-M1-C8;D9-C7-M1-C8;D1-C8-M1-C8;D2-C8-M1-C8;D3-C8-M1-C8;D4-C8-M1-C8;D5-C8-M1-C8;D6-C8-M1-C8;D7-C8-M1-C8;D8-C8-M1-C8;D9-C8-M1-C8;D1-C9-M1-C8;D2-C9-M1-C8;D3-C9-M1-C8;D4-C9-M1-C8;D5-C9-M1-C8;D6-C9-M1-C8;D7-C9-M1-C8;D8-C9-M1-C8;D9-C9-M1-C8;D1-C1-M1-C9;D2-C1-M1-C9;D3-C1-M1-C9;D4-C1-M1-C9;D5-C1-M1-C9;D6-C1-M1-C9;D7-C1-M1-C9;D8-C1-M1-C9;D9-C1-M1-C9;D1-C2-M1-C9;D2-C2-M1-C9;D3-C2-M1-C9;D4-C2-M1-C9;D5-C2-M1-C9;D6-C2-M1-C9;D7-C2-M1-C9;D8-C2-M1-C9;D9-C2-M1-C9;D1-C3-M1-C9;D2-C3-M1-C9;D3-C3-M1-C9;D4-C3-M1-C9;D5-C3-M1-C9;D6-C3-M1-C9;D7-C3-M1-C9;D8-C3-M1-C9;D9-C3-M1-C9;D1-C4-M1-C9;D2-C4-M1-C9;D3-C4-M1-C9;D4-C4-M1-C9;D5-C4-M1-C9;D6-C4-M1-C9;D7-C4-M1-C9;D8-C4-M1-C9;D9-C4-M1-C9;D1-C5-M1-C9;D2-C5-M1-C9;D3-C5-M1-C9;D4-C5-M1-C9;D5-C5-M1-C9;D6-C5-M1-C9;D7-C5-M1-C9;D8-C5-M1-C9;D9-C5-M1-C9;D1-C6-M1-C9;D2-C6-M1-C9;D3-C6-M1-C9;D4-C6-M1-C9;D5-C6-M1-C9;D6-C6-M1-C9;D7-C6-M1-C9;D8-C6-M1-C9;D9-C6-M1-C9;D1-C7-M1-C9;D2-C7-M1-C9;D3-C7-M1-C9;D4-C7-M1-C9;D5-C7-M1-C9;D6-C7-M1-C9;D7-C7-M1-C9;D8-C7-M1-C9;D9-C7-M1-C9;D1-C8-M1-C9;D2-C8-M1-C9;D3-C8-M1-C9;D4-C8-M1-C9;D5-C8-M1-C9;D6-C8-M1-C9;D7-C8-M1-C9;D8-C8-M1-C9;D9-C8-M1-C9;D1-C9-M1-C9;D2-C9-M1-C9;D3-C9-M1-C9;D4-C9-M1-C9;D5-C9-M1-C9;D6-C9-M1-C9;D7-C9-M1-C9;D8-C9-M1-C9;D9-C9-M1-C9;D1-C1-M2-C1;D2-C1-M2-C1;D3-C1-M2-C1;D4-C1-M2-C1;D5-C1-M2-C1;D6-C1-M2-C1;D7-C1-M2-C1;D8-C1-M2-C1;D9-C1-M2-C1;D1-C2-M2-C1;D2-C2-M2-C1;D3-C2-M2-C1;D4-C2-M2-C1;D5-C2-M2-C1;D6-C2-M2-C1;D7-C2-M2-C1;D8-C2-M2-C1;D9-C2-M2-C1;D1-C3-M2-C1;D2-C3-M2-C1;D3-C3-M2-C1;D4-C3-M2-C1;D5-C3-M2-C1;D6-C3-M2-C1;D7-C3-M2-C1;D8-C3-M2-C1;D9-C3-M2-C1;D1-C4-M2-C1;D2-C4-M2-C1;D3-C4-M2-C1;D4-C4-M2-C1;D5-C4-M2-C1;D6-C4-M2-C1;D7-C4-M2-C1;D8-C4-M2-C1;D9-C4-M2-C1;D1-C5-M2-C1;D2-C5-M2-C1;D3-C5-M2-C1;D4-C5-M2-C1;D5-C5-M2-C1;D6-C5-M2-C1;D7-C5-M2-C1;D8-C5-M2-C1;D9-C5-M2-C1;D1-C6-M2-C1;D2-C6-M2-C1;D3-C6-M2-C1;D4-C6-M2-C1;D5-C6-M2-C1;D6-C6-M2-C1;D7-C6-M2-C1;D8-C6-M2-C1;D9-C6-M2-C1;D1-C7-M2-C1;D2-C7-M2-C1;D3-C7-M2-C1;D4-C7-M2-C1;D5-C7-M2-C1;D6-C7-M2-C1;D7-C7-M2-C1;D8-C7-M2-C1;D9-C7-M2-C1;D1-C8-M2-C1;D2-C8-M2-C1;D3-C8-M2-C1;D4-C8-M2-C1;D5-C8-M2-C1;D6-C8-M2-C1;D7-C8-M2-C1;D8-C8-M2-C1;...
the last 800 arrangements are as follows:
...;C9-C8-C2-D2;C9-C8-C2-D3;C9-C8-C2-D4;C9-C8-C2-D5;C9-C8-C2-D6;C9-C8-C2-D7;C9-C8-C2-D8;C9-C8-C2-D9;C9-C8-C3-D1;C9-C8-C3-D2;C9-C8-C3-D3;C9-C8-C3-D4;C9-C8-C3-D5;C9-C8-C3-D6;C9-C8-C3-D7;C9-C8-C3-D8;C9-C8-C3-D9;C9-C8-C4-D1;C9-C8-C4-D2;C9-C8-C4-D3;C9-C8-C4-D4;C9-C8-C4-D5;C9-C8-C4-D6;C9-C8-C4-D7;C9-C8-C4-D8;C9-C8-C4-D9;C9-C8-C5-D1;C9-C8-C5-D2;C9-C8-C5-D3;C9-C8-C5-D4;C9-C8-C5-D5;C9-C8-C5-D6;C9-C8-C5-D7;C9-C8-C5-D8;C9-C8-C5-D9;C9-C8-C6-D1;C9-C8-C6-D2;C9-C8-C6-D3;C9-C8-C6-D4;C9-C8-C6-D5;C9-C8-C6-D6;C9-C8-C6-D7;C9-C8-C6-D8;C9-C8-C6-D9;C9-C8-C7-D1;C9-C8-C7-D2;C9-C8-C7-D3;C9-C8-C7-D4;C9-C8-C7-D5;C9-C8-C7-D6;C9-C8-C7-D7;C9-C8-C7-D8;C9-C8-C7-D9;C9-C8-C8-D1;C9-C8-C8-D2;C9-C8-C8-D3;C9-C8-C8-D4;C9-C8-C8-D5;C9-C8-C8-D6;C9-C8-C8-D7;C9-C8-C8-D8;C9-C8-C8-D9;C9-C8-C9-D1;C9-C8-C9-D2;C9-C8-C9-D3;C9-C8-C9-D4;C9-C8-C9-D5;C9-C8-C9-D6;C9-C8-C9-D7;C9-C8-C9-D8;C9-C8-C9-D9;C1-C9-C1-D1;C1-C9-C1-D2;C1-C9-C1-D3;C1-C9-C1-D4;C1-C9-C1-D5;C1-C9-C1-D6;C1-C9-C1-D7;C1-C9-C1-D8;C1-C9-C1-D9;C1-C9-C2-D1;C1-C9-C2-D2;C1-C9-C2-D3;C1-C9-C2-D4;C1-C9-C2-D5;C1-C9-C2-D6;C1-C9-C2-D7;C1-C9-C2-D8;C1-C9-C2-D9;C1-C9-C3-D1;C1-C9-C3-D2;C1-C9-C3-D3;C1-C9-C3-D4;C1-C9-C3-D5;C1-C9-C3-D6;C1-C9-C3-D7;C1-C9-C3-D8;C1-C9-C3-D9;C1-C9-C4-D1;C1-C9-C4-D2;C1-C9-C4-D3;C1-C9-C4-D4;C1-C9-C4-D5;C1-C9-C4-D6;C1-C9-C4-D7;C1-C9-C4-D8;C1-C9-C4-D9;C1-C9-C5-D1;C1-C9-C5-D2;C1-C9-C5-D3;C1-C9-C5-D4;C1-C9-C5-D5;C1-C9-C5-D6;C1-C9-C5-D7;C1-C9-C5-D8;C1-C9-C5-D9;C1-C9-C6-D1;C1-C9-C6-D2;C1-C9-C6-D3;C1-C9-C6-D4;C1-C9-C6-D5;C1-C9-C6-D6;C1-C9-C6-D7;C1-C9-C6-D8;C1-C9-C6-D9;C1-C9-C7-D1;C1-C9-C7-D2;C1-C9-C7-D3;C1-C9-C7-D4;C1-C9-C7-D5;C1-C9-C7-D6;C1-C9-C7-D7;C1-C9-C7-D8;C1-C9-C7-D9;C1-C9-C8-D1;C1-C9-C8-D2;C1-C9-C8-D3;C1-C9-C8-D4;C1-C9-C8-D5;C1-C9-C8-D6;C1-C9-C8-D7;C1-C9-C8-D8;C1-C9-C8-D9;C1-C9-C9-D1;C1-C9-C9-D2;C1-C9-C9-D3;C1-C9-C9-D4;C1-C9-C9-D5;C1-C9-C9-D6;C1-C9-C9-D7;C1-C9-C9-D8;C1-C9-C9-D9;C2-C9-C1-D1;C2-C9-C1-D2;C2-C9-C1-D3;C2-C9-C1-D4;C2-C9-C1-D5;C2-C9-C1-D6;C2-C9-C1-D7;C2-C9-C1-D8;C2-C9-C1-D9;C2-C9-C2-D1;C2-C9-C2-D2;C2-C9-C2-D3;C2-C9-C2-D4;C2-C9-C2-D5;C2-C9-C2-D6;C2-C9-C2-D7;C2-C9-C2-D8;C2-C9-C2-D9;C2-C9-C3-D1;C2-C9-C3-D2;C2-C9-C3-D3;C2-C9-C3-D4;C2-C9-C3-D5;C2-C9-C3-D6;C2-C9-C3-D7;C2-C9-C3-D8;C2-C9-C3-D9;C2-C9-C4-D1;C2-C9-C4-D2;C2-C9-C4-D3;C2-C9-C4-D4;C2-C9-C4-D5;C2-C9-C4-D6;C2-C9-C4-D7;C2-C9-C4-D8;C2-C9-C4-D9;C2-C9-C5-D1;C2-C9-C5-D2;C2-C9-C5-D3;C2-C9-C5-D4;C2-C9-C5-D5;C2-C9-C5-D6;C2-C9-C5-D7;C2-C9-C5-D8;C2-C9-C5-D9;C2-C9-C6-D1;C2-C9-C6-D2;C2-C9-C6-D3;C2-C9-C6-D4;C2-C9-C6-D5;C2-C9-C6-D6;C2-C9-C6-D7;C2-C9-C6-D8;C2-C9-C6-D9;C2-C9-C7-D1;C2-C9-C7-D2;C2-C9-C7-D3;C2-C9-C7-D4;C2-C9-C7-D5;C2-C9-C7-D6;C2-C9-C7-D7;C2-C9-C7-D8;C2-C9-C7-D9;C2-C9-C8-D1;C2-C9-C8-D2;C2-C9-C8-D3;C2-C9-C8-D4;C2-C9-C8-D5;C2-C9-C8-D6;C2-C9-C8-D7;C2-C9-C8-D8;C2-C9-C8-D9;C2-C9-C9-D1;C2-C9-C9-D2;C2-C9-C9-D3;C2-C9-C9-D4;C2-C9-C9-D5;C2-C9-C9-D6;C2-C9-C9-D7;C2-C9-C9-D8;C2-C9-C9-D9;C3-C9-C1-D1;C3-C9-C1-D2;C3-C9-C1-D3;C3-C9-C1-D4;C3-C9-C1-D5;C3-C9-C1-D6;C3-C9-C1-D7;C3-C9-C1-D8;C3-C9-C1-D9;C3-C9-C2-D1;C3-C9-C2-D2;C3-C9-C2-D3;C3-C9-C2-D4;C3-C9-C2-D5;C3-C9-C2-D6;C3-C9-C2-D7;C3-C9-C2-D8;C3-C9-C2-D9;C3-C9-C3-D1;C3-C9-C3-D2;C3-C9-C3-D3;C3-C9-C3-D4;C3-C9-C3-D5;C3-C9-C3-D6;C3-C9-C3-D7;C3-C9-C3-D8;C3-C9-C3-D9;C3-C9-C4-D1;C3-C9-C4-D2;C3-C9-C4-D3;C3-C9-C4-D4;C3-C9-C4-D5;C3-C9-C4-D6;C3-C9-C4-D7;C3-C9-C4-D8;C3-C9-C4-D9;C3-C9-C5-D1;C3-C9-C5-D2;C3-C9-C5-D3;C3-C9-C5-D4;C3-C9-C5-D5;C3-C9-C5-D6;C3-C9-C5-D7;C3-C9-C5-D8;C3-C9-C5-D9;C3-C9-C6-D1;C3-C9-C6-D2;C3-C9-C6-D3;C3-C9-C6-D4;C3-C9-C6-D5;C3-C9-C6-D6;C3-C9-C6-D7;C3-C9-C6-D8;C3-C9-C6-D9;C3-C9-C7-D1;C3-C9-C7-D2;C3-C9-C7-D3;C3-C9-C7-D4;C3-C9-C7-D5;C3-C9-C7-D6;C3-C9-C7-D7;C3-C9-C7-D8;C3-C9-C7-D9;C3-C9-C8-D1;C3-C9-C8-D2;C3-C9-C8-D3;C3-C9-C8-D4;C3-C9-C8-D5;C3-C9-C8-D6;C3-C9-C8-D7;C3-C9-C8-D8;C3-C9-C8-D9;C3-C9-C9-D1;C3-C9-C9-D2;C3-C9-C9-D3;C3-C9-C9-D4;C3-C9-C9-D5;C3-C9-C9-D6;C3-C9-C9-D7;C3-C9-C9-D8;C3-C9-C9-D9;C4-C9-C1-D1;C4-C9-C1-D2;C4-C9-C1-D3;C4-C9-C1-D4;C4-C9-C1-D5;C4-C9-C1-D6;C4-C9-C1-D7;C4-C9-C1-D8;C4-C9-C1-D9;C4-C9-C2-D1;C4-C9-C2-D2;C4-C9-C2-D3;C4-C9-C2-D4;C4-C9-C2-D5;C4-C9-C2-D6;C4-C9-C2-D7;C4-C9-C2-D8;C4-C9-C2-D9;C4-C9-C3-D1;C4-C9-C3-D2;C4-C9-C3-D3;C4-C9-C3-D4;C4-C9-C3-D5;C4-C9-C3-D6;C4-C9-C3-D7;C4-C9-C3-D8;C4-C9-C3-D9;C4-C9-C4-D1;C4-C9-C4-D2;C4-C9-C4-D3;C4-C9-C4-D4;C4-C9-C4-D5;C4-C9-C4-D6;C4-C9-C4-D7;C4-C9-C4-D8;C4-C9-C4-D9;C4-C9-C5-D1;C4-C9-C5-D2;C4-C9-C5-D3;C4-C9-C5-D4;C4-C9-C5-D5;C4-C9-C5-D6;C4-C9-C5-D7;C4-C9-C5-D8;C4-C9-C5-D9;C4-C9-C6-D1;C4-C9-C6-D2;C4-C9-C6-D3;C4-C9-C6-D4;C4-C9-C6-D5;C4-C9-C6-D6;C4-C9-C6-D7;C4-C9-C6-D8;C4-C9-C6-D9;C4-C9-C7-D1;C4-C9-C7-D2;C4-C9-C7-D3;C4-C9-C7-D4;C4-C9-C7-D5;C4-C9-C7-D6;C4-C9-C7-D7;C4-C9-C7-D8;C4-C9-C7-D9;C4-C9-C8-D1;C4-C9-C8-D2;C4-C9-C8-D3;C4-C9-C8-D4;C4-C9-C8-D5;C4-C9-C8-D6;C4-C9-C8-D7;C4-C9-C8-D8;C4-C9-C8-D9;C4-C9-C9-D1;C4-C9-C9-D2;C4-C9-C9-D3;C4-C9-C9-D4;C4-C9-C9-D5;C4-C9-C9-D6;C4-C9-C9-D7;C4-C9-C9-D8;C4-C9-C9-D9;C5-C9-C1-D1;C5-C9-C1-D2;C5-C9-C1-D3;C5-C9-C1-D4;C5-C9-C1-D5;C5-C9-C1-D6;C5-C9-C1-D7;C5-C9-C1-D8;C5-C9-C1-D9;C5-C9-C2-D1;C5-C9-C2-D2;C5-C9-C2-D3;C5-C9-C2-D4;C5-C9-C2-D5;C5-C9-C2-D6;C5-C9-C2-D7;C5-C9-C2-D8;C5-C9-C2-D9;C5-C9-C3-D1;C5-C9-C3-D2;C5-C9-C3-D3;C5-C9-C3-D4;C5-C9-C3-D5;C5-C9-C3-D6;C5-C9-C3-D7;C5-C9-C3-D8;C5-C9-C3-D9;C5-C9-C4-D1;C5-C9-C4-D2;C5-C9-C4-D3;C5-C9-C4-D4;C5-C9-C4-D5;C5-C9-C4-D6;C5-C9-C4-D7;C5-C9-C4-D8;C5-C9-C4-D9;C5-C9-C5-D1;C5-C9-C5-D2;C5-C9-C5-D3;C5-C9-C5-D4;C5-C9-C5-D5;C5-C9-C5-D6;C5-C9-C5-D7;C5-C9-C5-D8;C5-C9-C5-D9;C5-C9-C6-D1;C5-C9-C6-D2;C5-C9-C6-D3;C5-C9-C6-D4;C5-C9-C6-D5;C5-C9-C6-D6;C5-C9-C6-D7;C5-C9-C6-D8;C5-C9-C6-D9;C5-C9-C7-D1;C5-C9-C7-D2;C5-C9-C7-D3;C5-C9-C7-D4;C5-C9-C7-D5;C5-C9-C7-D6;C5-C9-C7-D7;C5-C9-C7-D8;C5-C9-C7-D9;C5-C9-C8-D1;C5-C9-C8-D2;C5-C9-C8-D3;C5-C9-C8-D4;C5-C9-C8-D5;C5-C9-C8-D6;C5-C9-C8-D7;C5-C9-C8-D8;C5-C9-C8-D9;C5-C9-C9-D1;C5-C9-C9-D2;C5-C9-C9-D3;C5-C9-C9-D4;C5-C9-C9-D5;C5-C9-C9-D6;C5-C9-C9-D7;C5-C9-C9-D8;C5-C9-C9-D9;C6-C9-C1-D1;C6-C9-C1-D2;C6-C9-C1-D3;C6-C9-C1-D4;C6-C9-C1-D5;C6-C9-C1-D6;C6-C9-C1-D7;C6-C9-C1-D8;C6-C9-C1-D9;C6-C9-C2-D1;C6-C9-C2-D2;C6-C9-C2-D3;C6-C9-C2-D4;C6-C9-C2-D5;C6-C9-C2-D6;C6-C9-C2-D7;C6-C9-C2-D8;C6-C9-C2-D9;C6-C9-C3-D1;C6-C9-C3-D2;C6-C9-C3-D3;C6-C9-C3-D4;C6-C9-C3-D5;C6-C9-C3-D6;C6-C9-C3-D7;C6-C9-C3-D8;C6-C9-C3-D9;C6-C9-C4-D1;C6-C9-C4-D2;C6-C9-C4-D3;C6-C9-C4-D4;C6-C9-C4-D5;C6-C9-C4-D6;C6-C9-C4-D7;C6-C9-C4-D8;C6-C9-C4-D9;C6-C9-C5-D1;C6-C9-C5-D2;C6-C9-C5-D3;C6-C9-C5-D4;C6-C9-C5-D5;C6-C9-C5-D6;C6-C9-C5-D7;C6-C9-C5-D8;C6-C9-C5-D9;C6-C9-C6-D1;C6-C9-C6-D2;C6-C9-C6-D3;C6-C9-C6-D4;C6-C9-C6-D5;C6-C9-C6-D6;C6-C9-C6-D7;C6-C9-C6-D8;C6-C9-C6-D9;C6-C9-C7-D1;C6-C9-C7-D2;C6-C9-C7-D3;C6-C9-C7-D4;C6-C9-C7-D5;C6-C9-C7-D6;C6-C9-C7-D7;C6-C9-C7-D8;C6-C9-C7-D9;C6-C9-C8-D1;C6-C9-C8-D2;C6-C9-C8-D3;C6-C9-C8-D4;C6-C9-C8-D5;C6-C9-C8-D6;C6-C9-C8-D7;C6-C9-C8-D8;C6-C9-C8-D9;C6-C9-C9-D1;C6-C9-C9-D2;C6-C9-C9-D3;C6-C9-C9-D4;C6-C9-C9-D5;C6-C9-C9-D6;C6-C9-C9-D7;C6-C9-C9-D8;C6-C9-C9-D9;C7-C9-C1-D1;C7-C9-C1-D2;C7-C9-C1-D3;C7-C9-C1-D4;C7-C9-C1-D5;C7-C9-C1-D6;C7-C9-C1-D7;C7-C9-C1-D8;C7-C9-C1-D9;C7-C9-C2-D1;C7-C9-C2-D2;C7-C9-C2-D3;C7-C9-C2-D4;C7-C9-C2-D5;C7-C9-C2-D6;C7-C9-C2-D7;C7-C9-C2-D8;C7-C9-C2-D9;C7-C9-C3-D1;C7-C9-C3-D2;C7-C9-C3-D3;C7-C9-C3-D4;C7-C9-C3-D5;C7-C9-C3-D6;C7-C9-C3-D7;C7-C9-C3-D8;C7-C9-C3-D9;C7-C9-C4-D1;C7-C9-C4-D2;C7-C9-C4-D3;C7-C9-C4-D4;C7-C9-C4-D5;C7-C9-C4-D6;C7-C9-C4-D7;C7-C9-C4-D8;C7-C9-C4-D9;C7-C9-C5-D1;C7-C9-C5-D2;C7-C9-C5-D3;C7-C9-C5-D4;C7-C9-C5-D5;C7-C9-C5-D6;C7-C9-C5-D7;C7-C9-C5-D8;C7-C9-C5-D9;C7-C9-C6-D1;C7-C9-C6-D2;C7-C9-C6-D3;C7-C9-C6-D4;C7-C9-C6-D5;C7-C9-C6-D6;C7-C9-C6-D7;C7-C9-C6-D8;C7-C9-C6-D9;C7-C9-C7-D1;C7-C9-C7-D2;C7-C9-C7-D3;C7-C9-C7-D4;C7-C9-C7-D5;C7-C9-C7-D6;C7-C9-C7-D7;C7-C9-C7-D8;C7-C9-C7-D9;C7-C9-C8-D1;C7-C9-C8-D2;C7-C9-C8-D3;C7-C9-C8-D4;C7-C9-C8-D5;C7-C9-C8-D6;C7-C9-C8-D7;C7-C9-C8-D8;C7-C9-C8-D9;C7-C9-C9-D1;C7-C9-C9-D2;C7-C9-C9-D3;C7-C9-C9-D4;C7-C9-C9-D5;C7-C9-C9-D6;C7-C9-C9-D7;C7-C9-C9-D8;C7-C9-C9-D9;C8-C9-C1-D1;C8-C9-C1-D2;C8-C9-C1-D3;C8-C9-C1-D4;C8-C9-C1-D5;C8-C9-C1-D6;C8-C9-C1-D7;C8-C9-C1-D8;C8-C9-C1-D9;C8-C9-C2-D1;C8-C9-C2-D2;C8-C9-C2-D3;C8-C9-C2-D4;C8-C9-C2-D5;C8-C9-C2-D6;C8-C9-C2-D7;C8-C9-C2-D8;C8-C9-C2-D9;C8-C9-C3-D1;C8-C9-C3-D2;C8-C9-C3-D3;C8-C9-C3-D4;C8-C9-C3-D5;C8-C9-C3-D6;C8-C9-C3-D7;C8-C9-C3-D8;C8-C9-C3-D9;C8-C9-C4-D1;C8-C9-C4-D2;C8-C9-C4-D3;C8-C9-C4-D4;C8-C9-C4-D5;C8-C9-C4-D6;C8-C9-C4-D7;C8-C9-C4-D8;C8-C9-C4-D9;C8-C9-C5-D1;C8-C9-C5-D2;C8-C9-C5-D3;C-C9-C5-D4;C8-C9-C5-D5;C8-C9-C5-D6;C8-C9-C5-D7;C8-C9-C5-D8;C8-C9-C5-D9;C8-C9-C6-D1;C8-C9-C6-D2;C8-C9-C6-D3;C8-C9-C6-D4;C8-C9-C6-D5;C8-C9-C6-D6;C8-C9-C6-D7;C8-C9-C6-D8;C8-C9-C6-D9;C8-C9-C7-D1;C8-C9-C7-D2;C8-C9-C7-D3;C8-C9-C7-D4;C8-C9-C7-D5;C8-C9-C7-D6;C8-C9-C7-D7;C8-C9-C7-D8;C8-C9-C7-D9;C8-C9-C8-D1;C8-C9-C8-D2;C8-C9-C8-D3;C8-C9-C8-D4;C8-C9-C8-D5;C8-C9-C8-D6;C8-C9-C8-D7;C8-C9-C8-D8;C8-C9-C8-D9;C-C9-C9-D1;C8-C9-C9-D2;C8-C9-C9-D3;C-C9-C9-D4;C8-C9-C9-D5;C8-C9-C9-D6;C8-C9-C9-D7;C8-C9-C9-D8;C8-C9-C9-D9;C9-C9-C1-D1;C9-C9-C1-D2;C9-C9-C1-D3;C9-C9-C1-D4;C9-C9-C1-D5;C9-C9-C1-D6;C9-C9-C1-D7;C9-C9-C1-D8;C9-C9-C1-D9;C9-C9-C2-D1;C9-C9-C2-D2;C9-C9-C2-D3;C9-C9-C2-D4;C9-C9-C2-D5;C9-C9-C2-D6;C9-C9-C2-D7;C9-C9-C2-D8;C9-C9-C2-D9;C9-C9-C3-D1;C9-C9-C3-D2;C9-C9-C3-D3;C9-C9-C3-D4;C9-C9-C3-D5;C9-C9-C3-D6;C9-C9-C3-D7;C9-C9-C3-D8;C9-C9-C3-D9;C9-C9-C4-D1;C9-C9-C4-D2;C9-C9-C4-D3;C9-C9-C4-D4;C9-C9-C4-D5;C9-C9-C4-D6;C9-C9-C4-D7;C9-C9-C4-D8;C9-C9-C4-D9;C9-C9-C5-D1;C9-C9-C5-D2;C9-C9-C5-D3;C9-C9-C5-D4;C9-C9-C5-D5;C9-C9-C5-D6;C9-C9-C5-D7;C9-C9-C5-D8;C9-C9-C5-D9;C9-C9-C6-D1;C9-C9-C6-D2;C9-C9-C6-D3;C9-C9-C6-D4;C9-C9-C6-D5;C9-C9-C6-D6;C9-C9-C6-D7;C9-C9-C6-D8;C9-C9-C6-D9;C9-C9-C7-D1;C9-C9-C7-D2;C9-C9-C7-D3;C9-C9-C7-D4;C9-C9-C7-D5;C9-C9-C7-D6;C9-C9-C7-D7;C9-C9-C7-D8;C9-C9-C7-D9;C9-C9-C8-D1;C9-C9-C8-D2;C9-C9-C8-D3;C9-C9-C8-D4;C9-C9-C8-D5;C9-C9-C8-D6;C9-C9-C8-D7;C9-C9-C8-D8;C9-C9-C8-D9;C9-C9-C9-D1;C9-C9-C9-D2;C9-C9-C9-D3;C9-C9-C9-D4;C9-C9-C9-D5;C9-C9-C9-D6;C9-C9-C9-D7;C9-C9-C9-D8;C9-C9-C9-D9。
when "m is 5", the generation method will generate 11022480 arrangements using the generation section 2005 of fig. 42A, 42B, 42C, 42D, 42E. The first 2000 arrangements and the last 2000 arrangements are shown below. All other arrangements can be readily obtained by those skilled in the art using the generation method and looking at the flow charts of fig. 42A, 42B, 42C, 42D, 42E.
The first 2000 arrangements are:
D1-C1-M1-C1-C1;D2-C1-M1-C1-C1;D3-C1-M1-C1-C1;D4-C1-M1-C1-C1;D5-C1-M1-C1-C1;D6-C1-M1-C1-C1;D7-C1-M1-C1-C1;D8-C1-M1-C1-C1;D9-C1-M1-C1-C1;D1-C2-M1-C1-C1;D2-C2-M1-C1-C1;D3-C2-M1-C1-C1;D4-C2-M1-C1-C1;D5-C2-M1-C1-C1;D6-C2-M1-C1-C1;D7-C2-M1-C1-C1;D8-C2-M1-C1-C1;D9-C2-M1-C1-C1;D1-C3-M1-C1-C1;D2-C3-M1-C1-C1;D3-C3-M1-C1-C1;D4-C3-M1-C1-C1;D5-C3-M1-C1-C1;D6-C3-M1-C1-C1;D7-C3-M1-C1-C1;D8-C3-M1-C1-C1;D9-C3-M1-C1-C1;D1-C4-M1-C1-C1;D2-C4-M1-C1-C1;D3-C4-M1-C1-C1;D4-C4-M1-C1-C1;D5-C4-M1-C1-C1;D6-C4-M1-C1-C1;D7-C4-M1-C1-C1;D8-C4-M1-C1-C1;D9-C4-M1-C1-C1;D1-C5-M1-C1-C1;D2-C5-M1-C1-C1;D3-C5-M1-C1-C1;D4-C5-M1-C1-C1;D5-C5-M1-C1-C1;D6-C5-M1-C1-C1;D7-C5-M1-C1-C1;D8-C5-M1-C1-C1;D9-C5-M1-C1-C1;D1-C6-M1-C1-C1;D2-C6-M1-C1-C1;D3-C6-M1-C1-C1;D4-C6-M1-C1-C1;D5-C6-M1-C1-C1;D6-C6-M1-C1-C1;D7-C6-M1-C1-C1;D8-C6-M1-C1-C1;D9-C6-M1-C1-C1;D1-C7-M1-C1-C1;D2-C7-M1-C1-C1;D3-C7-M1-C1-C1;D4-C7-M1-C1-C1;D5-C7-M1-C1-C1;D6-C7-M1-C1-C1;D7-C7-M1-C1-C1;D8-C7-M1-C1-C1;D9-C7-M1-C1-C1;D1-C8-M1-C1-C1;D2-C8-M1-C1-C1;D3-C8-M1-C1-C1;D4-C8-M1-C1-C1;D5-C8-M1-C1-C1;D6-C8-M1-C1-C1;D7-C8-M1-C1-C1;D8-C8-M1-C1-C1;D9-C8-M1-C1-C1;D1-C9-M1-C1-C1;D2-C9-M1-C1-C1;D3-C9-M1-C1-C1;D4-C9-M1-C1-C1;D5-C9-M1-C1-C1;D6-C9-M1-C1-C1;D7-C9-M1-C1-C1;D8-C9-M1-C1-C1;D9-C9-M1-C1-C1;D1-C1-M1-C1-C2;D2-C1-M1-C1-C2;D3-C1-M1-C1-C2;D4-C1-M1-C1-C2;D5-C1-M1-C1-C2;D6-C1-M1-C1-C2;D7-C1-M1-C1-C2;D8-C1-M1-C1-C2;D9-C1-M1-C1-C2;D1-C2-M1-C1-C2;D2-C2-M1-C1-C2;D3-C2-M1-C1-C2;D4-C2-M1-C1-C2;D5-C2-M1-C1-C2;D6-C2-M1-C1-C2;D7-C2-M1-C1-C2;D8-C2-M1-C1-C2;D9-C2-M1-C1-C2;D1-C3-M1-C1-C2;D2-C3-M1-C1-C2;D3-C3-M1-C1-C2;D4-C3-M1-C1-C2;D5-C3-M1-C1-C2;D6-C3-M1-C1-C2;D7-C3-M1-C1-C2;D8-C3-M1-C1-C2;D9-C3-M1-C1-C2;D1-C4-M1-C1-C2;D2-C4-M1-C1-C2;D3-C4-M1-C1-C2;D4-C4-M1-C1-C2;D5-C4-M1-C1-C2;D6-C4-M1-C1-C2;D7-C4-M1-C1-C2;D8-C4-M1-C1-C2;D9-C4-M1-C1-C2;D1-C5-M1-C1-C2;D2-C5-M1-C1-C2;D3-C5-M1-C1-C2;D4-C5-M1-C1-C2;D5-C5-M1-C1-C2;D6-C5-M1-C1-C2;D7-C5-M1-C1-C2;D8-C5-M1-C1-C2;D9-C5-M1-C1-C2;D1-C6-M1-C1-C2;D2-C6-M1-C1-C2;D3-C6-M1-C1-C2;D4-C6-M1-C1-C2;D5-C6-M1-C1-C2;D6-C6-M1-C1-C2;D7-C6-M1-C1-C2;D8-C6-M1-C1-C2;D9-C6-M1-C1-C2;D1-C7-M1-C1-C2;D2-C7-M1-C1-C2;D3-C7-M1-C1-C2;D4-C7-M1-C1-C2;D5-C7-M1-C1-C2;D6-C7-M1-C1-C2;D7-C7-M1-C1-C2;D8-C7-M1-C1-C2;D9-C7-M1-C1-C2;D1-C8-M1-C1-C2;D2-C;8-M1-C1-C2;D3-C8-M1-C1-C2;D4-C8-M1-C1-C2;D5-C8-M1-C1-C2;D6-C8-M1-C1-C2;D7-C8-M1-C1-C2;D8-C8-M1-C1-C2;D9-C8-M1-C1-C2;D1-C9-M1-C1-C2;D2-C9-M1-C1-C2;D3-C9-M1-C1-C2;D4-C9-M1-C1-C2;D5-C9-M1-C1-C2;D6-C9-M1-C1-C2;D7-C9-M1-C1-C2;D8-C9-M1-C1-C2;D9-C9-M1-C1-C2;D1-C1-M1-C1-C3;D2-C1-M1-C1-C3;D3-C1-M1-C1-C3;D4-C1-M1-C1-C3;D5-C1-M1-C1-C3;D6-C1-M1-C1-C3;D7-C1-M1-C1-C3;D8-C1-M1-C1-C3;D9-C1-M1-C1-C3;D1-C2-M1-C1-C3;D2-C2-M1-C1-C3;D3-C2-M1-C1-C3;D4-C2-M1-C1-C3;D5-C2-M1-C1-C3;D6-C2-M1-C1-C3;D7-C2-M1-C1-C3;D8-C2-M1-C1-C3;D9-C2-M1-C1-C3;D1-C3-M1-C1-C3;D2-C3-M1-C1-C3;D3-C3-M1-C1-C3;D4-C3-M1-C1-C3;D5-C3-M1-C1-C3;D6-C3-M1-C1-C3;D7-C3-M1-C1-C3;D8-C3-M1-C1-C3;D9-C3-M1-C1-C3;D1-C4-M1-C1-C3;D2-C4-M1-C1-C3;D3-C4-M1-C1-C3;D4-C4-M1-C1-C3;D5-C4-M1-C1-C3;D6-C4-M1-C1-C3;D7-C4-M1-C1-C3;D8-C4-M1-C1-C3;D9-C4-M1-C1-C3;D1-C5-M1-C1-C3;D2-C5-M1-C1-C3;D3-C5-M1-C1-C3;D4-C5-M1-C1-C3;D5-C5-M1-C1-C3;D6-C5-M1-C1-C3;D7-C5-M1-C1-C3;D8-C5-M1-C1-C3;D9-C5-M1-C1-C3;D1-C6-M1-C1-C3;D2-C6-M1-C1-C3;D3-C6-M1-C1-C3;D4-C6-M1-C1-C3;D5-C6-M1-C1-C3;D6-C6-M1-C1-C3;D7-C6-M1-C1-C3;D8-C6-M1-C1-C3;D9-C6-M1-C1-C3;D1-C7-M1-C1-C3;D2-C7-M1-C1-C3;D3-C7-M1-C1-C3;D4-C7-M1-C1-C3;D5-C7-M1-C1-C3;D6-C7-M1-C1-C3;D7-C7-M1-C1-C3;D8-C7-M1-C1-C3;D9-C7-M1-C1-C3;D1-C8-M1-C1-C3;D2-C8-M1-C1-C3;D3-C8-M1-C1-C3;D4-C8-M1-C1-C3;D5-C8-M1-C1-C3;D6-C8-M1-C1-C3;D7-C8-M1-C1-C3;D8-C8-M1-C1-C3;D9-C8-M1-C1-C3;D1-C9-M1-C1-C3;D2-C9-M1-C1-C3;D3-C9-M1-C1-C3;D4-C9-M1-C1-C3;D5-C9-M1-C1-C3;D6-C9-M1-C1-C3;D7-C9-M1-C1-C3;D8-C9-M1-C1-C3;D9-C9-M1-C1-C3;D1-C1-M1-C1-C4;D2-C1-M1-C1-C4;D3-C1-M1-C1-C4;D4-C1-M1-C1-C4;D5-C1-M1-C1-C4;D6-C1-M1-C1-C4;D7-C1-M1-C1-C4;D8-C1-M1-C1-C4;D9-C1-M1-C1-C4;D1-C2-M1-C1-C4;D2-C2-M1-C1-C4;D3-C2-M1-C1-C4;D4-C2-M1-C1-C4;D5-C2-M1-C1-C4;D6-C2-M1-C1-C4;D7-C2-M1-C1-C4;D8-C2-M1-C1-C4;D9-C2-M1-C1-C4;D1-C3-M1-C1-C4;D2-C3-M1-C1-C4;D3-C3-M1-C1-C4;D4-C3-M1-C1-C4;D5-C3-M1-C1-C4;D6-C3-M1-C1-C4;D7-C3-M1-C1-C4;D8-C3-M1-C1-C4;D9-C3-M1-C1-C4;D1-C4-M1-C1-C4;D2-C4-M1-C1-C4;D3-C4-M1-C1-C4;D4-C4-M1-C1-C4;D5-C4-M1-C1-C4;D6-C4-M1-C1-C4;D7-C4-M1-C1-C4;D8-C4-M1-C1-C4;D9-C4-M1-C1-C4;D1-C5-M1-C1-C4;D2-C5-M1-C1-C4;D3-C5-M1-C1-C4;D4-C5-M1-C1-C4;D5-C5-M1-C1-C4;D6-C5-M1-C1-C4;D7-C5-M1-C1-C4;D8-C5-M1-C1-C4;D9-C5-M1-C1-C4;D1-C6-M1-C1-C4;D2-C6-M1-C1-C4;D3-C6-M1-C1-C4;D4-C6-M1-C1-C4;D5-C6-M1-C1-C4;D6-C6-M1-C1-C4;D7-C6-M1-C1-C4;D8-C6-M1-C1-C4;D9-C6-M1-C1-C4;D1-C7-M1-C1-C4;D2-C7-M1-C1-C4;D3-C7-M1-C1-C4;D4-C7-M1-C1-C4;D5-C7-M1-C1-C4;D6-C7-M1-C1-C4;D7-C7-M1-C1-C4;D8-C7-M1-C1-C4;D9-C7-M1-C1-C4;D1-C8-M1-C1-C4;D2-C8-M1-C1-C4;D3-C8-M1-C1-C4;D4-C8-M1-C1-C4;D5-C8-M1-C1-C4;D6-C8-M1-C1-C4;D7-C8-M1-C1-C4;D8-C8-M1-C1-C4;D9-C8-M1-C1-C4;D1-C9-M1-C1-C4;D2-C9-M1-C1-C4;D3-C9-M1-C1-C4;D4-C9-M1-C1-C4;D5-C9-M1-C1-C4;D6-C9-M1-C1-C4;D7-C9-M1-C1-C4;D8-C9-M1-C1-C4;D9-C9-M1-C1-C4;D1-C1-M1-C1-C5;D2-C1-M1-C1-C5;D3-C1-M1-C1-C5;D4-C1-M1-C1-C5;D5-C1-M1-C1-C5;D6-C1-M1-C1-C5;D7-C1-M1-C1-C5;D8-C1-M1-C1-C5;D9-C1-M1-C1-C5;D1-C2-M1-C1-C5;D2-C2-M1-C1-C5;D3-C2-M1-C1-C5;D4-C2-M1-C1-C5;D5-C2-M1-C1-C5;D6-C2-M1-C1-C5;D7-C2-M1-C1-C5;D8-C2-M1-C1-C5;D9-C2-M1-C1-C5;D1-C3-M1-C1-C5;D2-C3-M1-C1-C5;D3-C3-M1-C1-C5;D4-C3-M1-C1-C5;D5-C3-MI-C1-C5;D6-C3-M1-C1-C5;D7-C3-M1-C1-C5;D8-C3-M1-C1-C5;D9-C3-M1-C1-C5;D1-C4-M1-C1-C5;D2-C4-M1-C1-C5;D3-C4-M1-C1-C5;D4-C4-M1-C1-C5;D5-C4-M1-C1-C5;D6-C4-M1-C1-C5;D7-C4-M1-C1-C5;D8-C4-M1-C1-C5;D9-C4-M1-C1-C5;D1-C5-M1-C1-C5;D2-C5-M1-C1-C5;D3-C5-M1-C1-C5;D4-C5-M1-C1-C5;D5-C5-M1-C1-C5;D6-C5-M1-C1-C5;D7-C5-M1-C1-C5;D8-C5-M1-C1-C5;D9-C5-M1-C1-C5;D1-C6-M1-C1-C5;D2-C6-M1-C1-C5;D3-C6-M1-C1-C5;D4-C6-M1-C1-C5;D5-C6-M1-C1-C5;D6-C6-M1-C1-C5;D7-C6-M1-C1-C5;D8-C6-M1-C1-C5;D9-C6-M1-C1-C5;D1-C7-M1-C1-C5;D2-C7-M1-C1-C5;D3-C7-M1-C1-C5;D4-C7-M1-C1-C5;D5-C7-M1-C1-C5;D6-C7-M1-C1-C5;D7-C7-M1-C1-C5;D8-C7-M1-C1-C5;D9-C7-M1-C1-C5;D1-C8-M1-C1-C5;D2-C8-M1-C1-C5;D3-C8-M1-C1-C5;D4-C8-M1-C1-C5;D5-C8-M1-C1-C5;D6-C8-M1-C1-C5;D7-C8-M1-C1-C5;D8-C8-M1-C1-C5;D9-C8-M1-C1-C5;D1-C9-M1-C1-C5;D2-C9-M1-C1-C5;D3-C9-M1-C1-C5;D4-C9-M1-C1-C5;D5-C9-M1-C1-C5;D6-C9-M1-C1-C5;D7-C9-M1-C1-C5;D8-C9-M1-C1-C5;D9-C9-M1-C1-C5;D1-C1-M1-C1-C6;D2-C1-M1-C1-C6;D3-C1-M1-C1-C6;D4-C1-M1-C1-C6;D5-C1-M1-C1-C6;D6-C1-M1-C1-C6;D7-C1-M1-C1-C6;D8-C1-M1-C1-C6;D9-C1-M1-C1-C6;D1-C2-M1-C1-C6;D2-C2-M1-C1-C6;D3-C2-M1-C1-C6;D4-C2-M1-C1-C6;D5-C2-M1-C1-C6;D6-C2-M1-C1-C6;D7-C2-M1-C1-C6;D8-C2-M1-C1-C6;D9-C2-M1-C1-C6;D1-C3-M1-C1-C6;D2-C3-M1-C1-C6;D3-C3-M1-C1-C6;D4-C3-M1-C1-C6;D5-C3-M1-C1-C6;D6-C3-M1-C1-C6;D7-C3-M1-C1-C6;D8-C3-M1-C1-C6;D9-C3-M1-C1-C6;D1-C4-M1-C1-C6;D2-C4-M1-C1-C6;D3-C4-M1-C1-C6;D4-C4-M1-C1-C6;D5-C4-M1-C1-C6;D6-C4-M1-C1-C6;D7-C4-M1-C1-C6;D8-C4-M1-C1-C6;D9-C4-M1-C1-C6;D1-C5-M1-C1-C6;D2-C5-M1-C1-C6;D3-C5-M1-C1-C6;D4-C5-M1-C1-C6;D5-C5-M1-C1-C6;D6-C5-M1-C1-C6;D7-C5-M1-C1-C6;D8-C5-M1-C1-C6;D9-C5-M1-C1-C6;D1-C6-M1-C1-C6;D2-C6-M1-C1-C6;D3-C6-M1-C1-C6;D4-C6-M1-C1-C6;D5-C6-M1-C1-C6;D6-C6-M1-C1-C6;D7-C6-M1-C1-C6;D8-C6-M1-C1-C6;D9-C6-M1-C1-C6;D1-C7-M1-C1-C6;D2-C7-M1-C1-C6;D3-C7-M1-C1-C6;D4-C7-M1-C1-C6;D5-C7-M1-C1-C6;D6-C7-M1-C1-C6;D7-C7-M1-C1-C6;D8-C7-M1-C1-C6;D9-C7-M1-C1-C6;D1-C8-M1-C1-C6;D2-C8-M1-C1-C6;D3-C8-M1-C1-C6;D4-C8-M1-C1-C6;D5-C8-M1-C1-C6;D6-C8-M1-C1-C6;D7-C8-M1-C1-C6;D8-C8-M1-C1-C6;D9-C8-M1-C1-C6;D1-C9-M1-C1-C6;D2-C9-M1-C1-C6;D3-C9-M1-C1-C6;D4-C9-M1-C1-C6;D5-C9-M1-C1-C6;D6-C9-M1-C1-C6;D7-C9-M1-C1-C6;D8-C9-M1-C1-C6;D9-C9-M1-C1-C6;D1-C1-M1-C1-C7;D2-C1-M1-C1-C7;D3-C1-M1-C1-C7;D4-C1-M1-C1-C7;D5-C1-M1-C1-C7;D6-C1-M1-C1-C7;D7-C1-M1-C1-C7;D8-C1-M1-C1-C7;D9-C1-M1-C1-C7;D1-C2-M1-C1-C7;D2-C2-M1-C1-C7;D3-C2-M1-C1-C7;D4-C2-M1-C1-C7;D5-C2-M1-C1-C7;D6-C2-M1-C1-C7;D7-C2-M1-C1-C7;D8-C2-M1-C1-C7;D9-C2-M1-C1-C7;D1-C3-M1-C1-C7;D2-C3-M1-C1-C7;D3-C3-M1-C1-C7;D4-C3-M1-C1-C7;D5-C3-M1-C1-C7;D6-C3-M1-C1-C7;D7-C3-M1-C1-C7;D8-C3-M1-C1-C7;D9-C3-M1-C1-C7;D1-C4-M1-C1-C7;D2-C4-M1-C1-C7;D3-C4-M1-C1-C7;D4-C4-M1-C1-C7;D5-C4-M1-C1-C7;D6-C4-M1-C1-C7;D7-C4-M1-C1-C7;D8-C4-M1-C1-C7;D9-C4-M1-C1-C7;D1-C5-M1-C1-C7;D2-C5-M1-C1-C7;D3-C5-M1-C1-C7;D4-C5-M1-C1-C7;D5-C5-M1-C1-C7;D6-C5-M1-C1-C7;D7-C5-M1-C1-C7;D8-C5-M1-C1-C7;D9-C5-M1-C1-C7;D1-C6-M1-C1-C7;D2-C6-M1-C1-C7;D3-C6-M1-C1-C7;D4-C6-M1-C1-C7;D5-C6-M1-C1-C7;D6-C6-M1-C1-C7;D7-C6-M1-C1-C7;D8-C6-M1-C1-C7;D9-C6-M1-C1-C7;D1-C7-M1-C1-C7;D2-C7-M1-C1-C7;D3-C7-M1-C1-C7;D4-C7-M1-C1-C7;D5-C7-M1-C1-C7;D6-C7-M1-C1-C7;D7-C7-M1-C1-C7;D8-C7-M1-C1-C7;D9-C7-M1-C1-C7;D1-C8-M1-C1-C7;D2-C8-M1-C1-C7;D3-C8-M1-C1-C7;D4-C8-M1-C1-C7;D5-C8-M1-C1-C7;D6-C8-M1-C1-C7;D7-C8-M1-C1-C7;D8-C8-M1-C1-C7;D9-C8-M1-C1-C7;D1-C9-M1-C1-C7;D2-C9-M1-C1-C7;D3-C9-M1-C1-C7;D4-C9-M1-C1-C7;D5-C9-M1-C1-C7;D6-C9-M1-C1-C7;D7-C9-M1-C1-C7;D8-C9-M1-C1-C7;D9-C9-M1-C1-C7;D1-C1-M1-C1-C8;D2-C1-M1-C1-C8;D3-C1-M1-C1-C8;D4-C1-M1-C1-C8;D5-C1-M1-C1-C8;D6-C1-M1-C1-C8;D7-C1-M1-C1-C8;D8-C1-M1-C1-C8;D9-C1-M1-C1-C8;D1-C2-M1-C1-C8;D2-C2-M1-C1-C8;D3-C2-M1-C1-C8;D4-C2-M1-C1-C8;D5-C2-M1-C1-C8;D6-C2-M1-C1-C8;D7-C2-M1-C1-C8;D8-C2-M1-C1-C8;D9-C2-M1-C1-C8;D1-C3-M1-C1-C8;D2-C3-M1-C1-C8;D3-C3-M1-C1-C8;D4-C3-M1-C1-C8;D5-C3-M1-C1-C8;D6-C3-M1-C1-C8;D7-C3-M1-C1-C8;D8-C3-M1-C1-C8;D9-C3-M1-C1-C8;D1-C4-M1-C1-C8;D2-C4-M1-C1-C8;D3-C4-M1-C1-C8;D4-C4-M1-C1-C8;D5-C4-M1-C1-C8;D6-C4-M1-C1-C8;D7-C4-M1-C1-C8;D8-C4-M1-C1-C8;D9-C4-M1-C1-C8;D1-C5-M1-C1-C8;D2-C5-M1-C1-C8;D3-C5-M1-C1-C8;D4-C5-M1-C1-C8;D5-C5-M1-C1-C8;D6-C5-M1-C1-C8;D7-C5-M1-C1-C8;D8-C5-M1-C1-C8;D9-C5-M1-C1-C8;D1-C6-M1-C1-C8;D2-C6-M1-C1-C8;D3-C6-M1-C1-C8;D4-C6-M1-C1-C8;D5-C6-M1-C1-C8;D6-C6-M1-C1-C8;D7-C6-M1-C1-C8;D8-C6-M1-C1-C8;D9-C6-M1-C1-C8;D1-C7-M1-C1-C8;D2-C7-M1-C1-C8;D3-C7-M1-C1-C8;D4-C7-M1-C1-C8;D5-C7-M1-C1-C8;D6-C7-M1-C1-C8;D7-C7-M1-C1-C8;D8-C7-M1-C1-C8;D9-C7-M1-C1-C8;D1-C8-M1-C1-C8;D2-C8-M1-C1-C8;D3-C8-M1-C1-C8;D4-C8-M1-C1-C8;D5-C8-M1-C1-C8;D6-C8-M1-C1-C8;D7-C8-M1-C1-C8;D8-C8-M1-C1-C8;D9-C8-M1-C1-C8;D1-C9-M1-C1-C8;D2-C9-M1-C1-C8;D3-C9-M1-C1-C8;D4-C9-M1-C1-C8;D5-C9-M1-C1-C8;D6-C9-M1-C1-C8;D7-C9-M1-C1-C8;D8-C9-M1-C1-C8;D9-C9-M1-C1-C8;D1-C1-M1-C1-C9;D2-C1-M1-C1-C9;D3-C1-M1-C1-C9;D4-C1-M1-C1-C9;D5-C1-M1-C1-C9;D6-C1-M1-C1-C9;D7-C1-M1-C1-C9;D8-C1-M1-C1-C9;D9-C1-M1-C1-C9;D1-C2-M1-C1-C9;D2-C2-M1-C1-C9;D3-C2-M1-C1-C9;D4-C2-M1-C1-C9;D5-C2-M1-C1-C9;D6-C2-M1-C1-C9;D7-C2-M1-C1-C9;D8-C2-M1-C1-C9;D9-C2-M1-C1-C9;D1-C3-M1-C1-C9;D2-C3-M1-C1-C9;D3-C3-M1-C1-C9;D4-C3-M1-C1-C9;D5-C3-M1-C1-C9;D6-C3-M1-C1-C9;D7-C3-M1-C1-C9;D8-C3-M1-C1-C9;D9-C3-M1-C1-C9;D1-C4-M1-C1-C9;D2-C4-M1-C1-C9;D3-C4-M1-C1-C9;D4-C4-M1-C1-C9;D5-C4-M1-C1-C9;D6-C4-M1-C1-C9;D7-C4-M1-C1-C9;D8-C4-M1-C1-C9;D9-C4-M1-C1-C9;D1-C5-M1-C1-C9;D2-C5-M1-C1-C9;D3-C5-M1-C1-C9;D4-C5-M1-C1-C9;D5-C5-M1-C1-C9;D6-C5-M1-C1-C9;D7-C5-M1-C1-C9;D8-C5-M1-C1-C9;D9-C5-M1-C1-C9;D1-C6-M1-C1-C9;D2-C6-M1-C1-C9;D3-C6-M1-C1-C9;D4-C6-M1-C1-C9;D5-C6-M1-C1-C9;D6-C6-M1-C1-C9;D7-C6-M1-C1-C9;D8-C6-M1-C1-C9;D9-C6-M1-C1-C9;D1-C7-M1-C1-C9;D2-C7-M1-C1-C9;D3-C7-M1-C1-C9;D4-C7-M1-C1-C9;D5-C7-M1-C1-C9;D6-C7-M1-C1-C9;D7-C7-M1-C1-C9;D8-C7-M1-C1-C9;D9-C7-M1-C1-C9;D1-C8-M1-C1-C9;D2-C8-M1-C1-C9;D3-C8-M1-C1-C9;D4-C8-M1-C1-C9;D5-C8-M1-C1-C9;D6-C8-M1-C1-C9;D7-C8-M1-C1-C9;D8-C8-M1-C1-C9;D9-C8-M1-C1-C9;D1-C9-M1-C1-C9;D2-C9-M1-C1-C9;D3-C9-M1-C1-C9;D4-C9-M1-C1-C9;D5-C9-M1-C1-C9;D6-C9-M1-C1-C9;D7-C9-M1-C1-C9;D8-C9-M1-C1-C9;D9-C9-M1-C1-C9;D1-C1-M1-C2-C1;D2-C1-M1-C2-C1;D3-C1-M1-C2-C1;D4-C1-M1-C2-C1;D5-C1-M1-C2-C1;D6-C1-M1-C2-C1;D7-C1-M1-C2-C1;D8-C1-M1-C2-C1;D9-C1-M1-C2-C1;D1-C2-M1-C2-C1;D2-C2-M1-C2-C1;D3-C2-M1-C2-C1;D4-C2-M1-C2-C1;D5-C2-M1-C2-C1;D6-C2-M1-C2-C1;D7-C2-M1-C2-C1;D8-C2-M1-C2-C1;D9-C2-M1-C2-C1;D1-C3-M1-C2-C1;D2-C3-M1-C2-C1;D3-C3-M1-C2-C1;D4-C3-M1-C2-C1;D5-C3-M1-C2-C1;D6-C3-M1-C2-C1;D7-C3-M1-C2-C1;D8-C3-M1-C2-C1;D9-C3-M1-C2-C1;D1-C4-M1-C2-C1;D2-C4-M1-C2-C1;D3-C4-M1-C2-C1;D4-C4-M1-C2-C1;D5-C4-M1-C2-C1;D6-C4-M1-C2-C1;D7-C4-M1-C2-C1;D8-C4-M1-C2-C1;D9-C4-M1-C2-C1;D1-C5-M1-C2-C1;D2-C5-M1-C2-C1;D3-C5-M1-C2-C1;D4-C5-M1-C2-C1;D5-C5-M1-C2-C1;D6-C5-M1-C2-C1;D7-C5-M1-C2-C1;D8-C5-M1-C2-C1;D9-C5-M1-C2-C1;D1-C6-M1-C2-C1;D2-C6-M1-C2-C1;D3-C6-M1-C2-C1;D4-C6-M1-C2-C1;D5-C6-M1-C2-C1;D6-C6-M1-C2-C1;D7-C6-M1-C2-C1;D8-C6-M1-C2-C1;D9-C6-M1-C2-C1;D1-C7-M1-C2-C1;D2-C7-M1-C2-C1;D3-C7-M1-C2-C1;D4-C7-M1-C2-C1;D5-C7-M1-C2-C1;D6-C7-M1-C2-C1;D7-C7-M1-C2-C1;D8-C7-M1-C2-C1;D9-C7-M1-C2-C1;D1-C8-M1-C2-C1;D2-C8-M1-C2-C1;D3-C8-M1-C2-C1;D4-C8-M1-C2-C1;D5-C8-M1-C2-C1;D6-C8-M1-C2-C1;D7-C8-M1-C2-C1;D8-C8-M1-C2-C1;D9-C8-M1-C2-C1;D1-C9-M1-C2-C1;D2-C9-M1-C2-C1;D3-C9-M1-C2-C1;D4-C9-M1-C2-C1;D5-C9-M1-C2-C1;D6-C9-M1-C2-C1;D7-C9-M1-C2-C1;D8-C9-M1-C2-C1;D9-C9-M1-C2-C1;D1-C1-M1-C2-C2;D2-C1-M1-C2-C2;D3-C1-M1-C2-C2;D4-C1-M1-C2-C2;D5-C1-M1-C2-C2;D6-C1-M1-C2-C2;D7-C1-M1-C2-C2;D8-C1-M1-C2-C2;D9-C1-M1-C2-C2;D1-C2-M1-C2-C2;D2-C2-M1-C2-C2;D3-C2-M1-C2-C2;D4-C2-M1-C2-C2;D5-C2-M1-C2-C2;D6-C2-M1-C2-C2;D7-C2-M1-C2-C2;D8-C2-M1-C2-C2;D9-C2-M1-C2-C2;D1-C3-M1-C2-C2;D2-C3-M1-C2-C2;D3-C3-M1-C2-C2;D4-C3-M1-C2-C2;D5-C3-M1-C2-C2;D6-C3-M1-C2-C2;D7-C3-M1-C2-C2;D8-C3-M1-C2-C2;D9-C3-M1-C2-C2;D1-C4-M1-C2-C2;D2-C4-M1-C2-C2;D3-C4-M1-C2-C2;D4-C4-M1-C2-C2;D5-C4-M1-C2-C2;D6-C4-M1-C2-C2;D7-C4-M1-C2-C2;D8-C4-M1-C2-C2;D9-C4-M1-C2-C2;D1-C5-M1-C2-C2;D2-C5-M1-C2-C2;D3-C5-M1-C2-C2;D4-C5-M1-C2-C2;D5-C5-M1-C2-C2;D6-C5-M1-C2-C2;D7-C5-M1-C2-C2;D8-C5-M1-C2-C2;D9-C5-M1-C2-C2;D1-C6-M1-C2-C2;D2-C6-M1-C2-C2;D3-C6-M1-C2-C2;D4-C6-M1-C2-C2;D5-C6-M1-C2-C2;D6-C6-M1-C2-C2;D7-C6-M1-C2-C2;D8-C6-M1-C2-C2;D9-C6-M1-C2-C2;D1-C7-M1-C2-C2;D2-C7-M1-C2-C2;D3-C7-M1-C2-C2;D4-C7-M1-C2-C2;D5-C7-M1-C2-C2;D6-C7-M1-C2-C2;D7-C7-M1-C2-C2;D8-C7-M1-C2-C2;D9-C7-M1-C2-C2;D1-C8-M1-C2-C2;D2-C8-M1-C2-C2;D3-C8-M1-C2-C2;D4-C8-M1-C2-C2;D5-C8-M1-C2-C2;D6-C8-M1-C2-C2;D7-C8-M1-C2-C2;D8-C8-M1-C2-C2;D9-C8-M1-C2-C2;D1-C9-M1-C2-C2;D2-C9-M1-C2-C2;D3-C9-M1-C2-C2;D4-C9-M1-C2-C2;D5-C9-M1-C2-C2;D6-C9-M1-C2-C2;D7-C9-M1-C2-C2;D8-C9-M1-C2-C2;D9-C9-M1-C2-C2;D1-C1-M1-C2-C3;D2-C1-M1-C2-C3;D3-C1-M1-C2-C3;D4-C1-M1-C2-C3;D5-C1-M1-C2-C3;D6-C1-M1-C2-C3;D7-C1-M1-C2-C3;D8-C1-M1-C2-C3;D9-C1-M1-C2-C3;D1-C2-M1-C2-C3;D2-C2-M1-C2-C3;D3-C2-M1-C2-C3;D4-C2-M1-C2-C3;D5-C2-M1-C2-C3;D6-C2-M1-C2-C3;D7-C2-M1-C2-C3;D8-C2-M1-C2-C3;D9-C2-M1-C2-C3;D1-C3-M1-C2-C3;D2-C3-M1-C2-C3;D3-C3-M1-C2-C3;D4-C3-M1-C2-C3;D5-C3-M1-C2-C3;D6-C3-M1-C2-C3;D7-C3-M1-C2-C3;D8-C3-M1-C2-C3;D9-C3-M1-C2-C3;D1-C4-M1-C2-C3;D2-C4-M1-C2-C3;D3-C4-M1-C2-C3;D4-C4-M1-C2-C3;D5-C4-M1-C2-C3;D6-C4-M1-C2-C3;D7-C4-M1-C2-C3;D8-C4-M1-C2-C3;D9-C4-M1-C2-C3;D1-C5-M1-C2-C3;D2-C5-M1-C2-C3;D3-C5-M1-C2-C3;D4-C5-M1-C2-C3;D5-C5-M1-C2-C3;D6-C5-M1-C2-C3;D7-C5-M1-C2-C3;D8-C5-M1-C2-C3;D9-C5-M1-C2-C3;D1-C6-M1-C2-C3;D2-C6-M1-C2-C3;D3-C6-M1-C2-C3;D4-C6-M1-C2-C3;D5-C6-M1-C2-C3;D6-C6-M1-C2-C3;D7-C6-M1-C2-C3;D8-C6-M1-C2-C3;D9-C6-M1-C2-C3;D1-C7-M1-C2-C3;D2-C7-M1-C2-C3;D3-C7-M1-C2-C3;D4-C7-M1-C2-C3;D5-C7-M1-C2-C3;D6-C7-M1-C2-C3;D7-C7-M1-C2-C3;D8-C7-M1-C2-C3;D9-C7-M1-C2-C3;D1-C8-M1-C2-C3;D2-C8-M1-C2-C3;D3-C8-M1-C2-C3;D4-C8-M1-C2-C3;D5-C8-M1-C2-C3;D6-C8-M1-C2-C3;D7-C8-M1-C2-C3;D8-C8-M1-C2-C3;D9-C8-M1-C2-C3;D1-C9-M1-C2-C3;D2-C9-M1-C2-C3;D3-C9-M1-C2-C3;D4-C9-M1-C2-C3;D5-C9-M1-C2-C3;D6-C9-M1-C2-C3;D7-C9-M1-C2-C3;D8-C9-M1-C2-C3;D9-C9-M1-C2-C3;D1-C1-M1-C2-C4;D2-C1-M1-C2-C4;D3-C1-M1-C2-C4;D4-C1-M1-C2-C4;D5-C1-M1-C2-C4;D6-C1-M1-C2-C4;D7-C1-M1-C2-C4;D8-C1-M1-C2-C4;D9-C1-M1-C2-C4;D1-C2-M1-C2-C4;D2-C2-M1-C2-C4;D3-C2-M1-C2-C4;D4-C2-M1-C2-C4;D5-C2-M1-C2-C4;D6-C2-M1-C2-C4;D7-C2-M1-C2-C4;D8-C2-M1-C2-C4;D9-C2-M1-C2-C4;D1-C3-M1-C2-C4;D2-C3-M1-C2-C4;D3-C3-M1-C2-C4;D4-C3-M1-C2-C4;D5-C3-M1-C2-C4;D6-C3-M1-C2-C4;D7-C3-M1-C2-C4;D8-C3-M1-C2-C4;D9-C3-M1-C2-C4;D1-C4-M1-C2-C4;D2-C4-M1-C2-C4;D3-C4-M1-C2-C4;D4-C4-M1-C2-C4;D5-C4-M1-C2-C4;D6-C4-M1-C2-C4;D7-C4-M1-C2-C4;D8-C4-M1-C2-C4;D9-C4-M1-C2-C4;D1-C5-M1-C2-C4;D2-C5-M1-C2-C4;D3-C5-M1-C2-C4;D4-C5-M1-C2-C4;D5-C5-M1-C2-C4;D6-C5-M1-C2-C4;D7-C5-M1-C2-C4;D8-C5-M1-C2-C4;D9-C5-M1-C2-C4;D1-C6-M1-C2-C4;D2-C6-M1-C2-C4;D3-C6-M1-C2-C4;D4-C6-M1-C2-C4;D5-C6-M1-C2-C4;D6-C6-M1-C2-C4;D7-C6-M1-C2-C4;D8-C6-M1-C2-C4;D9-C6-M1-C2-C4;D1-C7-M1-C2-C4;D2-C7-M1-C2-C4;D3-C7-M1-C2-C4;D4-C7-M1-C2-C4;D5-C7-M1-C2-C4;D6-C7-M1-C2-C4;D7-C7-M1-C2-C4;D8-C7-M1-C2-C4;D9-C7-M1-C2-C4;D1-C8-M1-C2-C4;D2-C8-M1-C2-C4;D3-C8-M1-C2-C4;D4-C8-M1-C2-C4;D5-C8-M1-C2-C4;D6-C8-M1-C2-C4;D7-C8-M1-C2-C4;D8-C8-M1-C2-C4;D9-C8-M1-C2-C4;D1-C9-M1-C2-C4;D2-C9-M1-C2-C4;D3-C9-M1-C2-C4;D4-C9-M1-C2-C4;D5-C9-M1-C2-C4;D6-C9-M1-C2-C4;D7-C9-M1-C2-C4;D8-C9-M1-C2-C4;D9-C9-M1-C2-C4;D1-C1-M1-C2-C5;D2-C1-M1-C2-C5;D3-C1-M1-C2-C5;D4-C1-M1-C2-C5;D5-C1-M1-C2-C5;D6-C1-M1-C2-C5;D7-C1-M1-C2-C5;D8-C1-M1-C2-C5;D9-C1-M1-C2-C5;D1-C2-M1-C2-C5;D2-C2-M1-C2-C5;D3-C2-M1-C2-C5;D4-C2-M1-C2-C5;D5-C2-M1-C2-C5;D6-C2-M1-C2-C5;D7-C2-M1-C2-C5;D8-C2-M1-C2-C5;D9-C2-M1-C2-C5;D1-C3-M1-C2-C5;D2-C3-M1-C2-C5;D3-C3-M1-C2-C5;D4-C3-M1-C2-C5;D5-C3-M1-C2-C5;D6-C3-M1-C2-C5;D7-C3-M1-C2-C5;D8-C3-M1-C2-C5;D9-C3-M1-C2-C5;D1-C4-M1-C2-C5;D2-C4-M1-C2-C5;D3-C4-M1-C2-C5;D4-C4-M1-C2-C5;D5-C4-M1-C2-C5;D6-C4-M1-C2-C5;D7-C4-M1-C2-C5;D8-C4-M1-C2-C5;D9-C4-M1-C2-C5;D1-C5-M1-C2-C5;D2-C5-M1-C2-C5;D3-C5-M1-C2-C5;D4-C5-M1-C2-C5;D5-C5-M1-C2-C5;D6-C5-M1-C2-C5;D7-C5-M1-C2-C5;D8-C5-M1-C2-C5;D9-C5-M1-C2-C5;D1-C6-M1-C2-C5;D2-C6-M1-C2-C5;D3-C6-M1-C2-C5;D4-C6-M1-C2-C5;D5-C6-M1-C2-C5;D6-C6-M1-C2-C5;D7-C6-M1-C2-C5;D8-C6-M1-C2-C5;D9-C6-M1-C2-C5;D1-C7-M1-C2-C5;D2-C7-M1-C2-C5;D3-C7-M1-C2-C5;D4-C7-M1-C2-C5;D5-C7-M1-C2-C5;D6-C7-M1-C2-C5;D7-C7-M1-C2-C5;D8-C7-M1-C2-C5;D9-C7-M1-C2-C5;D1-C8-M1-C2-C5;D2-C8-M1-C2-C5;D3-C8-M1-C2-C5;D4-C8-M1-C2-C5;D5-C8-M1-C2-C5;D6-C8-M1-C2-C5;D7-C8-M1-C2-C5;D8-C8-M1-C2-C5;D9-C8-M1-C2-C5;D1-C9-M1-C2-C5;D2-C9-M1-C2-C5;D3-C9-M1-C2-C5;D4-C9-M1-C2-C5;D5-C9-M1-C2-C5;D6-C9-M1-C2-C5;D7-C9-M1-C2-C5;D8-C9-M1-C2-C5;D9-C9-M1-C2-C5;D1-C1-M1-C2-C6;D2-C1-M1-C2-C6;D3-C1-M1-C2-C6;D4-C1-M1-C2-C6;D5-C1-M1-C2-C6;D6-C1-M1-C2-C6;D7-C1-M1-C2-C6;D8-C1-M1-C2-C6;D9-C1-M1-C2-C6;D1-C2-M1-C2-C6;D2-C2-M1-C2-C6;D3-C2-M1-C2-C6;D4-C2-M1-C2-C6;D5-C2-M1-C2-C6;D6-C2-M1-C2-C6;D7-C2-M1-C2-C6;D8-C2-M1-C2-C6;D9-C2-M1-C2-C6;D1-C3-M1-C2-C6;D2-C3-M1-C2-C6;D3-C3-M1-C2-C6;D4-C3-M1-C2-C6;D5-C3-M1-C2-C6;D6-C3-M1-C2-C6;D7-C3-M1-C2-C6;D8-C3-M1-C2-C6;D9-C3-M1-C2-C6;D1-C4-M1-C2-C6;D2-C4-M1-C2-C6;D3-C4-M1-C2-C6;D4-C4-M1-C2-C6;D5-C4-M1-C2-C6;D6-C4-M1-C2-C6;D7-C4-M1-C2-C6;D8-C4-M1-C2-C6;D9-C4-M1-C2-C6;D1-C5-M1-C2-C6;D2-C5-M1-C2-C6;D3-C5-M1-C2-C6;D4-C5-M1-C2-C6;D5-C5-M1-C2-C6;D6-C5-M1-C2-C6;D7-C5-M1-C2-C6;D8-C5-M1-C2-C6;D9-C5-M1-C2-C6;D1-C6-M1-C2-C6;D2-C6-M1-C2-C6;D3-C6-M1-C2-C6;D4-C6-M1-C2-C6;D5-C6-M1-C2-C6;D6-C6-M1-C2-C6;D7-C6-M1-C2-C6;D8-C6-M1-C2-C6;D9-C6-M1-C2-C6;D1-C7-M1-C2-C6;D2-C7-M1-C2-C6;D3-C7-M1-C2-C6;D4-C7-M1-C2-C6;D5-C7-M1-C2-C6;D6-C7-M1-C2-C6;D7-C7-M1-C2-C6;D8-C7-M1-C2-C6;D9-C7-M1-C2-C6;D1-C8-M1-C2-C6;D2-C8-M1-C2-C6;D3-C8-M1-C2-C6;D4-C8-M1-C2-C6;D5-C8-M1-C2-C6;D6-C8-M1-C2-C6;D7-C8-M1-C2-C6;D8-C8-M1-C2-C6;D9-C8-M1-C2-C6;D1-C9-M1-C2-C6;D2-C9-M1-C2-C6;D3-C9-M1-C2-C6;D4-C9-M1-C2-C6;D5-C9-M1-C2-C6;D6-C9-M1-C2-C6;D7-C9-M1-C2-C6;D8-C9-M1-C2-C6;D9-C9-M1-C2-C6;D1-C1-M1-C2-C7;D2-C1-M1-C2-C7;D3-C1-M1-C2-C7;D4-C1-M1-C2-C7;D5-C1-M1-C2-C7;D6-C1-M1-C2-C7;D7-C1-M1-C2-C7;D8-C1-M1-C2-C7;D9-C1-M1-C2-C7;D1-C2-M1-C2-C7;D2-C2-M1-C2-C7;D3-C2-M1-C2-C7;D4-C2-M1-C2-C7;D5-C2-M1-C2-C7;D6-C2-M1-C2-C7;D7-C2-M1-C2-C7;D8-C2-M1-C2-C7;D9-C2-M1-C2-C7;D1-C3-M1-C2-C7;D2-C3-M1-C2-C7;D3-C3-M1-C2-C7;D4-C3-M1-C2-C7;D5-C3-M1-C2-C7;D6-C3-M1-C2-C7;D7-C3-M1-C2-C7;D8-C3-M1-C2-C7;D9-C3-M1-C2-C7;D1-C4-M1-C2-C7;D2-C4-M1-C2-C7;D3-C4-M1-C2-C7;D4-C4-M1-C2-C7;D5-C4-M1-C2-C7;D6-C4-M1-C2-C7;D7-C4-M1-C2-C7;D8-C4-M1-C2-C7;D9-C4-M1-C2-C7;D1-C5-M1-C2-C7;D2-C5-M1-C2-C7;D3-C5-M1-C2-C7;D4-C5-M1-C2-C7;D5-C5-M1-C2-C7;D6-C5-M1-C2-C7;D7-C5-M1-C2-C7;D8-C5-M1-C2-C7;D9-C5-M1-C2-C7;D1-C6-M1-C2-C7;D2-C6-M1-C2-C7;D3-C6-M1-C2-C7;D4-C6-M1-C2-C7;D5-C6-M1-C2-C7;D6-C6-M1-C2-C7;D7-C6-M1-C2-C7;D8-C6-M1-C2-C7;D9-C6-M1-C2-C7;D1-C7-M1-C2-C7;D2-C7-M1-C2-C7;D3-C7-M1-C2-C7;D4-C7-M1-C2-C7;D5-C7-M1-C2-C7;D6-C7-M1-C2-C7;D7-C7-M1-C2-C7;D8-C7-M1-C2-C7;D9-C7-M1-C2-C7;D1-C8-M1-C2-C7;D2-C8-M1-C2-C7;D3-C8-M1-C2-C7;D4-C8-M1-C2-C7;D5-C8-M1-C2-C7;D6-C8-M1-C2-C7;D7-C8-M1-C2-C7;D8-C8-M1-C2-C7;D9-C8-M1-C2-C7;D1-C9-M1-C2-C7;D2-C9-M1-C2-C7;D3-C9-M1-C2-C7;D4-C9-M1-C2-C7;D5-C9-M1-C2-C7;D6-C9-M1-C2-C7;D7-C9-M1-C2-C7;D8-C9-M1-C2-C7;D9-C9-M1-C2-C7;D1-C1-M1-C2-C8;D2-C1-M1-C2-C8;D3-C1-M1-C2-C8;D4-C1-M1-C2-C8;D5-C1-M1-C2-C8;D6-C1-M1-C2-C8;D7-C1-M1-C2-C8;D8-C1-M1-C2-C8;D9-C1-M1-C2-C8;D1-C2-M1-C2-C8;D2-C2-M1-C2-C8;D3-C2-M1-C2-C8;D4-C2-M1-C2-C8;D5-C2-M1-C2-C8;D6-C2-M1-C2-C8;D7-C2-M1-C2-C8;D8-C2-M1-C2-C8;D9-C2-M1-C2-C8;D1-C3-M1-C2-C8;D2-C3-M1-C2-C8;D3-C3-M1-C2-C8;D4-C3-M1-C2-C8;D5-C3-M1-C2-C8;D6-C3-M1-C2-C8;D7-C3-M1-C2-C8;D8-C3-M1-C2-C8;D9-C3-M1-C2-C8;D1-C4-M1-C2-C8;D2-C4-M1-C2-C8;D3-C4-M1-C2-C8;D4-C4-M1-C2-C8;D5-C4-M1-C2-C8;D6-C4-M1-C2-C8;D7-C4-M1-C2-C8;D8-C4-M1-C2-C8;D9-C4-M1-C2-C8;D1-C5-M1-C2-C8;D2-C5-M1-C2-C8;D3-C5-M1-C2-C8;D4-C5-M1-C2-C8;D5-C5-M1-C2-C8;D6-C5-M1-C2-C8;D7-C5-M1-C2-C8;D8-C5-M1-C2-C8;D9-C5-M1-C2-C8;D1-C6-M1-C2-C8;D2-C6-M1-C2-C8;D3-C6-M1-C2-C8;D4-C6-M1-C2-C8;D5-C6-M1-C2-C8;D6-C6-M1-C2-C8;D7-C6-M1-C2-C8;D8-C6-M1-C2-C8;D9-C6-M1-C2-C8;D1-C7-M1-C2-C8;D2-C7-M1-C2-C8;D3-C7-M1-C2-C8;D4-C7-M1-C2-C8;D5-C7-M1-C2-C8;D6-C7-M1-C2-C8;D7-C7-M1-C2-C8;D8-C7-M1-C2-C8;D9-C7-M1-C2-C8;D1-C8-M1-C2-C8;D2-C8-M1-C2-C8;D3-C8-M1-C2-C8;D4-C8-M1-C2-C8;D5-C8-M1-C2-C8;D6-C8-M1-C2-C8;D7-C8-M1-C2-C8;D8-C8-M1-C2-C8;D9-C8-M1-C2-C8;D1-C9-M1-C2-C8;D2-C9-M1-C2-C8;D3-C9-M1-C2-C8;D4-C9-M1-C2-C8;D5-C9-M1-C2-C8;D6-C9-M1-C2-C8;D7-C9-M1-C2-C8;D8-C9-M1-C2-C8;D9-C9-M1-C2-C8;D1-C1-M1-C2-C9;D2-C1-M1-C2-C9;D3-C1-M1-C2-C9;D4-C1-M1-C2-C9;D5-C1-M1-C2-C9;D6-C1-M1-C2-C9;D7-C1-M1-C2-C9;D8-C1-M1-C2-C9;D9-C1-M1-C2-C9;D1-C2-M1-C2-C9;D2-C2-M1-C2-C9;D3-C2-M1-C2-C9;D4-C2-M1-C2-C9;D5-C2-M1-C2-C9;D6-C2-M1-C2-C9;D7-C2-M1-C2-C9;D8-C2-M1-C2-C9;D9-C2-M1-C2-C9;D1-C3-M1-C2-C9;D2-C3-M1-C2-C9;D3-C3-M1-C2-C9;D4-C3-M1-C2-C9;D5-C3-M1-C2-C9;D6-C3-M1-C2-C9;D7-C3-M1-C2-C9;D8-C3-M1-C2-C9;D9-C3-M1-C2-C9;D1-C4-M1-C2-C9;D2-C4-M1-C2-C9;D3-C4-M1-C2-C9;D4-C4-M1-C2-C9;D5-C4-M1-C2-C9;D6-C4-M1-C2-C9;D7-C4-M1-C2-C9;D8-C4-M1-C2-C9;D9-C4-M1-C2-C9;D1-C5-M1-C2-C9;D2-C5-M1-C2-C9;D3-C5-M1-C2-C9;D4-C5-M1-C2-C9;D5-C5-M1-C2-C9;D6-C5-M1-C2-C9;D7-C5-M1-C2-C9;D8-C5-M1-C2-C9;D9-C5-M1-C2-C9;D1-C6-M1-C2-C9;D2-C6-M1-C2-C9;D3-C6-M1-C2-C9;D4-C6-M1-C2-C9;D5-C6-M1-C2-C9;D6-C6-M1-C2-C9;D7-C6-M1-C2-C9;D8-C6-M1-C2-C9;D9-C6-M1-C2-C9;D1-C7-M1-C2-C9;D2-C7-M1-C2-C9;D3-C7-M1-C2-C9;D4-C7-M1-C2-C9;D5-C7-M1-C2-C9;D6-C7-M1-C2-C9;D7-C7-M1-C2-C9;D8-C7-M1-C2-C9;D9-C7-M1-C2-C9;D1-C8-M1-C2-C9;D2-C8-M1-C2-C9;D3-C8-M1-C2-C9;D4-C8-M1-C2-C9;D5-C8-M1-C2-C9;D6-C8-M1-C2-C9;D7-C8-M1-C2-C9;D8-C8-M1-C2-C9;D9-C8-M1-C2-C9;D1-C9-M1-C2-C9;D2-C9-M1-C2-C9;D3-C9-M1-C2-C9;D4-C9-M1-C2-C9;D5-C9-M1-C2-C9;D6-C9-M1-C2-C9;D7-C9-M1-C2-C9;D8-C9-M1-C2-C9;D9-C9-M1-C2-C9;D1-C1-M1-C3-C1;D2-C1-M1-C3-C1;D3-C1-M1-C3-C1;D4-C1-M1-C3-C1;D5-C1-M1-C3-C1;D6-C1-M1-C3-C1;D7-C1-M1-C3-C1;D8-C1-M1-C3-C1;D9-C1-M1-C3-C1;D1-C2-M1-C3-C1;D2-C2-M1-C3-C1;D3-C2-M1-C3-C1;D4-C2-M1-C3-C1;D5-C2-M1-C3-C1;D6-C2-M1-C3-C1;D7-C2-M1-C3-C1;D8-C2-M1-C3-C1;D9-C2-M1-C3-C1;D1-C3-M1-C3-C1;D2-C3-M1-C3-C1;D3-C3-M1-C3-C1;D4-C3-M1-C3-C1;D5-C3-M1-C3-C1;D6-C3-M1-C3-C1;D7-C3-M1-C3-C1;D8-C3-M1-C3-C1;D9-C3-M1-C3-C1;D1-C4-M1-C3-C1;D2-C4-M1-C3-C1;D3-C4-M1-C3-C1;D4-C4-M1-C3-C1;D5-C4-M1-C3-C1;D6-C4-M1-C3-C1;D7-C4-M1-C3-C1;D8-C4-M1-C3-C1;D9-C4-M1-C3-C1;D1-C5-M1-C3-C1;D2-C5-M1-C3-C1;D3-C5-M1-C3-C1;D4-C5-M1-C3-C1;D5-C5-M1-C3-C1;D6-C5-M1-C3-C1;D7-C5-M1-C3-C1;D8-C5-M1-C3-C1;D9-C5-M1-C3-C1;D1-C6-M1-C3-C1;D2-C6-M1-C3-C1;D3-C6-M1-C3-C1;D4-C6-M1-C3-C1;D5-C6-M1-C3-C1;D6-C6-M1-C3-C1;D7-C6-M1-C3-C1;D8-C6-M1-C3-C1;D9-C6-M1-C3-C1;D1-C7-M1-C3-C1;D2-C7-M1-C3-C1;D3-C7-M1-C3-C1;D4-C7-M1-C3-C1;D5-C7-M1-C3-C1;D6-C7-M1-C3-C1;D7-C7-M1-C3-C1;D8-C7-M1-C3-C1;D9-C7-M1-C3-C1;D1-C8-M1-C3-C1;D2-C8-M1-C3-C1;D3-C8-M1-C3-C1;D4-C8-M1-C3-C1;D5-C8-M1-C3-C1;D6-C8-M1-C3-C1;D7-C8-M1-C3-C1;D8-C8-M1-C3-C1;D9-C8-M1-C3-C1;D1-C9-M1-C3-C1;D2-C9-M1-C3-C1;D3-C9-M1-C3-C1;D4-C9-M1-C3-C1;D5-C9-M1-C3-C1;D6-C9-M1-C3-C1;D7-C9-M1-C3-C1;D8-C9-M1-C3-C1;D9-C9-M1-C3-C1;D1-C1-M1-C3-C2;D2-C1-M1-C3-C2;D3-C1-M1-C3-C2;D4-C1-M1-C3-C2;D5-C1-M1-C3-C2;D6-C1-M1-C3-C2;D7-C1-M1-C3-C2;D8-C1-M1-C3-C2;D9-C1-M1-C3-C2;D1-C2-M1-C3-C2;D2-C2-M1-C3-C2;D3-C2-M1-C3-C2;D4-C2-M1-C3-C2;D5-C2-M1-C3-C2;D6-C2-M1-C3-C2;D7-C2-M1-C3-C2;D8-C2-M1-C3-C2;D9-C2-M1-C3-C2;D1-C3-M1-C3-C2;D2-C3-M1-C3-C2;D3-C3-M1-C3-C2;D4-C3-M1-C3-C2;D5-C3-M1-C3-C2;D6-C3-M1-C3-C2;D7-C3-M1-C3-C2;D8-C3-M1-C3-C2;D9-C3-M1-C3-C2;D1-C4-M1-C3-C2;D2-C4-M1-C3-C2;D3-C4-M1-C3-C2;D4-C4-M1-C3-C2;D5-C4-M1-C3-C2;D6-C4-M1-C3-C2;D7-C4-M1-C3-C2;D8-C4-M1-C3-C2;D9-C4-M1-C3-C2;D1-C5-M1-C3-C2;D2-C5-M1-C3-C2;D3-C5-M1-C3-C2;D4-C5-M1-C3-C2;D5-C5-M1-C3-C2;D6-C5-M1-C3-C2;D7-C5-M1-C3-C2;D8-C5-M1-C3-C2;D9-C5-M1-C3-C2;D1-C6-M1-C3-C2;D2-C6-M1-C3-C2;D3-C6-M1-C3-C2;D4-C6-M1-C3-C2;D5-C6-M1-C3-C2;D6-C6-M1-C3-C2;D7-C6-M1-C3-C2;D8-C6-M1-C3-C2;D9-C6-M1-C3-C2;D1-C7-M1-C3-C2;D2-C7-M1-C3-C2;D3-C7-M1-C3-C2;D4-C7-M1-C3-C2;D5-C7-M1-C3-C2;D6-C7-M1-C3-C2;D7-C7-M1-C3-C2;D8-C7-M1-C3-C2;D9-C7-M1-C3-C2;D1-C8-M1-C3-C2;D2-C8-M1-C3-C2;D3-C8-M1-C3-C2;D4-C8-M1-C3-C2;D5-C8-M1-C3-C2;D6-C8-M1-C3-C2;D7-C8-M1-C3-C2;D8-C8-M1-C3-C2;D9-C8-M1-C3-C2;D1-C9-M1-C3-C2;D2-C9-M1-C3-C2;D3-C9-M1-C3-C2;D4-C9-M1-C3-C2;D5-C9-M1-C3-C2;D6-C9-M1-C3-C2;D7-C9-M1-C3-C2;D8-C9-M1-C3-C2;D9-C9-M1-C3-C2;D1-C1-M1-C3-C3;D2-C1-M1-C3-C3;D3-C1-M1-C3-C3;D4-C1-M1-C3-C3;D5-C1-M1-C3-C3;D6-C1-M1-C3-C3;D7-C1-M1-C3-C3;D8-C1-M1-C3-C3;D9-C1-M1-C3-C3;D1-C2-M1-C3-C3;D2-C2-M1-C3-C3;D3-C2-M1-C3-C3;D4-C2-M1-C3-C3;D5-C2-M1-C3-C3;D6-C2-M1-C3-C3;D7-C2-M1-C3-C3;D8-C2-M1-C3-C3;D9-C2-M1-C3-C3;D1-C3-M1-C3-C3;D2-C3-M1-C3-C3;D3-C3-M1-C3-C3;D4-C3-M1-C3-C3;D5-C3-M1-C3-C3;D6-C3-M1-C3-C3;D7-C3-M1-C3-C3;D8-C3-M1-C3-C3;D9-C3-M1-C3-C3;D1-C4-M1-C3-C3;D2-C4-M1-C3-C3;D3-C4-M1-C3-C3;D4-C4-M1-C3-C3;D5-C4-M1-C3-C3;D6-C4-M1-C3-C3;D7-C4-M1-C3-C3;D8-C4-M1-C3-C3;D9-C4-M1-C3-C3;D1-C5-M1-C3-C3;D2-C5-M1-C3-C3;D3-C5-M1-C3-C3;D4-C5-M1-C3-C3;D5-C5-M1-C3-C3;D6-C5-M1-C3-C3;D7-C5-M1-C3-C3;D8-C5-M1-C3-C3;D9-C5-M1-C3-C3;D1-C6-M1-C3-C3;D2-C6-M1-C3-C3;D3-C6-M1-C3-C3;D4-C6-M1-C3-C3;D5-C6-M1-C3-C3;D6-C6-M1-C3-C3;D7-C6-M1-C3-C3;D8-C6-M1-C3-C3;D9-C6-M1-C3-C3;D1-C7-M1-C3-C3;D2-C7-M1-C3-C3;D3-C7-M1-C3-C3;D4-C7-M1-C3-C3;D5-C7-M1-C3-C3;D6-C7-M1-C3-C3;D7-C7-M1-C3-C3;D8-C7-M1-C3-C3;D9-C7-M1-C3-C3;D1-C8-M1-C3-C3;D2-C8-M1-C3-C3;D3-C8-M1-C3-C3;D4-C8-M1-C3-C3;D5-C8-M1-C3-C3;D6-C8-M1-C3-C3;D7-C8-M1-C3-C3;D8-C8-M1-C3-C3;D9-C8-M1-C3-C3;D1-C9-M1-C3-C3;D2-C9-M1-C3-C3;D3-C9-M1-C3-C3;D4-C9-M1-C3-C3;D5-C9-M1-C3-C3;D6-C9-M1-C3-C3;D7-C9-M1-C3-C3;D8-C9-M1-C3-C3;D9-C9-M1-C3-C3;D1-C1-M1-C3-C4;D2-C1-M1-C3-C4;D3-C1-M1-C3-C4;D4-C1-M1-C3-C4;D5-C1-M1-C3-C4;D6-C1-M1-C3-C4;D7-C1-M1-C3-C4;D8-C1-M1-C3-C4;D9-C1-M1-C3-C4;D1-C2-M1-C3-C4;D2-C2-M1-C3-C4;D3-C2-M1-C3-C4;D4-C2-M1-C3-C4;D5-C2-M1-C3-C4;D6-C2-M1-C3-C4;D7-C2-M1-C3-C4;D8-C2-M1-C3-C4;D9-C2-M1-C3-C4;D1-C3-M1-C3-C4;D2-C3-M1-C3-C4;D3-C3-M1-C3-C4;D4-C3-M1-C3-C4;D5-C3-M1-C3-C4;D6-C3-M1-C3-C4;D7-C3-M1-C3-C4;D8-C3-M1-C3-C4;D9-C3-M1-C3-C4;D1-C4-M1-C3-C4;D2-C4-M1-C3-C4;D3-C4-M1-C3-C4;D4-C4-M1-C3-C4;D5-C4-M1-C3-C4;D6-C4-M1-C3-C4;D7-C4-M1-C3-C4;D8-C4-M1-C3-C4;D9-C4-M1-C3-C4;D1-C5-M1-C3-C4;D2-C5-M1-C3-C4;D3-C5-M1-C3-C4;D4-C5-M1-C3-C4;D5-C5-M1-C3-C4;D6-C5-M1-C3-C4;D7-C5-M1-C3-C4;D8-C5-M1-C3-C4;D9-C5-M1-C3-C4;D1-C6-M1-C3-C4;D2-C6-M1-C3-C4;D3-C6-M1-C3-C4;D4-C6-M1-C3-C4;D5-C6-M1-C3-C4;D6-C6-M1-C3-C4;D7-C6-M1-C3-C4;D8-C6-M1-C3-C4;D9-C6-M1-C3-C4;D1-C7-M1-C3-C4;D2-C7-M1-C3-C4;D3-C7-M1-C3-C4;D4-C7-M1-C3-C4;D5-C7-M1-C3-C4;D6-C7-M1-C3-C4;D7-C7-M1-C3-C4;D8-C7-M1-C3-C4;D9-C7-M1-C3-C4;D1-C8-M1-C3-C4;D2-C8-M1-C3-C4;D3-C8-M1-C3-C4;D4-C8-M1-C3-C4;D5-C8-M1-C3-C4;D6-C8-M1-C3-C4;D7-C8-M1-C3-C4;D8-C8-M1-C3-C4;D9-C8-M1-C3-C4;D1-C9-M1-C3-C4;D2-C9-M1-C3-C4;D3-C9-M1-C3-C4;D4-C9-M1-C3-C4;D5-C9-M1-C3-C4;D6-C9-M1-C3-C4;D7-C9-M1-C3-C4;D8-C9-M1-C3-C4;D9-C9-M1-C3-C4;D1-C1-M1-C3-C5;D2-C1-M1-C3-C5;D3-C1-M1-C3-C5;D4-C1-M1-C3-C5;D5-C1-M1-C3-C5;D6-C1-M1-C3-C5;D7-C1-M1-C3-C5;D8-C1-M1-C3-C5;D9-C1-M1-C3-C5;D1-C2-M1-C3-C5;D2-C2-M1-C3-C5;D3-C2-M1-C3-C5;D4-C2-M1-C3-C5;D5-C2-M1-C3-C5;D6-C2-M1-C3-C5;D7-C2-M1-C3-C5;D8-C2-M1-C3-C5;D9-C2-M1-C3-C5;D1-C3-M1-C3-C5;D2-C3-M1-C3-C5;D3-C3-M1-C3-C5;D4-C3-M1-C3-C5;D5-C3-M1-C3-C5;D6-C3-M1-C3-C5;D7-C3-M1-C3-C5;D8-C3-M1-C3-C5;D9-C3-M1-C3-C5;D1-C4-M1-C3-C5;D2-C4-M1-C3-C5;D3-C4-M1-C3-C5;D4-C4-M1-C3-C5;D5-C4-M1-C3-C5;D6-C4-M1-C3-C5;D7-C4-M1-C3-C5;D8-C4-M1-C3-C5;D9-C4-M1-C3-C5;D1-C5-M1-C3-C5;D2-C5-M1-C3-C5;D3-C5-M1-C3-C5;D4-C5-M1-C3-C5;D5-C5-M1-C3-C5;D6-C5-M1-C3-C5;D7-C5-M1-C3-C5;D8-C5-M1-C3-C5;D9-C5-M1-C3-C5;D1-C6-M1-C3-C5;D2-C6-M1-C3-C5;D3-C6-M1-C3-C5;D4-C6-M1-C3-C5;D5-C6-M1-C3-C5;D6-C6-M1-C3-C5;D7-C6-M1-C3-C5;D8-C6-M1-C3-C5;D9-C6-M1-C3-C5;D1-C7-M1-C3-C5;D2-C7-M1-C3-C5;D3-C7-M1-C3-C5;D4-C7-M1-C3-C5;D5-C7-M1-C3-C5;D6-C7-M1-C3-C5;D7-C7-M1-C3-C5;D8-C7-M1-C3-C5;D9-C7-M1-C3-C5;D1-C8-M1-C3-C5;D2-C8-M1-C3-C5;D3-C8-M1-C3-C5;D4-C8-M1-C3-C5;D5-C8-M1-C3-C5;D6-C8-M1-C3-C5;D7-C8-M1-C3-C5;D8-C8-M1-C3-C5;D9-C8-M1-C3-C5;D1-C9-M1-C3-C5;D2-C9-M1-C3-C5;D3-C9-M1-C3-C5;D4-C9-M1-C3-C5;D5-C9-M1-C3-C5;D6-C9-M1-C3-C5;D7-C9-M1-C3-C5;D8-C9-M1-C3-C5;D9-C9-M1-C3-C5;D1-C1-M1-C3-C6;D2-C1-M1-C3-C6;D3-C1-M1-C3-C6;D4-C1-M1-C3-C6;D5-C1-M1-C3-C6;D6-C1-M1-C3-C6;D7-C1-M1-C3-C6;D8-C1-M1-C3-C6;D9-C1-M1-C3-C6;D1-C2-M1-C3-C6;D2-C2-M1-C3-C6;D3-C2-M1-C3-C6;D4-C2-M1-C3-C6;D5-C2-M1-C3-C6;D6-C2-M1-C3-C6;D7-C2-M1-C3-C6;D8-C2-M1-C3-C6;D9-C2-M1-C3-C6;D1-C3-M1-C3-C6;D2-C3-M1-C3-C6;D3-C3-M1-C3-C6;D4-C3-M1-C3-C6;D5-C3-M1-C3-C6;D6-C3-M1-C3-C6;D7-C3-M1-C3-C6;D8-C3-M1-C3-C6;D9-C3-M1-C3-C6;D1-C4-M1-C3-C6;D2-C4-M1-C3-C6;D3-C4-M1-C3-C6;D4-C4-M1-C3-C6;D5-C4-M1-C3-C6;D6-C4-M1-C3-C6;D7-C4-M1-C3-C6;D8-C4-M1-C3-C6;D9-C4-M1-C3-C6;D1-C5-M1-C3-C6;D2-C5-M1-C3-C6;D3-C5-M1-C3-C6;D4-C5-M1-C3-C6;D5-C5-M1-C3-C6;D6-C5-M1-C3-C6;D7-C5-M1-C3-C6;D8-C5-M1-C3-C6;D9-C5-M1-C3-C6;D1-C6-M1-C3-C6;D2-C6-M1-C3-C6;D3-C6-M1-C3-C6;D4-C6-M1-C3-C6;D5-C6-M1-C3-C6;D6-C6-M1-C3-C6;D7-C6-M1-C3-C6;D8-C6-M1-C3-C6;D9-C6-M1-C3-C6;D1-C7-M1-C3-C6;D2-C7-M1-C3-C6;D3-C7-M1-C3-C6;D4-C7-M1-C3-C6;D5-C7-M1-C3-C6;D6-C7-M1-C3-C6;D7-C7-M1-C3-C6;D8-C7-M1-C3-C6;D9-C7-M1-C3-C6;D1-C8-M1-C3-C6;D2-C8-M1-C3-C6;D3-C8-M1-C3-C6;D4-C8-M1-C3-C6;D5-C8-M1-C3-C6;D6-C8-M1-C3-C6;D7-C-M1-C3-C6;D8-C8-M1-C3-C6;D9-C8-M1-C3-C6;D1-C9-M1-C3-C6;D2-C9-M1-C3-C6;D3-C9-M1-C3-C6;D4-C9-M1-C3-C6;D5-C9-M1-C3-C6;D6-C9-M1-C3-C6;D7-C9-M1-C3-C6;D8-C9-M1-C3-C6;D9-C9-M1-C3-C6;D1-C1-M1-C3-C7;D2-C1-M1-C3-C7;D3-C1-M1-C3-C7;D4-C1-M1-C3-C7;D5-C1-M1-C3-C7;D6-C1-M1-C3-C7;D7-C1-M1-C3-C7;D8-C1-M1-C3-C7;D9-C1-M1-C3-C7;D1-C2-M1-C3-C7;D2-C2-M1-C3-C7;D3-C2-M1-C3-C7;D4-C2-M1-C3-C7;D5-C2-M1-C3-C7;D6-C2-M1-C3-C7;D7-C2-M1-C3-C7;D8-C2-M1-C3-C7;D9-C2-M1-C3-C7;D1-C3-M1-C3-C7;D2-C3-M1-C3-C7;D3-C3-M1-C3-C7;D4-C3-M1-C3-C7;D5-C3-M1-C3-C7;D6-C3-M1-C3-C7;D7-C3-M1-C3-C7;D8-C3-M1-C3-C7;D9-C3-M1-C3-C7;D1-C4-M1-C3-C7;D2-C4-M1-C3-C7;D3-C4-M1-C3-C7;D4-C4-M1-C3-C7;D5-C4-M1-C3-C7;D6-C4-M1-C3-C7;D7-C4-M1-C3-C7;D8-C4-M1-C3-C7;D9-C4-M1-C3-C7;D1-C5-M1-C3-C7;D2-C5-M1-C3-C7;D3-C5-M1-C3-C7;D4-C5-M1-C3-C7;D5-C5-M1-C3-C7;D6-C5-M1-C3-C7;D7-C5-M1-C3-C7;D8-C5-M1-C3-C7;D9-C5-M1-C3-C7;D1-C6-M1-C3-C7;D2-C6-M1-C3-C7;D3-C6-M1-C3-C7;D4-C6-M1-C3-C7;D5-C6-M1-C3-C7;D6-C6-M1-C3-C7;D7-C6-M1-C3-C7;D8-C6-M1-C3-C7;D9-C6-M1-C3-C7;D1-C7-M1-C3-C7;D2-C7-M1-C3-C7;...
the last 2000 arrangements are:
...;C3-C7-C9-C3-D8;C3-C7-C9-C3-D9;C3-C7-C9-C4-D1;C3-C7-C9-C4-D2;C3-C7-C9-C4-D3;C3-C7-C9-C4-D4;C3-C7-C9-C4-D5;C3-C7-C9-C4-D6;C3-C7-C9-C4-D7;C3-C7-C9-C4-D8;C3-C7-C9-C4-D9;C3-C7-C9-C5-D1;C3-C7-C9-C5-D2;C3-C7-C9-C5-D3;C3-C7-C9-C5-D4;C3-C7-C9-C5-D5;C3-C7-C9-C5-D6;C3-C7-C9-C5-D7;C3-C7-C9-C5-D8;C3-C7-C9-C5-D9;C3-C7-C9-C6-D1;C3-C7-C9-C6-D2;C3-C7-C9-C6-D3;C3-C7-C9-C6-D4;C3-C7-C9-C6-D5;C3-C7-C9-C6-D6;C3-C7-C9-C6-D7;C3-C7-C9-C6-D8;C3-C7-C9-C6-D9;C3-C7-C9-C7-D1;C3-C7-C9-C7-D2;C3-C7-C9-C7-D3;C3-C7-C9-C7-D4;C3-C7-C9-C7-D5;C3-C7-C9-C7-D6;C3-C7-C9-C7-D7;C3-C7-C9-C7-D8;C3-C7-C9-C7-D9;C3-C7-C9-C8-D1;C3-C7-C9-C8-D2;C3-C7-C9-C8-D3;C3-C7-C9-C8-D4;C3-C7-C9-C8-D5;C3-C7-C9-C8-D6;C3-C7-C9-C8-D7;C3-C7-C9-C8-D8;C3-C7-C9-C8-D9;C3-C7-C9-C9-D1;C3-C7-C9-C9-D2;C3-C7-C9-C9-D3;C3-C7-C9-C9-D4;C3-C7-C9-C9-D5;C3-C7-C9-C9-D6;C3-C7-C9-C9-D7;C3-C7-C9-C9-D8;C3-C7-C9-C9-D9;C4-C7-C9-C1-D1;C4-C7-C9-C1-D2;C4-C7-C9-C1-D3;C4-C7-C9-C1-D4;C4-C7-C9-C1-D5;C4-C7-C9-C1-D6;C4-C7-C9-C1-D7;C4-C7-C9-C1-D8;C4-C7-C9-C1-D9;C4-C7-C9-C2-D1;C4-C7-C9-C2-D2;C4-C7-C9-C2-D3;C4-C7-C9-C2-D4;C4-C7-C9-C2-D5;C4-C7-C9-C2-D6;C4-C7-C9-C2-D7;C4-C7-C9-C2-D8;C4-C7-C9-C2-D9;C4-C7-C9-C3-D1;C4-C7-C9-C3-D2;C4-C7-C9-C3-D3;C4-C7-C9-C3-D4;C4-C7-C9-C3-D5;C4-C7-C9-C3-D6;C4-C7-C9-C3-D7;C4-C7-C9-C3-D8;C4-C7-C9-C3-D9;C4-C7-C9-C4-D1;C4-C7-C9-C4-D2;C4-C7-C9-C4-D3;C4-C7-C9-C4-D4;C4-C7-C9-C4-D5;C4-C7-C9-C4-D6;C4-C7-C9-C4-D7;C4-C7-C9-C4-D8;C4-C7-C9-C4-D9;C4-C7-C9-C5-D1;C4-C7-C9-C5-D2;C4-C7-C9-C5-D3;C4-C7-C9-C5-D4;C4-C7-C9-C5-D5;C4-C7-C9-C5-D6;C4-C7-C9-C5-D7;C4-C7-C9-C5-D8;C4-C7-C9-C5-D9;C4-C7-C9-C6-D1;C4-C7-C9-C6-D2;C4-C7-C9-C6-D3;C4-C7-C9-C6-D4;C4-C7-C9-C6-D5;C4-C7-C9-C6-D6;C4-C7-C9-C6-D7;C4-C7-C9-C6-D8;C4-C7-C9-C6-D9;C4-C7-C9-C7-D1;C4-C7-C9-C7-D2;C4-C7-C9-C7-D3;C4-C7-C9-C7-D4;C4-C7-C9-C7-D5;C4-C7-C9-C7-D6;C4-C7-C9-C7-D7;C4-C7-C9-C7-D8;C4-C7-C9-C7-D9;C4-C7-C9-C8-D1;C4-C7-C9-C8-D2;C4-C7-C9-C8-D3;C4-C7-C9-C8-D4;C4-C7-C9-C8-D5;C4-C7-C9-C8-D6;C4-C7-C9-C8-D7;C4-C7-C9-C8-D8;C4-C7-C9-C8-D9;C4-C7-C9-C9-D1;C4-C7-C9-C9-D2;C4-C7-C9-C9-D3;C4-C7-C9-C9-D4;C4-C7-C9-C9-D5;C4-C7-C9-C9-D6;C4-C7-C9-C9-D7;C4-C7-C9-C9-D8;C4-C7-C9-C9-D9;C5-C7-C9-C1-D1;C5-C7-C9-C1-D2;C5-C7-C9-C1-D3;C5-C7-C9-C1-D4;C5-C7-C9-C1-D5;C5-C7-C9-C1-D6;C5-C7-C9-C1-D7;C5-C7-C9-C1-D8;C5-C7-C9-C1-D9;C5-C7-C9-C2-D1;C5-C7-C9-C2-D2;C5-C7-C9-C2-D3;C5-C7-C9-C2-D4;C5-C7-C9-C2-D5;C5-C7-C9-C2-D6;C5-C7-C9-C2-D7;C5-C7-C9-C2-D8;C5-C7-C9-C2-D9;C5-C7-C9-C3-D1;C5-C7-C9-C3-D2;C5-C7-C9-C3-D3;C5-C7-C9-C3-D4;C5-C7-C9-C3-D5;C5-C7-C9-C3-D6;C5-C7-C9-C3-D7;C5-C7-C9-C3-D8;C5-C7-C9-C3-D9;C5-C7-C9-C4-D1;C5-C7-C9-C4-D2;C5-C7-C9-C4-D3;C5-C7-C9-C4-D4;C5-C7-C9-C4-D5;C5-C7-C9-C4-D6;C5-C7-C9-C4-D7;C5-C7-C9-C4-D8;C5-C7-C9-C4-D9;C5-C7-C9-C5-D1;C5-C7-C9-C5-D2;C5-C7-C9-C5-D3;C5-C7-C9-C5-D4;C5-C7-C9-C5-D5;C5-C7-C9-C5-D6;C5-C7-C9-C5-D7;C5-C7-C9-C5-D8;C5-C7-C9-C5-D9;C5-C7-C9-C6-D1;C5-C7-C9-C6-D2;C5-C7-C9-C6-D3;C5-C7-C9-C6-D4;C5-C7-C9-C6-D5;C5-C7-C9-C6-D6;C5-C7-C9-C6-D7;C5-C7-C9-C6-D8;C5-C7-C9-C6-D9;C5-C7-C9-C7-D1;C5-C7-C9-C7-D2;C5-C7-C9-C7-D3;C5-C7-C9-C7-D4;C5-C7-C9-C7-D5;C5-C7-C9-C7-D6;C5-C7-C9-C7-D7;C5-C7-C9-C7-D8;C5-C7-C9-C7-D9;C5-C7-C9-C8-D1;C5-C7-C9-C8-D2;C5-C7-C9-C8-D3;C5-C7-C9-C8-D4;C5-C7-C9-C8-D5;C5-C7-C9-C8-D6;C5-C7-C9-C8-D7;C5-C7-C9-C8-D8;C5-C7-C9-C8-D9;C5-C7-C9-C9-D1;C5-C7-C9-C9-D2;C5-C7-C9-C9-D3;C5-C7-C9-C9-D4;C5-C7-C9-C9-D5;C5-C7-C9-C9-D6;C5-C7-C9-C9-D7;C5-C7-C9-C9-D8;C5-C7-C9-C9-D9;C6-C7-C9-C1-D1;C6-C7-C9-C1-D2;C6-C7-C9-C1-D3;C6-C7-C9-C1-D4;C6-C7-C9-C1-D5;C6-C7-C9-C1-D6;C6-C7-C9-C1-D7;C6-C7-C9-C1-D8;C6-C7-C9-C1-D9;C6-C7-C9-C2-D1;C6-C7-C9-C2-D2;C6-C7-C9-C2-D3;C6-C7-C9-C2-D4;C6-C7-C9-C2-D5;C6-C7-C9-C2-D6;C6-C7-C9-C2-D7;C6-C7-C9-C2-D8;C6-C7-C9-C2-D9;C6-C7-C9-C3-D1;C6-C7-C9-C3-D2;C6-C7-C9-C3-D3;C6-C7-C9-C3-D4;C6-C7-C9-C3-D5;C6-C7-C9-C3-D6;C6-C7-C9-C3-D7;C6-C7-C9-C3-D8;C6-C7-C9-C3-D9;C6-C7-C9-C4-D1;C6-C7-C9-C4-D2;C6-C7-C9-C4-D3;C6-C7-C9-C4-D4;C6-C7-C9-C4-D5;C6-C7-C9-C4-D6;C6-C7-C9-C4-D7;C6-C7-C9-C4-D8;C6-C7-C9-C4-D9;C6-C7-C9-C5-D1;C6-C7-C9-C5-D2;C6-C7-C9-C5-D3;C6-C7-C9-C5-D4;C6-C7-C9-C5-D5;C6-C7-C9-C5-D6;C6-C7-C9-C5-D7;C6-C7-C9-C5-D8;C6-C7-C9-C5-D9;C6-C7-C9-C6-D1;C6-C7-C9-C6-D2;C6-C7-C9-C6-D3;C6-C7-C9-C6-D4;C6-C7-C9-C6-D5;C6-C7-C9-C6-D6;C6-C7-C9-C6-D7;C6-C7-C9-C6-D8;C6-C7-C9-C6-D9;C6-C7-C9-C7-D1;C6-C7-C9-C7-D2;C6-C7-C9-C7-D3;C6-C7-C9-C7-D4;C6-C7-C9-C7-D5;C6-C7-C9-C7-D6;C6-C7-C9-C7-D7;C6-C7-C9-C7-D8;C6-C7-C9-C7-D9;C6-C7-C9-C8-D1;C6-C7-C9-C8-D2;C6-C7-C9-C8-D3;C6-C7-C9-C8-D4;C6-C7-C9-C8-D5;C6-C7-C9-C8-D6;C6-C7-C9-C8-D7;C6-C7-C9-C8-D8;C6-C7-C9-C8-D9;C6-C7-C9-C9-D1;C6-C7-C9-C9-D2;C6-C7-C9-C9-D3;C6-C7-C9-C9-D4;C6-C7-C9-C9-D5;C6-C7-C9-C9-D6;C6-C7-C9-C9-D7;C6-C7-C9-C9-D8;C6-C7-C9-C9-D9;C7-C7-C9-C1-D1;C7-C7-C9-C1-D2;C7-C7-C9-C1-D3;C7-C7-C9-C1-D4;C7-C7-C9-C1-D5;C7-C7-C9-C1-D6;C7-C7-C9-C1-D7;C7-C7-C9-C1-D8;C7-C7-C9-C1-D9;C7-C7-C9-C2-D1;C7-C7-C9-C2-D2;C7-C7-C9-C2-D3;C7-C7-C9-C2-D4;C7-C7-C9-C2-D5;C7-C7-C9-C2-D6;C7-C7-C9-C2-D7;C7-C7-C9-C2-D8;C7-C7-C9-C2-D9;C7-C7-C9-C3-D1;C7-C7-C9-C3-D2;C7-C7-C9-C3-D3;C7-C7-C9-C3-D4;C7-C7-C9-C3-D5;C7-C7-C9-C3-D6;C7-C7-C9-C3-D7;C7-C7-C9-C3-D8;C7-C7-C9-C3-D9;C7-C7-C9-C4-D1;C7-C7-C9-C4-D2;C7-C7-C9-C4-D3;C7-C7-C9-C4-D4;C7-C7-C9-C4-D5;C7-C7-C9-C4-D6;C7-C7-C9-C4-D7;C7-C7-C9-C4-D8;C7-C7-C9-C4-D9;C7-C7-C9-C5-D1;C7-C7-C9-C5-D2;C7-C7-C9-C5-D3;C7-C7-C9-C5-D4;C7-C7-C9-C5-D5;C7-C7-C9-C5-D6;C7-C7-C9-C5-D7;C7-C7-C9-C5-D8;C7-C7-C9-C5-D9;C7-C7-C9-C6-D1;C7-C7-C9-C6-D2;C7-C7-C9-C6-D3;C7-C7-C9-C6-D4;C7-C7-C9-C6-D5;C7-C7-C9-C6-D6;C7-C7-C9-C6-D7;C7-C7-C9-C6-D8;C7-C7-C9-C6-D9;C7-C7-C9-C7-D1;C7-C7-C9-C7-D2;C7-C7-C9-C7-D3;C7-C7-C9-C7-D4;C7-C7-C9-C7-D5;C7-C7-C9-C7-D6;C7-C7-C9-C7-D7;C7-C7-C9-C7-D8;C7-C7-C9-C7-D9;C7-C7-C9-C8-D1;C7-C7-C9-C8-D2;C7-C7-C9-C8-D3;C7-C7-C9-C8-D4;C7-C7-C9-C8-D5;C7-C7-C9-C8-D6;C7-C7-C9-C8-D7;C7-C7-C9-C8-D8;C7-C7-C9-C8-D9;C7-C7-C9-C9-D1;C7-C7-C9-C9-D2;C7-C7-C9-C9-D3;C7-C7-C9-C9-D4;C7-C7-C9-C9-D5;C7-C7-C9-C9-D6;C7-C7-C9-C9-D7;C7-C7-C9-C9-D8;C7-C7-C9-C9-D9;C8-C7-C9-C1-D1;C8-C7-C9-C1-D2;C8-C7-C9-C1-D3;C8-C7-C9-C1-D4;C8-C7-C9-C1-D5;C8-C7-C9-C1-D6;C8-C7-C9-C1-D7;C8-C7-C9-C1-D8;C8-C7-C9-C1-D9;C8-C7-C9-C2-D1;C8-C7-C9-C2-D2;C8-C7-C9-C2-D3;C8-C7-C9-C2-D4;C8-C7-C9-C2-D5;C8-C7-C9-C2-D6;C8-C7-C9-C2-D7;C8-C7-C9-C2-D8;C8-C7-C9-C2-D9;C8-C7-C9-C3-D1;C8-C7-C9-C3-D2;C8-C7-C9-C3-D3;C8-C7-C9-C3-D4;C8-C7-C9-C3-D5;C8-C7-C9-C3-D6;C8-C7-C9-C3-D7;C8-C7-C9-C3-D8;C8-C7-C9-C3-D9;C8-C7-C9-C4-D1;C8-C7-C9-C4-D2;C8-C7-C9-C4-D3;C8-C7-C9-C4-D4;C8-C7-C9-C4-D5;C8-C7-C9-C4-D6;C8-C7-C9-C4-D7;C8-C7-C9-C4-D8;C8-C7-C9-C4-D9;C8-C7-C9-C5-D1;C8-C7-C9-C5-D2;C8-C7-C9-C5-D3;C8-C7-C9-C5-D4;C8-C7-C9-C5-D5;C8-C7-C9-C5-D6;C8-C7-C9-C5-D7;C8-C7-C9-C5-D8;C8-C7-C9-C5-D9;C8-C7-C9-C6-D1;C8-C7-C9-C6-D2;C8-C7-C9-C6-D3;C8-C7-C9-C6-D4;C8-C7-C9-C6-D5;C8-C7-C9-C6-D6;C8-C7-C9-C6-D7;C8-C7-C9-C6-D8;C8-C7-C9-C6-D9;C8-C7-C9-C7-D1;C8-C7-C9-C7-D2;C8-C7-C9-C7-D3;C8-C7-C9-C7-D4;C8-C7-C9-C7-D5;C8-C7-C9-C7-D6;C8-C7-C9-C7-D7;C8-C7-C9-C7-D8;C8-C7-C9-C7-D9;C8-C7-C9-C8-D1;C8-C7-C9-C8-D2;C8-C7-C9-C8-D3;C8-C7-C9-C8-D4;C8-C7-C9-C8-D5;C8-C7-C9-C8-D6;C8-C7-C9-C8-D7;C8-C7-C9-C8-D8;C8-C7-C9-C8-D9;C8-C7-C9-C9-D1;C8-C7-C9-C9-D2;C8-C7-C9-C9-D3;C8-C7-C9-C9-D4;C8-C7-C9-C9-D5;C8-C7-C9-C9-D6;C8-C7-C9-C9-D7;C8-C7-C9-C9-D8;C8-C7-C9-C9-D9;C9-C7-C9-C1-D1;C9-C7-C9-C1-D2;C9-C7-C9-C1-D3;C9-C7-C9-C1-D4;C9-C7-C9-C1-D5;C9-C7-C9-C1-D6;C9-C7-C9-C1-D7;C9-C7-C9-C1-D8;C9-C7-C9-C1-D9;C9-C7-C9-C2-D1;C9-C7-C9-C2-D2;C9-C7-C9-C2-D3;C9-C7-C9-C2-D4;C9-C7-C9-C2-D5;C9-C7-C9-C2-D6;C9-C7-C9-C2-D7;C9-C7-C9-C2-D8;C9-C7-C9-C2-D9;C9-C7-C9-C3-D1;C9-C7-C9-C3-D2;C9-C7-C9-C3-D3;C9-C7-C9-C3-D4;C9-C7-C9-C3-D5;C9-C7-C9-C3-D6;C9-C7-C9-C3-D7;C9-C7-C9-C3-D8;C9-C7-C9-C3-D9;C9-C7-C9-C4-D1;C9-C7-C9-C4-D2;C9-C7-C9-C4-D3;C9-C7-C9-C4-D4;C9-C7-C9-C4-D5;C9-C7-C9-C4-D6;C9-C7-C9-C4-D7;C9-C7-C9-C4-D8;C9-C7-C9-C4-D9;C9-C7-C9-C5-D1;C9-C7-C9-C5-D2;C9-C7-C9-C5-D3;C9-C7-C9-C5-D4;C9-C7-C9-C5-D5;C9-C7-C9-C5-D6;C9-C7-C9-C5-D7;C9-C7-C9-C5-D8;C9-C7-C9-C5-D9;C9-C7-C9-C6-D1;C9-C7-C9-C6-D2;C9-C7-C9-C6-D3;C9-C7-C9-C6-D4;C9-C7-C9-C6-D5;C9-C7-C9-C6-D6;C9-C7-C9-C6-D7;C9-C7-C9-C6-D8;C9-C7-C9-C6-D9;C9-C7-C9-C7-D1;C9-C7-C9-C7-D2;C9-C7-C9-C7-D3;C9-C7-C9-C7-D4;C9-C7-C9-C7-D5;C9-C7-C9-C7-D6;C9-C7-C9-C7-D7;C9-C7-C9-C7-D8;C9-C7-C9-C7-D9;C9-C7-C9-C8-D1;C9-C7-C9-C8-D2;C9-C7-C9-C8-D3;C9-C7-C9-C8-D4;C9-C7-C9-C8-D5;C9-C7-C9-C8-D6;C9-C7-C9-C8-D7;C9-C7-C9-C8-D8;C9-C7-C9-C8-D9;C9-C7-C9-C9-D1;C9-C7-C9-C9-D2;C9-C7-C9-C9-D3;C9-C7-C9-C9-D4;C9-C7-C9-C9-D5;C9-C7-C9-C9-D6;C9-C7-C9-C9-D7;C9-C7-C9-C9-D8;C9-C7-C9-C9-D9;C1-C8-C9-C1-D1;C1-C8-C9-C1-D2;C1-C8-C9-C1-D3;C1-C8-C9-C1-D4;C1-C8-C9-C1-D5;C1-C8-C9-C1-D6;C1-C8-C9-C1-D7;C1-C8-C9-C1-D8;C1-C8-C9-C1-D9;C1-C8-C9-C2-D1;C1-C8-C9-C2-D2;C1-C8-C9-C2-D3;C1-C8-C9-C2-D4;C1-C8-C9-C2-D5;C1-C8-C9-C2-D6;C1-C8-C9-C2-D7;C1-C8-C9-C2-D8;C1-C8-C9-C2-D9;C1-C8-C9-C3-D1;C1-C8-C9-C3-D2;C1-C8-C9-C3-D3;C1-C8-C9-C3-D4;C1-C8-C9-C3-D5;C1-C8-C9-C3-D6;C1-C8-C9-C3-D7;C1-C8-C9-C3-D8;C1-C8-C9-C3-D9;C1-C8-C9-C4-D1;C1-C8-C9-C4-D2;C1-C8-C9-C4-D3;C1-C8-C9-C4-D4;C1-C8-C9-C4-D5;C1-C8-C9-C4-D6;C1-C8-C9-C4-D7;C1-C8-C9-C4-D8;C1-C8-C9-C4-D9;C1-C8-C9-C5-D1;C1-C8-C9-C5-D2;C1-C8-C9-C5-D3;C1-C8-C9-C5-D4;C1-C8-C9-C5-D5;C1-C8-C9-C5-D6;C1-C8-C9-C5-D7;C1-C8-C9-C5-D8;C1-C8-C9-C5-D9;C1-C8-C9-C6-D1;C1-C8-C9-C6-D2;C1-C8-C9-C6-D3;C1-C8-C9-C6-D4;C1-C8-C9-C6-D5;C1-C8-C9-C6-D6;C1-C8-C9-C6-D7;C1-C8-C9-C6-D8;C1-C8-C9-C6-D9;C1-C8-C9-C7-D1;C1-C8-C9-C7-D2;C1-C8-C9-C7-D3;C1-C8-C9-C7-D4;C1-C8-C9-C7-D5;C1-C8-C9-C7-D6;C1-C8-C9-C7-D7;C1-C8-C9-C7-D8;C1-C8-C9-C7-D9;C1-C8-C9-C8-D1;C1-C8-C9-C8-D2;C1-C8-C9-C8-D3;C1-C8-C9-C8-D4;C1-C8-C9-C8-D5;C1-C8-C9-C8-D6;C1-C8-C9-C8-D7;C1-C8-C9-C8-D8;C1-C8-C9-C8-D9;C1-C8-C9-C9-D1;C1-C8-C9-C9-D2;C1-C8-C9-C9-D3;C1-C8-C9-C9-D4;C1-C8-C9-C9-D5;C1-C8-C9-C9-D6;C1-C8-C9-C9-D7;C1-C8-C9-C9-D8;C1-C8-C9-C9-D9;C2-C8-C9-C1-D1;C2-C8-C9-C1-D2;C2-C8-C9-C1-D3;C2-C8-C9-C1-D4;C2-C8-C9-C1-D5;C2-C8-C9-C1-D6;C2-C8-C9-C1-D7;C2-C8-C9-C1-D8;C2-C8-C9-C1-D9;C2-C8-C9-C2-D1;C2-C8-C9-C2-D2;C2-C8-C9-C2-D3;C2-C8-C9-C2-D4;C2-C8-C9-C2-D5;C2-C8-C9-C2-D6;C2-C8-C9-C2-D7;C2-C8-C9-C2-D8;C2-C8-C9-C2-D9;C2-C8-C9-C3-D1;C2-C8-C9-C3-D2;C2-C8-C9-C3-D3;C2-C8-C9-C3-D4;C2-C8-C9-C3-D5;C2-C8-C9-C3-D6;C2-C8-C9-C3-D7;C2-C8-C9-C3-D8;C2-C8-C9-C3-D9;C2-C8-C9-C4-D1;C2-C8-C9-C4-D2;C2-C8-C9-C4-D3;C2-C8-C9-C4-D4;C2-C8-C9-C4-D5;C2-C8-C9-C4-D6;C2-C8-C9-C4-D7;C2-C8-C9-C4-D8;C2-C8-C9-C4-D9;C2-C8-C9-C5-D1;C2-C8-C9-C5-D2;C2-C8-C9-C5-D3;C2-C8-C9-C5-D4;C2-C8-C9-C5-D5;C2-C8-C9-C5-D6;C2-C8-C9-C5-D7;C2-C8-C9-C5-D8;C2-C8-C9-C5-D9;C2-C8-C9-C6-D1;C2-C8-C9-C6-D2;C2-C8-C9-C6-D3;C2-C8-C9-C6-D4;C2-C8-C9-C6-D5;C2-C8-C9-C6-D6;C2-C8-C9-C6-D7;C2-C8-C9-C6-D8;C2-C8-C9-C6-D9;C2-C8-C9-C7-D1;C2-C8-C9-C7-D2;C2-C8-C9-C7-D3;C2-C8-C9-C7-D4;C2-C8-C9-C7-D5;C2-C8-C9-C7-D6;C2-C8-C9-C7-D7;C2-C8-C9-C7-D8;C2-C8-C9-C7-D9;C2-C8-C9-C8-D1;C2-C8-C9-C8-D2;C2-C8-C9-C8-D3;C2-C8-C9-C8-D4;C2-C8-C9-C8-D5;C2-C8-C9-C8-D6;C2-C8-C9-C8-D7;C2-C8-C9-C8-D8;C2-C8-C9-C8-D9;C2-C8-C9-C9-D1;C2-C8-C9-C9-D2;C2-C8-C9-C9-D3;C2-C8-C9-C9-D4;C2-C8-C9-C9-D5;C2-C8-C9-C9-D6;C2-C8-C9-C9-D7;C2-C8-C9-C9-D8;C2-C8-C9-C9-D9;C3-C8-C9-C1-D1;C3-C8-C9-C1-D2;C3-C8-C9-C1-D3;C3-C8-C9-C1-D4;C3-C8-C9-C1-D5;C3-C8-C9-C1-D6;C3-C8-C9-C1-D7;C3-C8-C9-C1-D8;C3-C8-C9-C1-D9;C3-C8-C9-C2-D1;C3-C8-C9-C2-D2;C3-C8-C9-C2-D3;C3-C8-C9-C2-D4;C3-C8-C9-C2-D5;C3-C8-C9-C2-D6;C3-C8-C9-C2-D7;C3-C8-C9-C2-D8;C3-C8-C9-C2-D9;C3-C8-C9-C3-D1;C3-C8-C9-C3-D2;C3-C8-C9-C3-D3;C3-C8-C9-C3-D4;C3-C8-C9-C3-D5;C3-C8-C9-C3-D6;C3-C8-C9-C3-D7;C3-C8-C9-C3-D8;C3-C8-C9-C3-D9;C3-C8-C9-C4-D1;C3-C8-C9-C4-D2;C3-C8-C9-C4-D3;C3-C8-C9-C4-D4;C3-C8-C9-C4-D5;C3-C8-C9-C4-D6;C3-C8-C9-C4-D7;C3-C8-C9-C4-D8;C3-C8-C9-C4-D9;C3-C8-C9-C5-D1;C3-C8-C9-C5-D2;C3-C8-C9-C5-D3;C3-C8-C9-C5-D4;C3-C8-C9-C5-D5;C3-C8-C9-C5-D6;C3-C8-C9-C5-D7;C3-C8-C9-C5-D8;C3-C8-C9-C5-D9;C3-C8-C9-C6-D1;C3-C8-C9-C6-D2;C3-C8-C9-C6-D3;C3-C8-C9-C6-D4;C3-C8-C9-C6-D5;C3-C8-C9-C6-D6;C3-C8-C9-C6-D7;C3-C8-C9-C6-D8;C3-C8-C9-C6-D9;C3-C8-C9-C7-D1;C3-C8-C9-C7-D2;C3-C8-C9-C7-D3;C3-C8-C9-C7-D4;C3-C8-C9-C7-D5;C3-C8-C9-C7-D6;C3-C8-C9-C7-D7;C3-C8-C9-C7-D8;C3-C8-C9-C7-D9;C3-C8-C9-C8-D1;C3-C8-C9-C8-D2;C3-C8-C9-C8-D3;C3-C8-C9-C8-D4;C3-C8-C9-C8-D5;C3-C8-C9-C8-D6;C3-C8-C9-C8-D7;C3-C8-C9-C8-D8;C3-C8-C9-C8-D9;C3-C8-C9-C9-D1;C3-C8-C9-C9-D2;C3-C8-C9-C9-D3;C3-C8-C9-C9-D4;C3-C8-C9-C9-D5;C3-C8-C9-C9-D6;C3-C8-C9-C9-D7;C3-C8-C9-C9-D8;C3-C8-C9-C9-D9;C4-C8-C9-C1-D1;C4-C8-C9-C1-D2;C4-C8-C9-C1-D3;C4-C8-C9-C1-D4;C4-C8-C9-C1-D5;C4-C8-C9-C1-D6;C4-C8-C9-C1-D7;C4-C8-C9-C1-D8;C4-C8-C9-C1-D9;C4-C8-C9-C2-D1;C4-C8-C9-C2-D2;C4-C8-C9-C2-D3;C4-C8-C9-C2-D4;C4-C8-C9-C2-D5;C4-C8-C9-C2-D6;C4-C8-C9-C2-D7;C4-C8-C9-C2-D8;C4-C8-C9-C2-D9;C4-C8-C9-C3-D1;C4-C8-C9-C3-D2;C4-C8-C9-C3-D3;C4-C8-C9-C3-D4;C4-C8-C9-C3-D5;C4-C8-C9-C3-D6;C4-C8-C9-C3-D7;C4-C8-C9-C3-D8;C4-C8-C9-C3-D9;C4-C8-C9-C4-D1;C4-C8-C9-C4-D2;C4-C8-C9-C4-D3;C4-C8-C9-C4-D4;C4-C8-C9-C4-D5;C4-C8-C9-C4-D6;C4-C8-C9-C4-D7;C4-C8-C9-C4-D8;C4-C8-C9-C4-D9;C4-C8-C9-C5-D1;C4-C8-C9-C5-D2;C4-C8-C9-C5-D3;C4-C8-C9-C5-D4;C4-C8-C9-C5-D5;C4-C8-C9-C5-D6;C4-C8-C9-C5-D7;C4-C8-C9-C5-D8;C4-C8-C9-C5-D9;C4-C8-C9-C6-D1;C4-C8-C9-C6-D2;C4-C8-C9-C6-D3;C4-C8-C9-C6-D4;C4-C8-C9-C6-D5;C4-C8-C9-C6-D6;C4-C8-C9-C6-D7;C4-C8-C9-C6-D8;C4-C8-C9-C6-D9;C4-C8-C9-C7-D1;C4-C8-C9-C7-D2;C4-C8-C9-C7-D3;C4-C8-C9-C7-D4;C4-C8-C9-C7-D5;C4-C8-C9-C7-D6;C4-C8-C9-C7-D7;C4-C8-C9-C7-D8;C4-C8-C9-C7-D9;C4-C8-C9-C8-D1;C4-C8-C9-C8-D2;C4-C8-C9-C8-D3;C4-C8-C9-C8-D4;C4-C8-C9-C8-D5;C4-C8-C9-C8-D6;C4-C8-C9-C8-D7;C4-C8-C9-C8-D8;C4-C8-C9-C8-D9;C4-C8-C9-C9-D1;C4-C8-C9-C9-D2;C4-C8-C9-C9-D3;C4-C8-C9-C9-D4;C4-C8-C9-C9-D5;C4-C8-C9-C9-D6;C4-C8-C9-C9-D7;C4-C8-C9-C9-D8;C4-C8-C9-C9-D9;C5-C8-C9-C1-D1;C5-C8-C9-C1-D2;C5-C8-C9-C1-D3;C5-C8-C9-C1-D4;C5-C8-C9-C1-D5;C5-C8-C9-C1-D6;C5-C8-C9-C1-D7;C5-C8-C9-C1-D8;C5-C8-C9-C1-D9;C5-C8-C9-C2-D1;C5-C8-C9-C2-D2;C5-C8-C9-C2-D3;C5-C8-C9-C2-D4;C5-C8-C9-C2-D5;C5-C8-C9-C2-D6;C5-C8-C9-C2-D7;C5-C8-C9-C2-D8;C5-C8-C9-C2-D9;C5-C8-C9-C3-D1;C5-C8-C9-C3-D2;C5-C8-C9-C3-D3;C5-C8-C9-C3-D4;C5-C8-C9-C3-D5;C5-C8-C9-C3-D6;C5-C8-C9-C3-D7;C5-C8-C9-C3-D8;C5-C8-C9-C3-D9;C5-C8-C9-C4-D1;C5-C8-C9-C4-D2;C5-C8-C9-C4-D3;C5-C8-C9-C4-D4;C5-C8-C9-C4-D5;C5-C8-C9-C4-D6;C5-C8-C9-C4-D7;C5-C8-C9-C4-D8;C5-C8-C9-C4-D9;C5-C8-C9-C5-D1;C5-C8-C9-C5-D2;C5-C8-C9-C5-D3;C5-C8-C9-C5-D4;C5-C8-C9-C5-D5;C5-C8-C9-C5-D6;C5-C8-C9-C5-D7;C5-C8-C9-C5-D8;C5-C8-C9-C5-D9;C5-C8-C9-C6-D1;C5-C8-C9-C6-D2;C5-C8-C9-C6-D3;C5-C8-C9-C6-D4;C5-C8-C9-C6-D5;C5-C8-C9-C6-D6;C5-C8-C9-C6-D7;C5-C8-C9-C6-D8;C5-C8-C9-C6-D9;C5-C8-C9-C7-D1;C5-C8-C9-C7-D2;C5-C8-C9-C7-D3;C5-C8-C9-C7-D4;C5-C8-C9-C7-D5;C5-C8-C9-C7-D6;C5-C8-C9-C7-D7;C5-C8-C9-C7-D8;C5-C8-C9-C7-D9;C5-C8-C9-C8-D1;C5-C8-C9-C8-D2;C5-C8-C9-C8-D3;C5-C8-C9-C8-D4;C5-C8-C9-C8-D5;C5-C8-C9-C8-D6;C5-C8-C9-C8-D7;C5-C8-C9-C8-D8;C5-C8-C9-C8-D9;C5-C8-C9-C9-D1;C5-C8-C9-C9-D2;C5-C8-C9-C9-D3;C5-C8-C9-C9-D4;C5-C8-C9-C9-D5;C5-C8-C9-C9-D6;C5-C8-C9-C9-D7;C5-C8-C9-C9-D8;C5-C8-C9-C9-D9;C6-C8-C9-C1-D1;C6-C8-C9-C1-D2;C6-C8-C9-C1-D3;C6-C8-C9-C1-D4;C6-C8-C9-C1-D5;C6-C8-C9-C1-D6;C6-C8-C9-C1-D7;C6-C8-C9-C1-D8;C6-C8-C9-C1-D9;C6-C8-C9-C2-D1;C6-C8-C9-C2-D2;C6-C8-C9-C2-D3;C6-C8-C9-C2-D4;C6-C8-C9-C2-D5;C6-C8-C9-C2-D6;C6-C8-C9-C2-D7;C6-C8-C9-C2-D8;C6-C8-C9-C2-D9;C6-C8-C9-C3-D1;C6-C8-C9-C3-D2;C6-C8-C9-C3-D3;C6-C8-C9-C3-D4;C6-C8-C9-C3-D5;C6-C8-C9-C3-D6;C6-C8-C9-C3-D7;C6-C8-C9-C3-D8;C6-C8-C9-C3-D9;C6-C8-C9-C4-D1;C6-C8-C9-C4-D2;C6-C8-C9-C4-D3;C6-C8-C9-C4-D4;C6-C8-C9-C4-D5;C6-C8-C9-C4-D6;C6-C8-C9-C4-D7;C6-C8-C9-C4-D8;C6-C8-C9-C4-D9;C6-C8-C9-C5-D1;C6-C8-C9-C5-D2;C6-C8-C9-C5-D3;C6-C8-C9-C5-D4;C6-C8-C9-C5-D5;C6-C8-C9-C5-D6;C6-C8-C9-C5-D7;C6-C8-C9-C5-D8;C6-C8-C9-C5-D9;C6-C8-C9-86-D1;C6-C8-C9-C6-D2;C6-C8-C9-C6-D3;C6-C8-C9-C6-D4;C6-C8-C9-C6-D5;C6-C8-C9-C6-D6;C6-C8-C9-C6-D7;C6-C8-C9-C6-D8;C6-C8-C9-C6-D9;C6-C8-C9-C7-D1;C6-C8-C9-C7-D2;C6-C8-C9-C7-D3;C6-C8-C9-C7-D4;C6-C8-C9-C7-D5;C6-C8-C9-C7-D6;C6-C8-C9-C7-D7;C6-C8-C9-C7-D8;C6-C8-C9-C7-D9;C6-C8-C9-C8-D1;C6-C8-C9-C8-D2;C6-C8-C9-C8-D3;C6-C8-C9-C8-D4;C6-C8-C9-C8-D5;C6-C8-C9-C8-D6;C6-C8-C9-C8-D7;C6-C8-C9-C8-D8;C6-C8-C9-C8-D9;C6-C8-C9-C9-D1;C6-C8-C9-C9-D2;C6-C8-C9-C9-D3;C6-C8-C9-C9-D4;C6-C8-C9-C9-D5;C6-C8-C9-C9-D6;C6-C8-C9-C9-D7;C6-C8-C9-C9-D8;C6-C8-C9-C9-D9;C7-C8-C9-C1-D1;C7-C8-C9-C1-D2;C7-C8-C9-C1-D3;C7-C8-C9-C1-D4;C7-C8-C9-C1-D5;C7-C8-C9-C1-D6;C7-C8-C9-C1-D7;C7-C8-C9-C1-D8;C7-C8-C9-C1-D9;C7-C8-C9-C2-D1;C7-C8-C9-C2-D2;C7-C8-C9-C2-D3;C7-C8-C9-C2-D4;C7-C8-C9-C2-D5;C7-C8-C9-C2-D6;C7-C8-C9-C2-D7;C7-C8-C9-C2-D8;C7-C8-C9-C2-D9;C7-C8-C9-C3-D1;C7-C8-C9-C3-D2;C7-C8-C9-C3-D3;C7-C8-C9-C3-D4;C7-C8-C9-C3-D5;C7-C8-C9-C3-D6;C7-C8-C9-C3-D7;C7-C8-C9-C3-D8;C7-C8-C9-C3-D9;C7-C8-C9-C4-D1;C7-C8-C9-C4-D2;C7-C8-C9-C4-D3;C7-C8-C9-C4-D4;C7-C8-C9-C4-D5;C7-C8-C9-C4-D6;C7-C8-C9-C4-D7;C7-C8-C9-C4-D8;C7-C8-C9-C4-D9;C7-C8-C9-C5-D1;C7-C8-C9-C5-D2;C7-C8-C9-C5-D3;C7-C8-C9-C5-D4;C7-C8-C9-C5-D5;C7-C8-C9-C5-D6;C7-C8-C9-C5-D7;C7-C8-C9-C5-D8;C7-C8-C9-C5-D9;C7-C8-C9-C6-D1;C7-C8-C9-C6-D2;C7-C8-C9-C6-D3;C7-C8-C9-C6-D4;C7-C8-C9-C6-D5;C7-C8-C9-C6-D6;C7-C8-C9-C6-D7;C7-C8-C9-C6-D8;C7-C8-C9-C6-D9;C7-C8-C9-C7-D1;C7-C8-C9-C7-D2;C7-C8-C9-C7-D3;C7-C8-C9-C7-D4;C7-C8-C9-C7-D5;C7-C8-C9-C7-D6;C7-C8-C9-C7-D7;C7-C8-C9-C7-D8;C7-C8-C9-C7-D9;C7-C8-C9-C8-D1;C7-C8-C9-C8-D2;C7-C8-C9-C8-D3;C7-C8-C9-C8-D4;C7-C8-C9-C8-D5;C7-C8-C9-C8-D6;C7-C8-C9-C8-D7;C7-C8-C9-C8-D8;C7-C8-C9-C8-D9;C7-C8-C9-C9-D1;C7-C8-C9-C9-D2;C7-C8-C9-C9-D3;C7-C8-C9-C9-D4;C7-C8-C9-C9-D5;C7-C8-C9-C9-D6;C7-C8-C9-C9-D7;C7-C8-C9-C9-D8;C7-C8-C9-C9-D9;C8-C8-C9-C1-D1;C8-C8-C9-C1-D2;C8-C8-C9-C1-D3;C8-C8-C9-C1-D4;C8-C8-C9-C1-D5;C8-C8-C9-C1-D6;C8-C8-C9-C1-D7;C8-C8-C9-C1-D8;C8-C8-C9-C1-D9;C8-C8-C9-C2-D1;C8-C8-C9-C2-D2;C8-C8-C9-C2-D3;C8-C8-C9-C2-D4;C8-C8-C9-C2-D5;C8-C8-C9-C2-D6;C8-C8-C9-C2-D7;C8-C8-C9-C2-D8;C8-C8-C9-C2-D9;C8-C8-C9-C3-D1;C8-C8-C9-C3-D2;C8-C8-C9-C3-D3;C8-C8-C9-C3-D4;C8-C8-C9-C3-D5;C8-C8-C9-C3-D6;C8-C8-C9-C3-D7;C8-C8-C9-C3-D8;C8-C8-C9-C3-D9;C8-C8-C9-C4-D1;C8-C8-C9-C4-D2;C8-C8-C9-C4-D3;C8-C8-C9-C4-D4;C8-C8-C9-C4-D5;C8-C8-C9-C4-D6;C8-C8-C9-C4-D7;C8-C8-C9-C4-D8;C8-C8-C9-C4-D9;C8-C8-C9-C5-D1;C8-C8-C9-C5-D2;C8-C8-C9-C5-D3;C8-C8-C9-C5-D4;C8-C8-C9-C5-D5;C8-C8-C9-C5-D6;C8-C8-C9-C5-D7;C8-C8-C9-C5-D8;C8-C8-C9-C5-D9;C8-C8-C9-C6-D1;C8-C8-C9-C6-D2;C8-C8-C9-C6-D3;C8-C8-C9-C6-D4;C8-C8-C9-C6-D5;C8-C8-C9-C6-D6;C8-C8-C9-C6-D7;C8-C8-C9-C6-D8;C8-C8-C9-C6-D9;C8-C8-C9-C7-D1;C8-C8-C9-C7-D2;C8-C8-C9-C7-D3;C8-C8-C9-C7-D4;C8-C8-C9-C7-D5;C8-C8-C9-C7-D6;C8-C8-C9-C7-D7;C8-C8-C9-C7-D8;C8-C8-C9-C7-D9;C8-C8-C9-C8-D1;C8-C8-C9-C8-D2;C8-C8-C9-C8-D3;C8-C8-C9-C8-D4;C8-C8-C9-C8-D5;C8-C8-C9-C8-D6;C8-C8-C9-C8-D7;C8-C8-C9-C8-D8;C8-C8-C9-C8-D9;C8-C8-C9-C9-D1;C8-C8-C9-C9-D2;C8-C8-C9-C9-D3;C8-C8-C9-C9-D4;C8-C8-C9-C9-D5;C8-C8-C9-C9-D6;C8-C8-C9-C9-D7;C8-C8-C9-C9-D8;C8-C8-C9-C9-D9;C9-C8-C9-C1-D1;C9-C8-C9-C1-D2;C9-C8-C9-C1-D3;C9-C8-C9-C1-D4;C9-C8-C9-C1-D5;C9-C8-C9-C1-D6;C9-C8-C9-C1-D7;C9-C8-C9-C1-D8;C9-C8-C9-C1-D9;C9-C8-C9-C2-D1;C9-C8-C9-C2-D2;C9-C8-C9-C2-D3;C9-C8-C9-C2-D4;C9-C8-C9-C2-D5;C9-C8-C9-C2-D6;C9-C8-C9-C2-D7;C9-C8-C9-C2-D8;C9-C8-C9-C2-D9;C9-C8-C9-C3-D1;C9-C8-C9-C3-D2;C9-C8-C9-C3-D3;C9-C8-C9-C3-D4;C9-C8-C9-C3-D5;C9-C8-C9-C3-D6;C9-C8-C9-C3-D7;C9-C8-C9-C3-D8;C9-C8-C9-C3-D9;C9-C8-C9-C4-D1;C9-C8-C9-C4-D2;C9-C8-C9-C4-D3;C9-C8-C9-C4-D4;C9-C8-C9-C4-D5;C9-C8-C9-C4-D6;C9-C8-C9-C4-D7;C9-C8-C9-C4-D8;C9-C8-C9-C4-D9;C9-C8-C9-C5-D1;C9-C8-C9-C5-D2;C9-C8-C9-C5-D3;C9-C8-C9-C5-D4;C9-C8-C9-C5-D5;C9-C8-C9-C5-D6;C9-C8-C9-C5-D7;C9-C8-C9-C5-D8;C9-C8-C9-C5-D9;C9-C8-C9-C6-D1;C9-C8-C9-C6-D2;C9-C8-C9-C6-D3;C9-C8-C9-C6-D4;C9-C8-C9-C6-D5;C9-C8-C9-C6-D6;C9-C8-C9-C6-D7;C9-C8-C9-C6-D8;C9-C8-C9-C6-D9;C9-C8-C9-C7-D1;C9-C8-C9-C7-D2;C9-C8-C9-C7-D3;C9-C8-C9-C7-D4;C9-C8-C9-C7-D5;C9-C8-C9-C7-D6;C9-C8-C9-C7-D7;C9-C8-C9-C7-D8;C9-C8-C9-C7-D9;C9-C8-C9-C8-D1;C9-C8-C9-C8-D2;C9-C8-C9-C8-D3;C9-C8-C9-C8-D4;C9-C8-C9-C8-D5;C9-C8-C9-C8-D6;C9-C8-C9-C8-D7;C9-C8-C9-C8-D8;C9-C8-C9-C8-D9;C9-C8-C9-C9-D1;C9-C8-C9-C9-D2;C9-C8-C9-C9-D3;C9-C8-C9-C9-D4;C9-C8-C9-C9-D5;C9-C8-C9-C9-D6;C9-C8-C9-C9-D7;C9-C8-C9-C9-D8;C9-C8-C9-C9-D9;C1-C9-C9-C1-D1;C1-C9-C9-C1-D2;C1-C9-C9-C1-D3;C1-C9-C9-C1-D4;C1-C9-C9-C1-D5;C1-C9-C9-C1-D6;C1-C9-C9-C1-D7;C1-C9-C9-C1-D8;C1-C9-C9-C1-D9;C1-C9-C9-C2-D1;C1-C9-C9-C2-D2;C1-C9-C9-C2-D3;C1-C9-C9-C2-D4;C1-C9-C9-C2-D5;C1-C9-C9-C2-D6;C1-C9-C9-C2-D7;C1-C9-C9-C2-D8;C1-C9-C9-C2-D9;C1-C9-C9-C3-D1;C1-C9-C9-C3-D2;C1-C9-C9-C3-D3;C1-C9-C9-C3-D4;C1-C9-C9-C3-D5;C1-C9-C9-C3-D6;C1-C9-C9-C3-D7;C1-C9-C9-C3-D8;C1-C9-C9-C3-D9;C1-C9-C9-C4-D1;C1-C9-C9-C4-D2;C1-C9-C9-C4-D3;C1-C9-C9-C4-D4;C1-C9-C9-C4-D5;C1-C9-C9-C4-D6;C1-C9-C9-C4-D7;C1-C9-C9-C4-D8;C1-C9-C9-C4-D9;C1-C9-C9-C5-D1;C1-C9-C9-C5-D2;C1-C9-C9-C5-D3;C1-C9-C9-C5-D4;C1-C9-C9-C5-D5;C1-C9-C9-C5-D6;C1-C9-C9-C5-D7;C1-C9-C9-C5-D8;C1-C9-C9-C5-D9;C1-C9-C9-C6-D1;C1-C9-C9-C6-D2;C1-C9-C9-C6-D3;C1-C9-C9-C6-D4;C1-C9-C9-C6-D5;C1-C9-C9-C6-D6;C1-C9-C9-C6-D7;C1-C9-C9-C6-D8;C1-C9-C9-C6-D9;C1-C9-C9-C7-D1;C1-C9-C9-C7-D2;C1-C9-C9-C7-D3;C1-C9-C9-C7-D4;C1-C9-C9-C7-D5;C1-C9-C9-C7-D6;C1-C9-C9-C7-D7;C1-C9-C9-C7-D8;C1-C9-C9-C7-D9;C1-C9-C9-C8-D1;C1-C9-C9-C8-D2;C1-C9-C9-C8-D3;C1-C9-C9-C8-D4;C1-C9-C9-C8-D5;C1-C9-C9-C8-D6;C1-C9-C9-C8-D7;C1-C9-C9-C8-D8;C1-C9-C9-C8-D9;C1-C9-C9-C9-D1;C1-C9-C9-C9-D2;C1-C9-C9-C9-D3;C1-C9-C9-C9-D4;C1-C9-C9-C9-D5;C1-C9-C9-C9-D6;C1-C9-C9-C9-D7;C1-C9-C9-C9-D8;C1-C9-C9-C9-D9;C2-C9-C9-C1-D1;C2-C9-C9-C1-D2;C2-C9-C9-C1-D3;C2-C9-C9-C1-D4;C2-C9-C9-C1-D5;C2-C9-C9-C1-D6;C2-C9-C9-C1-D7;C2-C9-C9-C1-D8;C2-C9-C9-C1-D9;C2-C9-C9-C2-D1;C2-C9-C9-C2-D2;C2-C9-C9-C2-D3;C2-C9-C9-C2-D4;C2-C9-C9-C2-D5;C2-C9-C9-C2-D6;C2-C9-C9-C2-D7;C2-C9-C9-C2-D8;C2-C9-C9-C2-D9;C2-C9-C9-C3-D1;C2-C9-C9-C3-D2;C2-C9-C9-C3-D3;C2-C9-C9-C3-D4;C2-C9-C9-C3-D5;C2-C9-C9-C3-D6;C2-C9-C9-C3-D7;C2-C9-C9-C3-D8;C2-C9-C9-C3-D9;C2-C9-C9-C4-D1;C2-C9-C9-C4-D2;C2-C9-C9-C4-D3;C2-C9-C9-C4-D4;C2-C9-C9-C4-D5;C2-C9-C9-C4-D6;C2-C9-C9-C4-D7;C2-C9-C9-C4-D8;C2-C9-C9-C4-D9;C2-C9-C9-C5-D1;C2-C9-C9-C5-D2;C2-C9-C9-C5-D3;C2-C9-C9-C5-D4;C2-C9-C9-C5-D5;C2-C9-C9-C5-D6;C2-C9-C9-C5-D7;C2-C9-C9-C5-D8;C2-C9-C9-C5-D9;C2-C9-C9-C6-D1;C2-C9-C9-C6-D2;C2-C9-C9-C6-D3;C2-C9-C9-C6-D4;C2-C9-C9-C6-D5;C2-C9-C9-C6-D6;C2-C9-C9-C6-D7;C2-C9-C9-C6-D8;C2-C9-C9-C6-D9;C2-C9-C9-C7-D1;C2-C9-C9-C7-D2;C2-C9-C9-C7-D3;C2-C9-C9-C7-D4;C2-C9-C9-C7-D5;C2-C9-C9-C7-D6;C2-C9-C9-C7-D7;C2-C9-C9-C7-D8;C2-C9-C9-C7-D9;C2-C9-C9-C8-D1;C2-C9-C9-C8-D2;C2-C9-C9-C8-D3;C2-C9-C9-C8-D4;C2-C9-C9-C8-D5;C2-C9-C9-C8-D6;C2-C9-C9-C8-D7;C2-C9-C9-C8-D8;C2-C9-C9-C8-D9;C2-C9-C9-C9-D1;C2-C9-C9-C9-D2;C2-C9-C9-C9-D3;C2-C9-C9-C9-D4;C2-C9-C9-C9-D5;C2-C9-C9-C9-D6;C2-C9-C9-C9-D7;C2-C9-C9-C9-D8;C2-C9-C9-C9-D9;C3-C9-C9-C1-D1;C3-C9-C9-C1-D2;C3-C9-C9-C1-D3;C3-C9-C9-C1-D4;C3-C9-C9-C1-D5;C3-C9-C9-C1-D6;C3-C9-C9-C1-D7;C3-C9-C9-C1-D8;C3-C9-C9-C1-D9;C3-C9-C9-C2-D1;C3-C9-C9-C2-D2;C3-C9-C9-C2-D3;C3-C9-C9-C2-D4;C3-C9-C9-C2-D5;C3-C9-C9-C2-D6;C3-C9-C9-C2-D7;C3-C9-C9-C2-D8;C3-C9-C9-C2-D9;C3-C9-C9-C3-D1;C3-C9-C9-C3-D2;C3-C9-C9-C3-D3;C3-C9-C9-C3-D4;C3-C9-C9-C3-D5;C3-C9-C9-C3-D6;C3-C9-C9-C3-D7;C3-C9-C9-C3-D8;C3-C9-C9-C3-D9;C3-C9-C9-C4-D1;C3-C9-C9-C4-D2;C3-C9-C9-C4-D3;C3-C9-C9-C4-D4;C3-C9-C9-C4-D5;C3-C9-C9-C4-D6;C3-C9-C9-C4-D7;C3-C9-C9-C4-D8;C3-C9-C9-C4-D9;C3-C9-C9-C5-D1;C3-C9-C9-C5-D2;C3-C9-C9-C5-D3;C3-C9-C9-C5-D4;C3-C9-C9-C5-D5;C3-C9-C9-C5-D6;C3-C9-C9-C5-D7;C3-C9-C9-C5-D8;C3-C9-C9-C5-D9;C3-C9-C9-C6-D1;C3-C9-C9-C6-D2;C3-C9-C9-C6-D3;C3-C9-C9-C6-D4;C3-C9-C9-C6-D5;C3-C9-C9-C6-D6;C3-C9-C9-C6-D7;C3-C9-C9-C6-D8;C3-C9-C9-C6-D9;C3-C9-C9-C7-D1;C3-C9-C9-C7-D2;C3-C9-C9-C7-D3;C3-C9-C9-C7-D4;C3-C9-C9-C7-D5;C3-C9-C9-C7-D6;C3-C9-C9-C7-D7;C3-C9-C9-C7-D8;C3-C9-C9-C7-D9;C3-C9-C9-C8-D1;C3-C9-C9-C8-D2;C3-C9-C9-C8-D3;C3-C9-C9-C8-D4;C3-C9-C9-C8-D5;C3-C9-C9-C8-D6;C3-C9-C9-C8-D7;C3-C9-C9-C8-D8;C3-C9-C9-C8-D9;C3-C9-C9-C9-D1;C3-C9-C9-C9-D2;C3-C9-C9-C9-D3;C3-C9-C9-C9-D4;C3-C9-C9-C9-D5;C3-C9-C9-C9-D6;C3-C9-C9-C9-D7;C3-C9-C9-C9-D8;C3-C9-C9-C9-D9;C4-C9-C9-C1-D1;C4-C9-C9-C1-D2;C4-C9-C9-C1-D3;C4-C9-C9-C1-D4;C4-C9-C9-C1-D5;C4-C9-C9-C1-D6;C4-C9-C9-C1-D7;C4-C9-C9-C1-D8;C4-C9-C9-C1-D9;C4-C9-C9-C2-D1;C4-C9-C9-C2-D2;C4-C9-C9-C2-D3;C4-C9-C9-C2-D4;C4-C9-C9-C2-D5;C4-C9-C9-C2-D6;C4-C9-C9-C2-D7;C4-C9-C9-C2-D8;C4-C9-C9-C2-D9;C4-C9-C9-C3-D1;C4-C9-C9-C3-D2;C4-C9-C9-C3-D3;C4-C9-C9-C3-D4;C4-C9-C9-C3-D5;C4-C9-C9-C3-D6;C4-C9-C9-C3-D7;C4-C9-C9-C3-D8;C4-C9-C9-C3-D9;C4-C9-C9-C4-D1;C4-C9-C9-C4-D2;C4-C9-C9-C4-D3;C4-C9-C9-C4-D4;C4-C9-C9-C4-D5;C4-C9-C9-C4-D6;C4-C9-C9-C4-D7;C4-C9-C9-C4-D8;C4-C9-C9-C4-D9;C4-C9-C9-C5-D1;C4-C9-C9-C5-D2;C4-C9-C9-C5-D3;C4-C9-C9-C5-D4;C4-C9-C9-C5-D5;C4-C9-C9-C5-D6;C4-C9-C9-C5-D7;C4-C9-C9-C5-D8;C4-C9-C9-C5-D9;C4-C9-C9-C6-D1;C4-C9-C9-C6-D2;C4-C9-C9-C6-D3;C4-C9-C9-C6-D4;C4-C9-C9-C6-D5;C4-C9-C9-C6-D6;C4-C9-C9-C6-D7;C4-C9-C9-C6-D8;C4-C9-C9-C6-D9;C4-C9-C9-C7-D1;C4-C9-C9-C7-D2;C4-C9-C9-C7-D3;C4-C9-C9-C7-D4;C4-C9-C9-C7-D5;C4-C9-C9-C7-D6;C4-C9-C9-C7-D7;C4-C9-C9-C7-D8;C4-C9-C9-C7-D9;C4-C9-C9-C8-D1;C4-C9-C9-C8-D2;C4-C9-C9-C8-D3;C4-C9-C9-C8-D4;C4-C9-C9-C8-D5;C4-C9-C9-C8-D6;C4-C9-C9-C8-D7;C4-C9-C9-C8-D8;C4-C9-C9-C8-D9;C4-C9-C9-C9-D1;C4-C9-C9-C9-D2;C4-C9-C9-C9-D3;C4-C9-C9-C9-D4;C4-C9-C9-C9-D5;C4-C9-C9-C9-D6;C4-C9-C9-C9-D7;C4-C9-C9-C9-D8;C4-C9-C9-C9-D9;C5-C9-C9-C1-D1;C5-C9-C9-C1-D2;C5-C9-C9-C1-D3;C5-C9-C9-C1-D4;C5-C9-C9-C1-D5;C5-C9-C9-C1-D6;C5-C9-C9-C1-D7;C5-C9-C9-C1-D8;C5-C9-C9-C1-D9;C5-C9-C9-C2-D1;C5-C9-C9-C2-D2;C5-C9-C9-C2-D3;C5-C9-C9-C2-D4;C5-C9-C9-C2-D5;C5-C9-C9-C2-D6;C5-C9-C9-C2-D7;C5-C9-C9-C2-D8;C5-C9-C9-C2-D9;C5-C9-C9-C3-D1;C5-C9-C9-C3-D2;C5-C9-C9-C3-D3;C5-C9-C9-C3-D4;C5-C9-C9-C3-D5;C5-C9-C9-C3-D6;C5-C9-C9-C3-D7;C5-C9-C9-C3-D8;C5-C9-C9-C3-D9;C5-C9-C9-C4-D1;C5-C9-C9-C4-D2;C5-C9-C9-C4-D3;C5-C9-C9-C4-D4;C5-C9-C9-C4-D5;C5-C9-C9-C4-D6;C5-C9-C9-C4-D7;C5-C9-C9-C4-D8;C5-C9-C9-C4-D9;C5-C9-C9-C5-D1;C5-C9-C9-C5-D2;C5-C9-C9-C5-D3;C5-C9-C9-C5-D4;C5-C9-C9-C5-D5;C5-C9-C9-C5-D6;C5-C9-C9-C5-D7;C5-C9-C9-C5-D8;C5-C9-C9-C5-D9;C5-C9-C9-C6-D1;C5-C9-C9-C6-D2;C5-C9-C9-C6-D3;C5-C9-C9-C6-D4;C5-C9-C9-C6-D5;C5-C9-C9-C6-D6;C5-C9-C9-C6-D7;C5-C9-C9-C6-D8;C5-C9-C9-C6-D9;C5-C9-C9-C7-D1;C5-C9-C9-C7-D2;C5-C9-C9-C7-D3;C5-C9-C9-C7-D4;C5-C9-C9-C7-D5;C5-C9-C9-C7-D6;C5-C9-C9-C7-D7;C5-C9-C9-C7-D8;C5-C9-C9-C7-D9;C5-C9-C9-C8-D1;C5-C9-C9-C8-D2;C5-C9-C9-C8-D3;C5-C9-C9-C8-D4;C5-C9-C9-C8-D5;C5-C9-C9-C8-D6;C5-C9-C9-C8-D7;C5-C9-C9-C8-D8;C5-C9-C9-C8-D9;C5-C9-C9-C9-D1;C5-C9-C9-C9-D2;C5-C9-C9-C9-D3;C5-C9-C9-C9-D4;C5-C9-C9-C9-D5;C5-C9-C9-C9-D6;C5-C9-C9-C9-D7;C5-C9-C9-C9-D8;C5-C9-C9-C9-D9;C6-C9-C9-C1-D1;C6-C9-C9-C1-D2;C6-C9-C9-C1-D3;C6-C9-C9-C1-D4;C6-C9-C9-C1-D5;C6-C9-C9-C1-D6;C6-C9-C9-C1-D7;C6-C9-C9-C1-D8;C6-C9-C9-C1-D9;C6-C9-C9-C2-D1;C6-C9-C9-C2-D2;C6-C9-C9-C2-D3;C6-C9-C9-C2-D4;C6-C9-C9-C2-D5;C6-C9-C9-C2-D6;C6-C9-C9-C2-D7;C6-C9-C9-C2-D8;C6-C9-C9-C2-D9;C6-C9-C9-C3-D1;C6-C9-C9-C3-D2;C6-C9-C9-C3-D3;C6-C9-C9-C3-D4;C6-C9-C9-C3-D5;C6-C9-C9-C3-D6;C6-C9-C9-C3-D7;C6-C9-C9-C3-D8;C6-C9-C9-C3-D9;C6-C9-C9-C4-D1;C6-C9-C9-C4-D2;C6-C9-C9-C4-D3;C6-C9-C9-C4-D4;C6-C9-C9-C4-D5;C6-C9-C9-C4-D6;C6-C9-C9-C4-D7;C6-C9-C9-C4-D8;C6-C9-C9-C4-D9;C6-C9-C9-C5-D1;C6-C9-C9-C5-D2;C6-C9-C9-C5-D3;C6-C9-C9-C5-D4;C6-C9-C9-C5-D5;C6-C9-C9-C5-D6;C6-C9-C9-C5-D7;C6-C9-C9-C5-D8;C6-C9-C9-C5-D9;C6-C9-C9-C6-D1;C6-C9-C9-C6-D2;C6-C9-C9-C6-D3;C6-C9-C9-C6-D4;C6-C9-C9-C6-D5;C6-C9-C9-C6-D6;C6-C9-C9-C6-D7;C6-C9-C9-C6-D8;C6-C9-C9-C6-D9;C6-C9-C9-C7-D1;C6-C9-C9-C7-D2;C6-C9-C9-C7-D3;C6-C9-C9-C7-D4;C6-C9-C9-C7-D5;C6-C9-C9-C7-D6;C6-C9-C9-C7-D7;C6-C9-C9-C7-D8;C6-C9-C9-C7-D9;C6-C9-C9-C8-D1;C6-C9-C9-C8-D2;C6-C9-C9-C8-D3;C6-C9-C9-C8-D4;C6-C9-C9-C8-D5;C6-C9-C9-C8-D6;C6-C9-C9-C8-D7;C6-C9-C9-C8-D8;C6-C9-C9-C8-D9;C6-C9-C9-C9-D1;C6-C9-C9-C9-D2;C6-C9-C9-C9-D3;C6-C9-C9-C9-D4;C6-C9-C9-C9-D5;C6-C9-C9-C9-D6;C6-C9-C9-C9-D7;C6-C9-C9-C9-D8;C6-C9-C9-C9-D9;C7-C9-C9-C1-D1;C7-C9-C9-C1-D2;C7-C9-C9-C1-D3;C7-C9-C9-C1-D4;C7-C9-C9-C1-D5;C7-C9-C9-C1-D6;C7-C9-C9-C1-D7;C7-C9-C9-C1-D8;C7-C9-C9-C1-D9;C7-C9-C9-C2-D1;C7-C9-C9-C2-D2;C7-C9-C9-C2-D3;C7-C9-C9-C2-D4;C7-C9-C9-C2-D5;C7-C9-C9-C2-D6;C7-C9-C9-C2-D7;C7-C9-C9-C2-D8;C7-C9-C9-C2-D9;C7-C9-C9-C3-D1;C7-C9-C9-C3-D2;C7-C9-C9-C3-D3;C7-C9-C9-C3-D4;C7-C9-C9-C3-D5;C7-C9-C9-C3-D6;C7-C9-C9-C3-D7;C7-C9-C9-C3-D8;C7-C9-C9-C3-D9;C7-C9-C9-C4-D1;C7-C9-C9-C4-D2;C7-C9-C9-C4-D3;C7-C9-C9-C4-D4;C7-C9-C9-C4-D5;C7-C9-C9-C4-D6;C7-C9-C9-C4-D7;C7-C9-C9-C4-D8;C7-C9-C9-C4-D9;C7-C9-C9-C5-D1;C7-C9-C9-C5-D2;C7-C9-C9-C5-D3;C7-C9-C9-C5-D4;C7-C9-C9-C5-D5;C7-C9-C9-C5-D6;C7-C9-C9-C5-D7;C7-C9-C9-C5-D8;C7-C9-C9-C5-D9;C7-C9-C9-C6-D1;C7-C9-C9-C6-D2;C7-C9-C9-C6-D3;C7-C9-C9-C6-D4;C7-C9-C9-C6-D5;C7-C9-C9-C6-D6;C7-C9-C9-C6-D7;C7-C9-C9-C6-D8;C7-C9-C9-C6-D9;C7-C9-C9-C7-D1;C7-C9-C9-C7-D2;C7-C9-C9-C7-D3;C7-C9-C9-C7-D4;C7-C9-C9-C7-D5;C7-C9-C9-C7-D6;C7-C9-C9-C7-D7;C7-C9-C9-C7-D8;C7-C9-C9-C7-D9;C7-C9-C9-C8-D1;C7-C9-C9-C8-D2;C7-C9-C9-C8-D3;C7-C9-C9-C8-D4;C7-C9-C9-C8-D5;C7-C9-C9-C8-D6;C7-C9-C9-C8-D7;C7-C9-C9-C8-D8;C7-C9-C9-C8-D9;C7-C9-C9-C9-D1;C7-C9-C9-C9-D2;C7-C9-C9-C9-D3;C7-C9-C9-C9-D4;C7-C9-C9-C9-D5;C7-C9-C9-C9-D6;C7-C9-C9-C9-D7;C7-C9-C9-C9-D8;C7-C9-C9-C9-D9;C8-C9-C9-C1-D1;C8-C9-C9-C1-D2;C8-C9-C9-C1-D3;C8-C9-C9-C1-D4;C8-C9-C9-C1-D5;C8-C9-C9-C1-D6;C8-C9-C9-C1-D7;C8-C9-C9-C1-D8;C8-C9-C9-C1-D9;C8-C9-C9-C2-D1;C8-C9-C9-C2-D2;C8-C9-C9-C2-D3;C8-C9-C9-C2-D4;C8-C9-C9-C2-D5;C8-C9-C9-C2-D6;C8-C9-C9-C2-D7;C8-C9-C9-C2-D8;C8-C9-C9-C2-D9;C8-C9-C9-C3-D1;C8-C9-C9-C3-D2;C8-C9-C9-C3-D3;C8-C9-C9-C3-D4;C8-C9-C9-C3-D5;C8-C9-C9-C3-D6;C8-C9-C9-C3-D7;C8-C9-C9-C3-D8;C8-C9-C9-C3-D9;C8-C9-C9-C4-D1;C8-C9-C9-C4-D2;C8-C9-C9-C4-D3;C8-C9-C9-C4-D4;C8-C9-C9-C4-D5;C8-C9-C9-C4-D6;C8-C9-C9-C4-D7;C8-C9-C9-C4-D8;C8-C9-C9-C4-D9;C8-C9-C9-C5-D1;C8-C9-C9-C5-D2;C8-C9-C9-C5-D3;C8-C9-C9-C5-D4;C8-C9-C9-C5-D5;C8-C9-C9-C5-D6;C8-C9-C9-C5-D7;C8-C9-C9-C5-D8;C8-C9-C9-C5-D9;C8-C9-C9-C6-D1;C8-C9-C9-C6-D2;C8-C9-C9-C6-D3;C8-C9-C9-C6-D4;C8-C9-C9-C6-D5;C8-C9-C9-C6-D6;C8-C9-C9-C6-D7;C8-C9-C9-C6-D8;C8-C9-C9-C6-D9;C8-C9-C9-C7-D1;C8-C9-C9-C7-D2;C8-C9-C9-C7-D3;C8-C9-C9-C7-D4;C8-C9-C9-C7-D5;C8-C9-C9-C7-D6;C8-C9-C9-C7-D7;C8-C9-C9-C7-D8;C8-C9-C9-C7-D9;C8-C9-C9-C8-D1;C8-C9-C9-C8-D2;C8-C9-C9-C8-D3;C8-C9-C9-C8-D4;C8-C9-C9-C8-D5;C8-C9-C9-C8-D6;C8-C9-C9-C8-D7;C8-C9-C9-C8-D8;C8-C9-C9-C8-D9;C8-C9-C9-C9-D1;C8-C9-C9-C9-D2;C8-C9-C9-C9-D3;C8-C9-C9-C9-D4;C8-C9-C9-C9-D5;C8-C9-C9-C9-D6;C8-C9-C9-C9-D7;C8-C9-C9-C9-D8;C8-C9-C9-C9-D9;C9-C9-C9-C1-D1;C9-C9-C9-C1-D2;C9-C9-C9-C1-D3;C9-C9-C9-C1-D4;C9-C9-C9-C1-D5;C9-C9-C9-C1-D6;C9-C9-C9-C1-D7;C9-C9-C9-C1-D8;C9-C9-C9-C1-D9;C9-C9-C9-C2-D1;C9-C9-C9-C2-D2;C9-C9-C9-C2-D3;C9-C9-C9-C2-D4;C9-C9-C9-C2-D5;C9-C9-C9-C2-D6;C9-C9-C9-C2-D7;C9-C9-C9-C2-D8;C9-C9-C9-C2-D9;C9-C9-C9-C3-D1;C9-C9-C9-C3-D2;C9-C9-C9-C3-D3;C9-C9-C9-C3-D4;C9-C9-C9-C3-D5;C9-C9-C9-C3-D6;C9-C9-C9-C3-D7;C9-C9-C9-C3-D8;C9-C9-C9-C3-D9;C9-C9-C9-C4-D1;C9-C9-C9-C4-D2;C9-C9-C9-C4-D3;C9-C9-C9-C4-D4;C9-C9-C9-C4-D5;C9-C9-C9-C4-D6;C9-C9-C9-C4-D7;C9-C9-C9-C4-D8;C9-C9-C9-C4-D9;C9-C9-C9-C5-D1;C9-C9-C9-C5-D2;C9-C9-C9-C5-D3;C9-C9-C9-C5-D4;C9-C9-C9-C5-D5;C9-C9-C9-C5-D6;C9-C9-C9-C5-D7;C9-C9-C9-C5-D8;C9-C9-C9-C5-D9;C9-C9-C9-C6-D1;C9-C9-C9-C6-D2;C9-C9-C9-C6-D3;C9-C9-C9-C6-D4;C9-C9-C9-C6-D5;C9-C9-C9-C6-D6;C9-C9-9-C6-D7;C9-C9-C9-C6-D8;C9-C9-C9-C6-D9;C9-C9-C9-C7-D1;C9-C9-C9-C7-D2;C9-C9-C9-C7-D3;C9-C9-C9-C7-D4;C9-C9-C9-C7-D5;C9-C9-C9-C7-D6;C9-C9-C9-C7-D7;C9-C9-C9-C7-D8;C9-C9-C9-C7-D9;C9-C9-C9-C8-D1;C9-C9-C9-C8-D2;C9-C9-C9-C8-D3;C9-C9-C9-C8-D4;C9-C9-C9-C8-D5;C9-C9-C9-C8-D6;C9-C9-C9-C8-D7;C9-C9-C9-C8-D8;C9-C9-C9-C8-D9;C9-C9-C9-C9-D1;C9-C9-C9-C9-D2;C9-C9-C9-C9-D3;C9-C9-C9-C9-D4;C9-C9-C9-C9-D5;C9-C9-C9-C9-D6;C9-C9-C9-C9-D7;C9-C9-C9-C9-D8;C9-C9-C9-C9-D9。
although a single compressor string 1 having a single gas compressor section 13 is shown in fig. 1 in combination with a cooling and liquefaction system 5, in some embodiments, two, three, four, or more compressor strings may be provided for the same cooling and liquefaction system 5. As described above, each compressor train 1 may comprise a gas compressor section 13 with one, two, three or four compressors. As stated above, each of the several compressor banks may include a combination of compressors.
Two, three or four compressor strings 1 may be arranged in parallel, or may be fluidly coupled to each other in that the compressor inlet side or discharge side of one or more compressors of one string is fluidly coupled to one or more inlet sides or discharge sides of one or more compressors of another string.
Fig. 31 shows a schematic arrangement of four compressor trains 1.1, 1.2, 1.3 and 1.4, which are coupled to a cooling and liquefaction system, schematically shown at 5, and each have a respective driver section 11.1, 11.2, 11.3, 11.4 and a gas compressor section 13.1, 13.2, 13.3, 13.4.
In some embodiments, each compressor of the compressor train may be fluidly coupled to the cooling and liquefaction system 5. In other embodiments, at least one or more compressors are fluidly coupled to one or more compressors of the same compressor train or parallel compressor trains. For example, an inlet of at least one compressor of the set of compressors may be fluidly coupled to the cooling and liquefaction system 5 to receive a gas stream to be processed by the compressor. In other embodiments, the inlet of at least one compressor of a compressor string may be fluidly coupled to the discharge side of another compressor of the same or another compressor string to receive a portion of the compressed gas therefrom and further compress the gas.
The at least one compressor may, in turn, include a compressor discharge that is fluidly coupled to the cooling and liquefaction system 5 to provide compressed gas thereto. In other embodiments, the discharge side of the compressor may be fluidly coupled to the inlet of one or more compressors of the same or another compressor bank.
In some embodiments, the cooling and liquefaction system 5 may be a cooling system for cooling the natural gas stream or a pre-cooling system for pre-cooling a refrigerant, which in turn is used to cool the natural gas stream. In some embodiments, the cooling and liquefaction system 5 may include a heat exchanger arrangement for pre-cooling the refrigerant processed in the separate cooling and liquefaction system and simultaneously for cooling the natural gas. Exemplary embodiments of the cooling and liquefaction system will be described later.
By way of example, fig. 32 shows a compressor train 1.1 comprising a gas compressor section 13.1, wherein three compressors 125.1, 125.2, 125.3 each have a gas inlet and a gas outlet side in direct fluid connection with the cooling and liquefaction system 5. In fig. 33, in contrast, compressor 125.1 has an inlet and an outlet side that are directly coupled to the cooling and liquefaction system 5, while compressor 125.2 has an inlet that is fluidly coupled to the cooling and liquefaction system 5 to receive gas therefrom and an outlet side that is fluidly coupled to an inlet of a third compressor 125.3, which in turn is fluidly coupled to the cooling and liquefaction system 5.
Fig. 34 shows a first compressor unit 1.1 and a second compressor unit 1.2. By way of example, the first compressor string 1.1 comprises a first compressor 125.1 and a second compressor 125.2. A different number of compressors may be provided, for example, a single compressor 125.2 or more than two compressors. In the exemplary embodiment of fig. 34, the second compressor string 1.2 comprises four compressors 125.3, 125.4, 125.5, 125.6. The compressor 125.1 has a compressor inlet fluidly coupled to and receiving gas from the cooling and liquefaction system 5. The discharge side of the compressor 125.1 may be coupled to the inlet of the second compressor 125.2 of the first compressor string 1.1. The discharge side of the second compressor 125.2 may be fluidly coupled to the cooling and liquefaction system 5 or, as shown in the schematic diagram of fig. 34, to the intake of one of the compressors (e.g., the fourth compressor 125.6) of the second set 1.2 of compressors. For example, the three compressors 125.3, 125.4 and 125.5 of the second compressor string 1.2 are arranged in series such that the gas from the cooling and liquefaction system 5 is processed sequentially by the three compressors 125.3, 125.4, 125.5 before being returned to the cooling and liquefaction system 5.
The number of groups and the fluid couplings between the various compressors and the cooling and liquefaction system 5 and between the compressors of the same or different compressor groups may depend on the configuration of the liquefaction cycle used and on the energy required to process the refrigerant.
The natural gas cooling and liquefaction system 5 may be configured in a variety of different ways depending on the particular refrigeration cycle or combination of refrigeration cycles used. As known to those skilled in the LNG art, the cooling and refrigeration system may include one or more refrigerant cycles using one or more refrigerant fluids of the same or different properties (e.g., refrigerants having different molecular weights and/or operating at different grades of pressure and temperature). The above-described compressor train configuration may be used in any possible natural gas liquefaction train 5. As schematically illustrated by the exemplary embodiments of fig. 31, 32, 33 and 34, one or more compressor strings may be used for one system 5.
Fig. 35, 36, 37, 38, 39, 40, and 41 schematically illustrate some exemplary embodiments of LNG systems that may be used as the cooling and liquefaction system 5 in conjunction with one or more compressor trains disclosed herein. The LNG systems of fig. 35, 36, 37, 38, 39, 40 and 41 are known to those skilled in the art and will therefore not be described in detail. In each of the schematic diagrams of fig. 35, 36, 37, 38, 39, 40, and 41, one or more blocks schematically represent one or more compressor banks. These boxes are marked with the reference 1. It will be appreciated that each block 1 may in fact comprise more than one compressor train. Each compressor bank may be configured according to one of the above-described configurations.
More specifically, FIG. 35 shows a trademark
Figure BDA0002345406460001061
A single mixed refrigerant cycle is sold in the market,wherein a single mixed refrigerant is used to liquefy the natural gas. One or more compressor trains 1 (only one shown in fig. 35) may be provided to handle a single mixed refrigerant stream. The liquefaction system 5 comprises a cold box 302 to which natural gas is delivered via a pipeline 301. Liquefied Natural Gas (LNG) leaves cold box 303 through conduit 303. In cold box 302, heat is removed from the natural gas stream by heat exchange with a stream of refrigerant gas, such as a mixed refrigerant containing a mixture of two or more refrigerant fluids selected from, for example, methane, propane, ethylene, nitrogen.
In the schematic of fig. 35, a compressor string 1 is shown, which comprises a refrigerant gas compressor section with two refrigerant gas compressors 13A, 13B and a driver section 11. The refrigerant gas is sequentially compressed by the compressors 13A and 13B, and an intercooler 304 is arranged between the two compressors 13A, 13B. The intercooler removes heat from the partially compressed refrigerant gas, for example, by heat exchange with water or air. The refrigerant circuit also includes a heat exchanger 305 downstream of the second compressor 13B to remove heat from the compressed refrigerant, for example by heat exchange with air or water. The compressed refrigerant from heat exchanger 305 flows through cold box 302 for pre-cooling and then expansion in expander 306. The expansion causes the temperature of the refrigerant to drop. The expanded refrigerant flows through cold box 302 to cool and liquefy the natural gas and pre-cool the refrigerant itself. The refrigerant circuit may also include a suction drum 308 through which expanded refrigerant is returned to the compressor package 1. Additional components, such as gas/liquid separators 311, 312, may be disposed at various locations along the gas circuit, as known to those skilled in the art. A gas/liquid separator may also be arranged on the LNG outlet side of the liquefaction system 5, liquefied natural gas being delivered from the liquid/gas separator 315 via a conduit 317.
FIG. 36 shows a line under the trademark Linde
Figure BDA0002345406460001071
A sales LNG single mixed type refrigerant cycle. The LNG liquefaction system 5 includes a natural gas delivery pipeline 401, a cold box 402, andLNG delivery conduit 403. Two streams of refrigerant streams at different pressures are delivered from the compressor package 1 to the liquefaction system 5 through conduits 405 and 406. Expansion valves or expanders 407, 408, 409 expand the refrigerant stream to provide low pressure and chilled gaseous refrigerant to cold box 402 to remove heat from the natural gas and liquefy the natural gas. The expanded and discharged refrigerant gas is returned to the compressor unit 1 through a pipe 411. The refrigerant gas is compressed by the low-pressure compressor 13A and the high-pressure compressor 13B. Heat may be removed from the medium pressure mixed refrigerant (heat exchanger 413) and the high pressure mixed refrigerant (heat exchanger 414). Gas/liquid separators 415, 416 and 417 are also provided in the mixed refrigerant circuit.
FIG. 37 shows a line by Linde under the trademark Linde
Figure BDA0002345406460001081
A three cycle mixed refrigerant cascade system sold (mixed fluid cascade) that uses three mixed refrigerant circuits 501, 502, 503. Each cycle includes a cold box 504, 505, 506, respectively. The combination of the three refrigerant cycles is designated as a liquefaction system 5 as a whole. In the schematic representation of fig. 37, a single box 1 represents a compressor group. The various compressors used to process the mixed refrigerant streams in the three circuits 501, 502, 503 may be arranged in various ways. In fig. 37, a first refrigerant gas compressor 13A is included in the first refrigerant circuit 501 to process the first refrigerant. A second refrigerant gas compressor 13B and a third refrigerant gas compressor 13C are arranged in the second refrigerant circuit 502. A fourth compressor 13D and a fifth compressor 13E are arranged in the third refrigerant circuit 503. The first refrigerant circuit 501 comprises a first expander or expansion valve 507 and a first heat exchanger 508 downstream of the first compressor 13A, and the second refrigerant circuit 502 comprises a second expander or expansion valve 509 and a second heat exchanger 510 downstream of the third compressor 13C. The third refrigerant circuit 503 includes a third expander or expansion valve 511 and a third heat exchanger 512 downstream of the fifth compressor 13E. An intercooler 513 may be disposed between the fourth compressor 13D and the fifth compressor 13E. Natural gas NG to be cooled and liquefied is sequentially delivered through three cold boxes 504, 505 and 506 and at 51And 4 exit the most downstream cold box 506. In the schematic of fig. 37, the three circuit refrigerant gas compressors are operated by three driver sections 11A, 11B, 11C, respectively. Each drive zone may be configured with any of the drives described above. However, those skilled in the art will appreciate that different arrangements of refrigerant gas compressor sections and driver sections are contemplated. For example, the compressors of two or three circuits 501, 502, 503 may be arranged on the same shaft line of the same gas compressor train, driven by a common driver (e.g. an electric motor or a gas turbine). For example, the refrigerant gas compressors 13A, 13B, 13C may be arranged to form a first gas compressor train, and the compressors 13D, 13E may be arranged to form another gas compressor train, or two compressor trains. In other embodiments, the refrigerant gas compressors 13A, 13D, 13E may be arranged to form a first compressor train having a driver section, and the compressors 13B, 13C may be arranged to form another compressor train.
Depending on the flow in each refrigerant cycle, more than one compressor or compressor train in parallel may be envisaged to increase the total flow.
FIG. 38 shows the use of the product by Conoco Phillips under the trademark "CONOCO
Figure BDA0002345406460001091
Optimized LNG cycles for a variety of refrigerant fluids for sale. The liquefaction system, also generally designated 5, may include three refrigerant gas cycles 601, 602, 603. Different refrigerant gases, i.e., methane, ethylene, and propane, are processed separately in the three cycles. The natural gas NG is sequentially delivered through the cold boxes 604, 605 and 606 until liquefied natural gas LNG is obtained. The first refrigerant gas cycle 601 includes a first refrigerant gas compressor or compressor section 13A, a first heat exchanger 610 and a first expander or first expansion valve 611. Methane may be compressed by the first refrigerant gas compressor 13A, cooled in the first heat exchanger 610, and expanded by passing through a first expansion valve or expander 611. Expanding to change the first refrigerant gas intoCool and use the chilled low pressure refrigerant gas to cool the natural gas and pre-cool the second refrigerant gas (e.g., ethylene) circulating in the second refrigerant gas cycle 602.
The second refrigerant gas is compressed by the second refrigerant gas compressor 13B or compressor section 13B and cooled in a second heat exchanger 612 arranged in the second refrigerant gas cycle 602. The compressed and cooled second refrigerant gas is further pre-cooled in the first cold box 604 by heat exchange with the first refrigerant gas and then expanded in a second expander or second expansion valve 613. The natural gas is then further cooled in a second cold box 605 using a low pressure chilled second refrigerant gas and pre-cooling a third refrigerant gas, and the second refrigerant gas is finally returned to the second refrigerant gas compressor or compressor section 13B.
The third refrigerant gas is compressed in a third refrigerant gas compressor or compressor section 13C and cooled in a third heat exchanger 614. The compressed and cooled third refrigerant gas is then also pre-cooled in the first cold box 604 by heat exchange with the expanded first refrigerant gas and in the second cold box 605 by heat exchange with the expanded second refrigerant gas. A third expander or third expansion valve 615 expands the third refrigerant gas to reduce its temperature. The chilled third refrigerant gas, which is then caused to a low pressure in third cold tank 606, removes additional heat from the natural gas and liquefies the natural gas. The discharged third refrigerant gas is then returned to the third compressor or compressor section 13C.
In the schematic diagram of fig. 38, reference numeral 1 denotes the entire arrangement of the compressor unit. A respective driver section 11A, 11B, 11C is shown for each refrigerant gas cycle. However, it should be understood that other embodiments are possible. For example, a single compressor string with a single driver section may be provided that includes all of the compressors of all three cycles. In other embodiments, two or only one compressor or compressor section can be arranged in one compressor train with a corresponding drive section. In some embodiments, one, two, or all three cycles can include more than one compressor or compressor phase. For example, low, medium and high pressure compressors or sets of compressors may be envisaged for the first and/or second and/or third cycles. The various compressors or compressor sets of low, medium and high pressure may be arranged differently on two or more compressor trains.
Fig. 39 shows a schematic diagram of the Shell's Dual Mixed Refrigerant (DMR) system. The liquefaction system is also generally designated 5. The system includes a first refrigerant gas cycle 701 and a second refrigerant cycle 702. Different mixed refrigerants may be used in the two cycles. The natural gas flows through a first cold box 703 and a second cooling 704 and is cooled and finally liquefied by heat exchange with the refrigerant gas circulating in the two cycles 701 and 702.
The first refrigerant gas is compressed in a first compressor or first compressor section 13A of the first refrigerant cycle 701 and cooled by heat exchange with water or air, for example, in a first exchanger 705, before being pre-cooled in a first cold box 703 and expanded in a first expansion valve or first expander 706. The low pressure, low temperature first refrigerant gas is then used in the first cold box 703 to remove heat from the natural gas stream. The discharged first refrigerant gas is returned to the first compressor or compressor section 13A.
The second refrigerant gas is compressed in a second compressor or second compressor section 13B of the second refrigerant cycle 702 and cooled by heat exchange with water or air, for example, in a second exchanger 707, before being pre-cooled in a second cold box 704 and expanded in a second expansion valve or second expander 708. The low pressure, low temperature second refrigerant gas is then used in the second cold box 704 to further remove heat from the natural gas stream and liquefy the natural gas. The discharged second refrigerant gas is returned to the second compressor or compressor section 13B.
In the schematic of fig. 39, the two compressors 13A, 13B are shown as separate compressors driven by the respective driver sections 11A, 11B. However, it should be understood that other arrangements are possible, for example, a single compressor string with one drive section may be provided, in which two compressor sections 13A, 13B are arranged. In the case of a large refrigerant gas flow, two or more compressor strings in parallel may be used. In some embodiments, two or more compressors in parallel may be provided in the first cycle, and a different number of compressors, e.g., only one compressor, may be provided in the second cycle, or vice versa.
FIG. 40 shows
Figure BDA0002345406460001111
Propane/mixed refrigerant LNG systems. The first refrigerant gas cycle 801 contains a first refrigerant gas, e.g., propane, which is used to pre-cool the natural gas NG and also pre-cool a second refrigerant gas, e.g., a mixed refrigerant gas, which is processed in the second refrigerant gas cycle 802. In the schematic illustration of fig. 40, two separate compressor trains 1A, 1B are shown, which comprise a respective first compressor section 13A and a respective second compressor or second compressor section 13B. Each compressor section may include one or more compressors or compressor phases. In the schematic of fig. 40, each compressor train 1A, 1B has a respective driver section 11A, 11B coupled to a compressor or compressor section 13A, 13B. However, it should be understood that different arrangements are possible. For example, a single compressor string may include a first compressor section 13A and a second compressor section 13B driven by the same driver section. In other embodiments, two compressor banks in parallel may be used, each compressor bank including respective compressor sections of the first refrigerant gas cycle 801 and the second refrigerant gas cycle 802. In other embodiments, two compressor trains may be provided, one including a compressor handling the first or second refrigerant gas, and the other containing separate compressors for handling the first and second refrigerant gases.
In the schematic of fig. 40, reference numeral 803 denotes a pre-cooling heat exchanger in which side streams at different pressure levels of the first refrigerant gas processed through the first compressor or compressor section 13A are used to pre-cool the natural gas and also to pre-cool the second refrigerant gas. The pre-cooled second refrigerant gas processed through the second compressor or compressor section 13B is delivered to the main cryogenic heat exchanger 804 and expanded in expanders or expansion valves 805, 806. The expanded low-temperature and low-pressure second refrigerant gas cools and liquefies the natural gas in the main low-temperature heat exchanger 804 to produce liquefied natural gas LNG. Reference numerals 807 and 808 denote heat exchangers arranged at delivery sides of the first compressor 13A and the second compressor 13B for removing heat from the compressed first and second refrigerant gases by heat exchange with, for example, water or air.
FIG. 41 shows a trademark
Figure BDA0002345406460001121
A sales dual refrigerant LNG cycle. The LNG system is also generally designated 5. The first refrigerant gas cycle 901 contains a first refrigerant gas, e.g., propane, which is used to pre-cool the natural gas NG and also pre-cool a second refrigerant gas, e.g., a mixed refrigerant gas, which is processed in the second refrigerant gas cycle 902. In the schematic illustration of fig. 41, two separate compressor trains 1A, 1B are shown, which comprise a respective first compressor section 13A and a respective second compressor or second compressor section 13B. Each compressor section may include one or more compressors or compressor phases. In the schematic of fig. 41, each compressor train 1A, 1B has a respective driver section 11A, 11B coupled to a compressor or compressor section 13A, 13B. However, it should be understood that different arrangements are possible. For example, a single compressor string may include a first compressor section 13A and a second compressor section 13B driven by the same driver section. In other embodiments, two compressor banks in parallel may be used, each compressor bank comprising respective compressor sections of the first refrigerant gas cycle 901 and the second refrigerant gas cycle 902. In other embodimentsTwo compressor trains may be provided, one including a compressor handling the first or second refrigerant gas, and the other containing separate compressors for handling the first and second refrigerant gas.
In the schematic of fig. 41, reference numeral 903 denotes a pre-cooling heat exchanger in which side streams at different pressure levels of the first refrigerant gas processed through the first compressor or compressor section 13A are used to pre-cool the natural gas and also pre-cool the second refrigerant gas. The pre-cooled second refrigerant gas processed through the second compressor or compressor section 13B is delivered to a main low temperature heat exchanger 904 and expanded in an expander or expansion valve 905. The expanded low temperature and low pressure second refrigerant gas cools and possibly liquefies the natural gas in the main cryogenic heat exchanger 904.
Reference numerals 907 and 908 denote heat exchangers arranged at delivery sides of the first compressor 13A and the second compressor 13B for removing heat from the compressed first and second refrigerant gases by heat exchange with, for example, water or air.
The lng from main cryogenic heat exchanger 904 may be sub-cooled in sub-cooler 912, where the third refrigerant gas is circulated. A third refrigerant gas, e.g., nitrogen, may be processed in a third refrigerant gas circuit 910 including a third compressor or third compressor section 13C, which may be part of the third compressor string 1C. The third refrigerant gas may be processed by a third compressor section or compressor 13C, cooled in a heat exchanger 911, for example by water or air, and expanded in an expander 913 or an expansion valve. An economizer 914 may also be included in the third refrigerant gas cycle 910.
As already discussed in connection with the previously described LNG system, the compressors or compressor sections 13A, 13B, 13C and the associated driver sections 11A, 11B, 11C may be combined with each other in various ways by providing even more compressors for processing different refrigerant gases, e.g. on one and the same group, and/or more parallel compressors for processing the same refrigerant gas may be arranged in different groups, as appropriate, e.g. in view of the required flow rates.
Refrigeration systems briefly described above are well known in the art and need not be described in detail. The reference herein to the refrigeration system is intended to illustrate that various possible combinations of the above-described compressor trains may be used in conjunction with any of several possible different LNG liquefaction systems.
The refrigerants that may be used in the cooling and liquefaction system 5 may include: methane, propane, ethylene, nitrogen or mixtures thereof (mixed refrigerant).
The number and arrangement of compressor trains and associated drives may be different and depend on the type of refrigeration system, the number and nature of the refrigerant gas used, and on the overall production rate of the LNG system. In particular, as briefly described above in connection with some exemplary embodiments shown, the compressors may be arranged and combined in different ways on one or more compressor groups depending on the need, in particular depending on the number of refrigerant gas circuits, the requested flow in each circuit, the rotational speed of each refrigerant gas compressor, the number of compressors in each cycle, which in turn may depend on how the compression ratio is distributed among one or more compressors or compressor sections, wherein each compressor or compressor section may in turn comprise one or more compressor stages as described in detail above.
Broadly speaking, each million tons per year (MTPA) of liquefied natural gas produced by the system 5 requires a power rating of between about 30MW and 40 MW.
The compressor unit may be configured for onshore or offshore installations. In some embodiments, one or more machines of the compressor rack, preferably all machines of the compressor rack (including some or all auxiliary machines), may be arranged on the transportable module.
Although in the above description reference has been made to gas turbine engines and internal combustion reciprocating engines and steam or steam turbines as separate and optional drives, according to some embodiments, a combined cycle may be used to increase the overall thermal efficiency of the system. According to some embodiments, a co-production configuration is also contemplated. For example, the waste heat recovery exchanger may be configured and arranged to remove heat from combustion gases at an exhaust duct of a gas turbine engine or reciprocating internal combustion engine which, according to the above arrangement, acts as a main drive in a compressor train. The recovered waste heat can be used in a bottom thermodynamic cycle, e.g. a steam rankine cycle or ORC (organic rankine cycle), where a steam or steam turbine or expander converts part of the low temperature heat into additional mechanical energy for driving a shaft line of the same compressor string, in which the gas turbine engine or reciprocating engine is arranged, or a separate additional compressor string.
Thus, according to an embodiment of the present disclosure, the driver section may comprise a combustion engine generating waste heat, which may be utilized in a bottom thermodynamic cycle by a waste heat recovery heat exchanger in heat exchange relationship with a closed circuit in which a heat carrying fluid is circulated to remove heat from the combustion gases. The waste heat recovery heat exchanger may be in heat exchange relationship with a thermodynamic cycle; wherein a mechanical work producing machine is disposed in the thermodynamic cycle, and wherein the thermodynamic cycle is configured to convert thermal energy from a waste heat recovery heat exchanger to mechanical energy. The mechanical work producing machine may be drivingly coupled to a compressor string or a separate rotating load, preferably a generator, to convert mechanical energy produced by the mechanical work producing machine into electrical energy.
Exemplary embodiments of compressor trains using combined top and bottom cycles are shown in fig. 43, 44, and 45.
According to fig. 43, the compressor train 1 comprises a driver section 11, which may comprise a gas turbine engine or another internal combustion engine, a refrigerant gas compressor section 13 and an auxiliary machine 17. The compressor train 1 may be configured according to any of the arrangements disclosed above. A waste heat recovery exchanger (WHR exchanger) 100 is arranged at the exhaust of the gas turbine engine 11. The combustion gases of gas turbine engine 11 flow through the hot side of WHR exchanger 100. The working fluid of the closed bottom thermodynamic cycle 101 flows through the cold side of WHR exchanger 100. The bottom thermodynamic cycle 101 includes a steam or vapor turbine or expander 102, a condenser 104, and a pump 106. The high pressure working fluid is heated and vaporized in the WHR exchanger 100 by exchanging heat with the combustion gases. The hot pressurized working fluid expands in the turbine 102. The enthalpy drop in the turbine 102 generates mechanical energy. In the exemplary embodiment of FIG. 43, turbine 102 is arranged along a shaft line 2 such that the mechanical energy generated thereby is used in combination with the energy generated by gas turbine engine 11 to drive gas compressor section 13.
According to the embodiment of fig. 44, the compressor train 1.1 comprises a driver section 11, which may comprise a gas turbine engine or another internal combustion engine, a gas compressor section 13.1 and an auxiliary machine 17.1. The compressor train 1 may be configured according to any of the arrangements disclosed above. A waste heat recovery exchanger (WHR exchanger) 100 is arranged at the exhaust of the gas turbine engine 11. The combustion gases of gas turbine engine 11 flow through the hot side of WHR exchanger 100. The working fluid of the closed bottom thermodynamic cycle 101 flows through the cold side of WHR exchanger 100. The bottom thermodynamic cycle 101 includes a steam or vapor turbine or expander 102, a condenser 104, and a pump 106. The high pressure working fluid is heated and vaporized in the WHR exchanger 100 by exchanging heat with the combustion gases. The hot pressurized working fluid expands in the turbine 102. The enthalpy drop in the turbine 102 generates mechanical energy. In the exemplary embodiment of fig. 44, the turbine 102 forms part of a second compressor train 1.2 which also comprises a gas compressor section 13.2 and may comprise an auxiliary machine 17.2. The mechanical energy generated by the enthalpy drop in the turbine 102 is thus used to drive a separate compressor unit 1.2, which is different from the compressor unit 1.1, in which compressor unit 1.1 a gas turbine engine of the topping thermodynamic cycle is arranged.
Although the mechanical energy produced by the bottom thermodynamic cycle is used to drive the compressor section in fig. 43 and 44, according to other embodiments, additional energy produced by the heat recovered by WHR exchanger 100 may be used to drive an auxiliary machine or device, such as an electrical generator. In fig. 45, where the same reference numerals are used to designate the same or equivalent components as in fig. 43 and 44, the top thermodynamic cycle of the gas turbine engine 11 is coupled to the bottom thermodynamic cycle 101. The turbine 102 of the bottom thermodynamic cycle 101 converts the enthalpy drop of the low temperature working fluid of the bottom thermodynamic cycle into mechanical energy that is used to drive the generator 108 to convert the mechanical energy into electrical energy that can be used to power any general electrical load or can be delivered to the power distribution grid G.
In other embodiments not shown, the heat recovered at WHR exchanger 100 may be used, such as, for example, to heat another process fluid, to air condition or for any other purpose.
According to some exemplary embodiments, WHR exchanger 100 can be used to produce steam or vapor, or to heat a stream of heat transfer fluid in a gaseous, vapor, liquid, or combined liquid-vapor state that will be used to purify natural gas upstream of an LNG plant or to supply heat to other processing units, such as those installed to purify and distill crude oil, LPG, and other byproducts.
Although the disclosed embodiments of the subject matter described herein have been shown in the drawings and fully described above with particularity and detail in connection with several exemplary embodiments, it will be apparent to those of ordinary skill in the art that many modifications, changes, and omissions are possible without materially departing from the novel teachings, principles and concepts set forth herein and the advantages of the subject matter recited in the appended claims. Accordingly, the proper scope of the disclosed innovations should be determined only by the broadest interpretation of the appended claims so as to encompass all such modifications, changes, and omissions. Additionally, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.

Claims (22)

1. An LNG refrigerant compressor train, the LNG refrigerant compressor train comprising: a driver section drivingly connected to a compressor section by a shaft line, wherein the compressor section includes at least one refrigerant fluid compressor that is driven to rotate by the driver section.
2. The LNG refrigerant compressor train of claim 1, wherein the driver section comprises at least one of: an internal combustion engine; a gas turbine engine; an electric motor; a steam turbine; a reciprocating gas engine.
3. The LNG refrigerant compressor train of claim 1 or 2, wherein the driver section comprises a gas turbine engine selected from the group consisting of: 1-shaft gas turbine; 1.5-shaft gas turbine; 2-shaft gas turbine; 3-shaft gas turbine.
4. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the drive section comprises an electric motor having a constant speed or an electric motor having a variable speed.
5. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the compressor section comprises at least one refrigerant compressor drivingly coupled to the driver section and preferably less than five refrigerant compressors.
6. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the compressor section comprises at least one powered compressor or one positive displacement compressor.
7. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the compressor section comprises one or more of:
-a single-stage beam centrifugal compressor;
-a single-stage centrifugal compressor;
-a centrifugal compressor of the multistage straight-flow type;
-a multistage back-to-back centrifugal compressor;
-a multistage double flow centrifugal compressor;
-a multistage centrifugal compressor with a side flow port and/or an extraction port;
-an integrally geared centrifugal compressor;
-axial compressors of the once-through type;
-an axial compressor with a side flow port and/or an extraction port;
axial/radial compressors.
8. The LNG refrigerant compressor train of one or more of the preceding claims, further comprising at least one auxiliary machine driven by the driver section and mechanically coupled to at least one compressor of the compressor section, wherein the auxiliary machine comprises one or more of:
-a generator;
-an electric or steam booster;
-an electric or steam starter;
-electric or steam starter-booster;
-electric or steam electric starter-booster-generator;
-another compressor.
9. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the driver section comprises at least one internal combustion engine, and wherein a waste heat recovery heat exchanger is arranged to recover heat from combustion gases discharged from the internal combustion engine.
10. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the shaft line comprises one or more of: a rigid joint, a flexible joint, a clutch, a speed manipulation device, or a combination thereof disposed between two or more pairs of rotating machines sequentially disposed along the shaft line.
11. The LNG refrigerant compressor train as recited in one or more of the preceding claims, wherein at least one of said compressors is selected from the group consisting of: a vertical separation type compressor, a horizontal separation type compressor; and wherein if there is more than one compressor in the bank, each compressor can independently be a horizontal split compressor or a vertical split compressor.
12. The LNG refrigerant compressor train as claimed in one or more of the preceding claims, wherein the driver section comprises a 1-shaft gas turbine or a 2-shaft gas turbine or a 3-shaft gas turbine, and wherein at least one refrigerant fluid compressor of the compressor section is connected to a hot end or a cold end of the driver section.
13. The LNG refrigerant compressor train of one or more of the preceding claims, wherein the driver section comprises a gas turbine engine comprising at least one of: an inlet refrigerator disposed at an inlet of the gas turbine engine; and an intercooler between two sequentially arranged air compressor sections of the gas turbine engine.
14. The LNG refrigerant compressor train of one or more of the preceding claims, wherein at least one rotating machine of the driver section and/or the compressor section comprises at least one bearing selected from the group consisting of: hydrodynamic bearings, hydrostatic bearings, magnetic bearings, rolling bearings, or combinations thereof.
15. The LNG refrigerant compressor train of one or more of the preceding claims, wherein at least one of a turbine of the driver section and a turbine of the compressor section includes vanes.
16. The LNG refrigerant compressor train as recited in one or more of the preceding claims, wherein said compressor section comprises at least two refrigerant fluid compressors arranged in a common casing.
17. The LNG refrigerant compressor train of one or more of the preceding claims, comprising a rotating mechanical combination arranged according to any configuration resulting from the flow chart of fig. 32.
18. The LNG refrigerant compressor train as recited in one or more of the preceding claims, comprising at least an HPRC compressor.
19. A system comprising at least one LNG compressor train according to any of the preceding claims, wherein at least one refrigerant compressor of the compressor train is fluidly coupled to a heat exchanger arrangement in heat exchange relationship with at least one of a natural gas stream and a refrigerant fluid.
20. System according to claim 19, comprising at least two and preferably less than 7 compressor strings according to any of claims 1 to 18.
21. The system of claim 19 or 20, configured as an onshore or offshore system.
22. LNG plant comprising at least one system and preferably less than six systems according to one or more of claims 19 to 21.
CN201780092757.XA 2017-05-10 2017-05-10 Compressor train arrangement Pending CN110809702A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/061211 WO2018206102A1 (en) 2017-05-10 2017-05-10 Compressor train arrangements

Publications (1)

Publication Number Publication Date
CN110809702A true CN110809702A (en) 2020-02-18

Family

ID=58701626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780092757.XA Pending CN110809702A (en) 2017-05-10 2017-05-10 Compressor train arrangement

Country Status (4)

Country Link
US (1) US20210080172A1 (en)
EP (1) EP3622233A1 (en)
CN (1) CN110809702A (en)
WO (1) WO2018206102A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322124A (en) * 2020-03-20 2020-06-23 杭州汽轮机股份有限公司 Rotary mechanical equipment, supercritical working medium recompression cycle power generation system and process thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6929386B2 (en) 2017-05-16 2021-09-01 エクソンモービル アップストリーム リサーチ カンパニー Efficient Asynchronous LNG Generation Methods and Systems Using Large-Scale Multi-Shaft Gas Turbines
WO2020228986A1 (en) * 2019-05-13 2020-11-19 Nuovo Pignone Tecnologie - S.R.L. Compressor train with combined gas turbine and steam turbine cycle
IT201900008367A1 (en) 2019-06-07 2020-12-07 Nuovo Pignone Tecnologie Srl A NATURAL GAS LIQUEFACTION SYSTEM
FR3101406B1 (en) 2019-09-27 2022-06-03 Air Liquide Installation of hydrocarbon fluid liquefaction system and its system
JP7341854B2 (en) * 2019-10-25 2023-09-11 三菱重工コンプレッサ株式会社 Charge gas compressor train for ethylene plant
FR3108969B1 (en) * 2020-04-07 2022-07-15 Air Liquide Agile installation of a hydrocarbon liquefaction unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394415A2 (en) * 2002-08-30 2004-03-03 KNORR-BREMSE SYSTEME FÜR NUTZFAHRZEUGE GmbH Capacity controlled compressor for commercial vehicles
CN1864042A (en) * 2003-11-06 2006-11-15 埃克森美孚上游研究公司 Method for efficient nonsynchronous lng production
AU2006333510A1 (en) * 2005-12-23 2007-07-12 Exxonmobil Upstream Research Company Multi-compressor string with multiple variable speed fluid drives
CN101657610A (en) * 2007-02-14 2010-02-24 阿尔斯托姆科技有限公司 Power station plant and the method that is used to move this power station plant
CN203239590U (en) * 2013-04-03 2013-10-16 中国石油天然气股份有限公司 Centrifugal compressor unit of large-size LNG (Liquefied Natural Gas) device
CN104662258A (en) * 2012-08-03 2015-05-27 诺沃皮尼奥内股份有限公司 Dual-end drive gas turbine
CN105604703A (en) * 2014-11-18 2016-05-25 通用电气公司 Degraded gas turbine tuning and control systems, computer program products and related methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070271938A1 (en) * 2006-05-26 2007-11-29 Johnson Controls Technology Company Automated inlet steam supply valve controls for a steam turbine powered chiller unit
AU2011221562B2 (en) * 2010-03-05 2016-04-14 Exxonmobil Upstream Research Company Flexible liquefied natural gas plant
US10180282B2 (en) * 2015-09-30 2019-01-15 Air Products And Chemicals, Inc. Parallel compression in LNG plants using a positive displacement compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394415A2 (en) * 2002-08-30 2004-03-03 KNORR-BREMSE SYSTEME FÜR NUTZFAHRZEUGE GmbH Capacity controlled compressor for commercial vehicles
CN1864042A (en) * 2003-11-06 2006-11-15 埃克森美孚上游研究公司 Method for efficient nonsynchronous lng production
AU2006333510A1 (en) * 2005-12-23 2007-07-12 Exxonmobil Upstream Research Company Multi-compressor string with multiple variable speed fluid drives
CN101657610A (en) * 2007-02-14 2010-02-24 阿尔斯托姆科技有限公司 Power station plant and the method that is used to move this power station plant
CN104662258A (en) * 2012-08-03 2015-05-27 诺沃皮尼奥内股份有限公司 Dual-end drive gas turbine
CN203239590U (en) * 2013-04-03 2013-10-16 中国石油天然气股份有限公司 Centrifugal compressor unit of large-size LNG (Liquefied Natural Gas) device
CN105604703A (en) * 2014-11-18 2016-05-25 通用电气公司 Degraded gas turbine tuning and control systems, computer program products and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322124A (en) * 2020-03-20 2020-06-23 杭州汽轮机股份有限公司 Rotary mechanical equipment, supercritical working medium recompression cycle power generation system and process thereof

Also Published As

Publication number Publication date
US20210080172A1 (en) 2021-03-18
WO2018206102A1 (en) 2018-11-15
EP3622233A1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
CN110809702A (en) Compressor train arrangement
EP3354866A1 (en) Gas turbine system
RU2718735C2 (en) Complex unit for generating energy and compression and corresponding method
AU2013343548B2 (en) Gas turbine in mechanical drive applications and operating methods
EP2602445B1 (en) Heat recovery in carbon dioxide compression and compression and liquefaction systems
AU2013273476B2 (en) Combination of two gas turbines to drive a load
RU2642714C2 (en) Gas turbine with bilateral drive
AU2011256697A1 (en) Parallel dynamic compressor apparatus and methods related thereto
JP2022191411A (en) Compression train including one centrifugal compressor, and lng plant
CN115405424A (en) Dual cycle intercooling type hydrogen engine architecture
EP3532786B1 (en) Natural gas liquefaction system including an integrally-geared turbo-compressor
US20230117632A1 (en) Integrated hermetically sealed turboexpander-generator with overhung turbomachine
CN109643963B (en) Variable speed drive and system using the same and method of operating variable speed rotating load
WO2020228986A1 (en) Compressor train with combined gas turbine and steam turbine cycle
WO2008124890A1 (en) Energy transfer system
Chiu et al. Improve Energy Efficiency in LNG Production for Baseload LNG Plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200218

WD01 Invention patent application deemed withdrawn after publication