CN110808451A - Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical - Google Patents
Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical Download PDFInfo
- Publication number
- CN110808451A CN110808451A CN201911263098.9A CN201911263098A CN110808451A CN 110808451 A CN110808451 A CN 110808451A CN 201911263098 A CN201911263098 A CN 201911263098A CN 110808451 A CN110808451 A CN 110808451A
- Authority
- CN
- China
- Prior art keywords
- square
- ring
- antenna
- resonator
- complementary split
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000295 complement effect Effects 0.000 claims abstract description 97
- 230000005855 radiation Effects 0.000 claims abstract description 43
- 230000010287 polarization Effects 0.000 claims abstract description 26
- 230000035699 permeability Effects 0.000 claims abstract description 8
- 239000000523 sample Substances 0.000 claims description 53
- 239000000758 substrate Substances 0.000 claims description 38
- 230000000694 effects Effects 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 10
- 238000002513 implantation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 231100000817 safety factor Toxicity 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/273—Adaptation for carrying or wearing by persons or animals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/526—Electromagnetic shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
Abstract
本发明设计了用于无线生物医疗的加载方形谐振环植入式圆极化天线,辐射贴片四周增加蜿蜒曲折结构可以使天线表面电流沿蜿蜒曲折结构蜿蜒流动,从而增加天线表面电流路径,降低天线谐振频率。在加载方形谐振环辐射贴片中心加载的方形互补开口谐振环,是一种具有负磁导率的超材料结构阵列,能够进一步增强单个互补开口谐振环所产生的效能,缩小天线的整体尺寸,通过调节方形互补开口谐振环的尺寸可以激励出两个正交模式,产生圆极化特性。天线的体积仅为11×11×0.635mm3,具有小型化、圆极化、频带宽、抗干扰、生物兼容性优良等特性,适用于ISM 2.45GHz频段,满足植入人体组织环境后的小型化、圆极化工作需求。
The invention designs a loaded square resonant ring implanted circularly polarized antenna for wireless biomedicine, and adding a meandering structure around the radiation patch can make the antenna surface current meander along the meandering structure, thereby increasing the antenna surface current path, reducing the resonant frequency of the antenna. The square complementary split resonator loaded at the center of the loaded square resonator radiating patch is a metamaterial structure array with negative magnetic permeability, which can further enhance the efficiency produced by a single complementary split resonator and reduce the overall size of the antenna. By adjusting the size of the square complementary split resonator, two orthogonal modes can be excited, resulting in circular polarization. The size of the antenna is only 11×11×0.635mm 3 , and it has the characteristics of miniaturization, circular polarization, frequency bandwidth, anti-interference, and excellent biocompatibility. and circular polarization work requirements.
Description
技术领域technical field
本发明涉及植入式天线技术领域,具体涉及用于无线生物医疗的加载方形谐振环植入式圆极化天线,适用于ISM 2.45GHz频段的植入式圆极化无线生物医疗装置。The invention relates to the technical field of implantable antennas, in particular to a loaded square resonant ring implanted circularly polarized antenna for wireless biomedicine, which is suitable for an implantable circularly polarized wireless biomedical device in the ISM 2.45GHz frequency band.
背景技术Background technique
随着医疗水平的提升和经济的持续增长,人口老龄化的趋势在全球范围内已经不可逆转,这给医疗行业带来了巨大的压力,利用无线技术开展远程医疗将是一个低成本、高效能的解决方案。无线生物医疗技术的优点是医院与患者可以不受距离限制,医生可以远程监控和检测患者的生理参数,与传统诊疗方式相比,无线生物医疗技术可以实时提供全面准确的数据为医生提供诊断依据,医生能够更加快捷高效的对数据进行分析以及诊断,患者可以不用亲自去医院就能够得到检查和诊治。在日常生活中,常用的无线生物医疗装置包括:心脏起搏器、人工耳蜗、心率复转除颤器、血糖监测仪、温度监测仪、视网膜植入物等。无线生物医疗技术主要是通过各类传感器采集人体生理参数,将采集的生理参数通过传输单元传输给分析系统和存储设备,医生通过分析系统提供的原始数据或者分析数据做出诊疗建议。数据采集系统与分析系统和存储设备之间的数据传输需要通过植入式天线,因此,植入式天线是无线生物医疗装置中的重要组成部分,是数据传输系统中的核心器件。植入式天线需要植入人体器官或者组织中,因此,舒适性是植入人体器官或组织的关键因素,这就需要植入式天线具有低剖面和小型化的特性。人体器官和组织中的电特性与自由空间相比差别较大,这就需要植入式天线具备宽带特性,降低人体复杂环境对天线的影响,这就要求线极化天线具有较宽的阻抗带宽,圆极化天线具有较宽的轴比带宽。圆极化天线具有误码率低、抗多径干扰、抗干扰能力强等优点。实现圆极化特性的主要方法:在辐射贴片上开特定结构的缝隙,使表面电流沿缝隙蜿蜒流动,进而增加天线表面电流路径,在天线表面开特定结构的缝隙可以产生相位差90度的极化简并模,使天线产生圆极化特性;采用口径耦合馈电方法可以实现圆极化特性,此种方法馈电位置比较灵活,地板可以将馈线和辐射单元很好的隔离开;在辐射单元对角线上馈电,并引入切片电阻,可以实现圆极化性能;辐射单元采用口径耦合或者开槽技术,通过多个馈电点馈电可以实现圆极化性能,缝隙近似于一个谐振结构,与辐射单元的谐振频率接近可以展宽带宽。互补开口谐振环是一种几何互偶结构,将缝隙部分和金属部分互换就可以得到互补开口谐振结构,互补开口谐振结构是一种具有负磁导率的超材料结构,其介电常数远小于谐振时的波长,调节开口谐振环的位置和尺寸可以实现天线的圆极化性能,采用互补开口谐振环能够满足天线的小型化、圆极化设计需求。非专利文献1公开了一种互补开口谐振环加载的圆极化天线,辐射单元中心加载开口谐振环,是一种具有负磁导率的超材料结构,缩小了天线的尺寸,通过调节开口谐振环开口位置和谐振环尺寸,实现圆极化性能,在辐射单元四周增加四个C形槽,能够增加有效电流路径,进一步缩小天线的尺寸。非专利文件2公开了一种方环形圆极化植入式天线,在辐射单元四个边缘分别开不同尺寸的长方形槽实现圆极化特性,辐射贴片中心开一个方形槽,在方形的对角上增加两个三角形,形成几何微扰,通过引入短路探针进一步缩小天线的尺寸。With the improvement of medical level and the continuous growth of economy, the trend of population aging has become irreversible on a global scale, which has brought huge pressure to the medical industry. Using wireless technology to carry out telemedicine will be a low-cost, high-efficiency s solution. The advantage of wireless biomedical technology is that the distance between the hospital and the patient is not limited, and the doctor can remotely monitor and detect the physiological parameters of the patient. Compared with the traditional diagnosis and treatment method, the wireless biomedical technology can provide comprehensive and accurate data in real time to provide the doctor with the basis for diagnosis. , doctors can analyze and diagnose data more quickly and efficiently, and patients can get examination and diagnosis and treatment without going to the hospital in person. In daily life, commonly used wireless biomedical devices include: pacemakers, cochlear implants, cardioverter defibrillators, blood glucose monitors, temperature monitors, retinal implants, etc. Wireless biomedical technology mainly collects human physiological parameters through various sensors, and transmits the collected physiological parameters to the analysis system and storage device through the transmission unit. The doctor makes diagnosis and treatment suggestions through the original data or analysis data provided by the analysis system. The data transmission between the data acquisition system, the analysis system and the storage device needs to pass through the implantable antenna. Therefore, the implantable antenna is an important part of the wireless biomedical device and the core device in the data transmission system. Implantable antennas need to be implanted in human organs or tissues. Therefore, comfort is a key factor in implanting human organs or tissues, which requires implantable antennas to have low profile and miniaturization characteristics. The electrical characteristics in human organs and tissues are quite different from those in free space, which requires implantable antennas to have broadband characteristics to reduce the impact of the complex environment of the human body on the antenna, which requires linearly polarized antennas to have a wider impedance bandwidth , the circularly polarized antenna has a wider axial ratio bandwidth. The circularly polarized antenna has the advantages of low bit error rate, anti-multipath interference and strong anti-interference ability. The main method to realize the circular polarization characteristic: open a specific structure slot on the radiating patch, so that the surface current flows meanderingly along the slot, thereby increasing the current path on the antenna surface, and opening a specific structure slot on the antenna surface can produce a phase difference of 90 degrees The degenerate mode of polarization makes the antenna produce circular polarization characteristics; the circular polarization characteristic can be achieved by using the aperture coupling feeding method, the feeding position of this method is more flexible, and the floor can well isolate the feeder and the radiating element; Feeding on the diagonal of the radiating element and introducing slice resistors can achieve circular polarization performance; the radiating element adopts aperture coupling or slotting technology, and the circular polarization performance can be achieved by feeding through multiple feeding points, and the gap is approximately A resonant structure close to the resonant frequency of the radiating element can broaden the bandwidth. The complementary split resonator ring is a geometrical mutual couple structure. The complementary split resonant structure can be obtained by exchanging the slot part and the metal part. The complementary split resonant structure is a metamaterial structure with negative magnetic permeability, and its dielectric constant is far When the wavelength is smaller than the wavelength at resonance, the circular polarization performance of the antenna can be achieved by adjusting the position and size of the split resonator ring, and the use of complementary split resonator rings can meet the design requirements of the antenna for miniaturization and circular polarization. Non-patent
引用文献列表Citation List
非专利文献1:X.Y.Liu,Z.T.Wu,Y.Fan,and E.M.Tentzeris.A miniaturizedCSRR loaded wide-beam width circularly polarized implantable antenna forsubcutaneous real-time glucose monitoring[J].IEEE Antennas WirelessPropag.Lett.,2017,16:577-580.Non-Patent Document 1: X.Y.Liu, Z.T.Wu, Y.Fan, and E.M.Tentzeris.A miniaturizedCSRR loaded wide-beam width circularly polarized implantable antenna for subcutaneous real-time glucose monitoring[J].IEEE Antennas WirelessPropag.Lett.,2017,16 :577-580.
非专利文献2:Z.Yang,S.Xiao,L.Zhu,B.Zhang,and H.Tu.A circularlypolarized implantable antenna for 2.4-GHz ISM band biomedical applications[J].IEEE Antennas Wireless Propag.Lett.,2017,16:2554-2557.Non-patent document 2: Z. Yang, S. Xiao, L. Zhu, B. Zhang, and H. Tu. A circularlypolarized implantable antenna for 2.4-GHz ISM band biomedical applications [J]. IEEE Antennas Wireless Propag. Lett., 2017, 16:2554-2557.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种用于无线生物医疗的加载方形谐振环植入式圆极化天线,该天线具有小型化、圆极化、频带宽、抗干扰、生物兼容性优良等特性,方便与植入式无线生物医疗装置集成,适用于ISM 2.45GHz频段,能满足无线生物医疗装置对天线性能的需求。The purpose of the present invention is to provide a loaded square resonant ring implanted circularly polarized antenna for wireless biomedicine. It is integrated with implantable wireless biomedical devices, suitable for ISM 2.45GHz frequency band, and can meet the antenna performance requirements of wireless biomedical devices.
本发明的技术方案是:用于无线生物医疗的加载方形谐振环植入式圆极化天线,由介质基板1、加载方形谐振环辐射贴片2、短路探针3、短路探针4、同轴接头5、地板6构成,其特征在于:The technical scheme of the present invention is: an implanted circularly polarized antenna with a loaded square resonator ring for wireless biomedicine, which is composed of a
a.所述的加载方形谐振环辐射贴片2是在辐射贴片四周开矩形槽,在矩形槽内增加蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4,蜿蜒曲折结构2-1以介质基板1为中心分别旋转90度而得到蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4,在辐射贴片四周增加蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4可以使天线表面电流沿蜿蜒曲折结构蜿蜒流动,从而增加天线表面电流路径,降低天线谐振频率,调节蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4的尺寸可以进一步优化阻抗匹配,在加载方形谐振环辐射贴片2中间开一个方形槽,在方形槽内加载方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8,方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8由两个方形环和一个方形贴片组成,通过三个矩形导带与加载方形谐振环辐射贴片2相连接,三个矩形导带之间相对于方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8中心的角度差为90度,在加载方形谐振环辐射贴片2中心加载的方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8是一种具有负磁导率的超材料结构阵列,能够进一步增强单个互补开口谐振环所产生的效能,使天线谐振频率向低频方向偏移,缩小天线的整体尺寸,通过调节方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8的尺寸可以激励出两个正交模式,从而产生圆极化特性;a. The loading square resonator
b.所述的短路探针3、短路探针4设置在加载方形谐振环辐射贴片2的左下侧和左上侧,短路探针3、短路探针4关于天线介质基板1横轴对称,增加短路探针3、短路探针4能够增加谐振点,从而展宽天线的阻抗带宽;b. The short-
c.所述的同轴接头5位于加载方形谐振环辐射贴片2右上侧的对角线上,同轴接头5的内芯与加载方形谐振环辐射贴片2相连接,同轴接头5的外芯与地板6相连接;c. The
d.所述的地板6为一个方形的完整金属贴片结构,不增设开槽或缝隙,在植入式圆极化天线与下层无线生物医疗装置电子器件之间形成一道屏蔽层,能够降低植入式圆极化天线对其它电子器件的干扰,提高植入式圆极化天线的电磁兼容性能。d. The
所述的介质基板1的长L为10mm~12mm,宽W为10mm~12mm。The length L of the
所述的加载方形谐振环辐射贴片2辐射贴片四周开矩形槽的长L2为1.3mm~1.5mm,宽W4为5.5mm~5.7mm,蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4的宽W2为0.15mm~0.25mm,与矩形槽左边的距离W3为0.25mm~0.3mm,与矩形槽下边的距离L1为0.25mm~0.35mm,加载方形谐振环辐射贴片2中间方形槽的宽W6为4.9mm~5.1mm,方形槽内加载的方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8外侧方形环的宽W12为2.2mm~2.3mm,外侧方形环与方形槽左边的距离W7为0.1mm~0.2mm,中间方形环的宽W11为1.6mm~1.7mm,中间方形环与外侧方形环的距离W8为0.1mm~0.2mm,内侧方向贴片的宽W10为1mm~1.2mm,内侧方向贴片与中间方形环的距离W9为0.1mm~0.2mm,连接两个方形环和一个方形贴片的三个矩形导带的宽W5为0.1mm~0.3mm。The said loaded square resonant
所述的短路探针3、短路探针4半径R1为0.2mm~0.4mm,短路探针3、短路探针4中心距介质基板1中心的距离R2为5.8mm~6.2mm,短路探针3、短路探针4与介质基板1纵向对称轴的夹角a1为40度~50度,短路探针3、短路探针4半径与同轴接头5的内芯半径相等。The radius R 1 of the short-
所述的同轴接头5中心距介质基板1横向对称轴的距离L0为2.8mm~3.2mm,距介质基板1纵向对称轴的距离W0为2.8mm~3.2mm。The distance L 0 from the center of the
所述的地板6为一个完整的方形金属贴片,地板6的尺寸与介质基板1的尺寸相同,长L为10mm~12mm,宽W为10mm~12mm。The
所述的用于无线生物医疗的加载方形谐振环植入式圆极化天线外表面镀一层对天线增益和反射系数影响很小的超薄生物兼容薄膜氧化铝,与介质基板1的介电常数相近,介电常数εr为9.2,损耗正切tanδ为0.008,镀膜厚度为0.02mm,隔离人体组织与植入式圆极化天线,防止人体组织与天线的导电贴片直接接触,降低人体组织对植入式圆极化天线性能的影响。The outer surface of the loaded square resonant ring implantable circularly polarized antenna for wireless biomedicine is coated with a layer of ultra-thin biocompatible thin-film alumina that has little effect on the antenna gain and reflection coefficient, and the dielectric of the
本发明的效果在于:本发明设计了用于无线生物医疗的加载方形谐振环植入式圆极化天线,辐射贴片四周增加蜿蜒曲折结构可以使天线表面电流沿蜿蜒曲折结构蜿蜒流动,从而增加天线表面电流路径,降低天线谐振频率,调节蜿蜒曲折结构尺寸可以进一步优化阻抗匹配。在加载方形谐振环辐射贴片中心加载的方形互补开口谐振环,是一种具有负磁导率的超材料结构阵列,能够进一步增强单个互补开口谐振环所产生的效能,使天线谐振频率向低频方向偏移,缩小天线的整体尺寸,通过调节方形互补开口谐振环的尺寸可以激励出两个正交模式,从而产生圆极化特性。地板是一个方形的完整金属贴片结构,不增设开槽或缝隙,在植入式圆极化天线与下层无线生物医疗装置电子器件之间形成一道屏蔽层,能够降低植入式圆极化天线对其它电子器件的干扰,提高植入式圆极化天线的电磁兼容性能。增加短路探针能够增加谐振点,从而展宽天线的阻抗带宽。该植入式圆极化天线为平面结构,天线的体积仅为11×11×0.635mm3,具有小型化、圆极化、频带宽、抗干扰、生物兼容性优良等特性,适用于ISM 2.45GHz频段,满足植入人体组织环境后的小型化、圆极化工作需求。The effect of the present invention is: the present invention designs a square resonant ring implanted circularly polarized antenna for wireless biomedicine, and adding a meandering structure around the radiation patch can make the surface current of the antenna flow meanderingly along the meandering structure , thereby increasing the current path on the surface of the antenna, reducing the resonant frequency of the antenna, and adjusting the size of the meandering structure can further optimize the impedance matching. The square complementary split resonator loaded at the center of the loaded square resonator radiating patch is a metamaterial structure array with negative magnetic permeability, which can further enhance the efficiency produced by a single complementary split resonator, making the antenna resonant frequency lower to low frequencies The direction is shifted to reduce the overall size of the antenna. By adjusting the size of the square complementary split resonator ring, two orthogonal modes can be excited, thereby generating circular polarization characteristics. The floor is a square complete metal patch structure without additional slots or gaps, and a shielding layer is formed between the implantable circularly polarized antenna and the underlying wireless biomedical device electronics, which can reduce the level of the implanted circularly polarized antenna. Interference to other electronic devices, improving the electromagnetic compatibility performance of the implanted circularly polarized antenna. Adding shorting probes can increase the resonance point, thereby broadening the impedance bandwidth of the antenna. The implanted circularly polarized antenna is a plane structure, the size of the antenna is only 11×11×0.635mm 3 , it has the characteristics of miniaturization, circular polarization, wide frequency band, anti-interference, excellent biocompatibility, etc. It is suitable for ISM 2.45 The GHz frequency band meets the requirements of miniaturization and circular polarization after implantation in the human tissue environment.
附图说明Description of drawings
图1是本发明实施例的正面结构示意图。FIG. 1 is a schematic diagram of a front structure of an embodiment of the present invention.
图2是本发明实施例的侧面结构示意图。FIG. 2 is a schematic side structure diagram of an embodiment of the present invention.
图3是本发明实施例的背面结构示意图。FIG. 3 is a schematic diagram of a rear structure of an embodiment of the present invention.
图4是本发明实施例蜿蜒曲折结构的宽W2对天线阻抗带宽和轴比带宽的影响。FIG. 4 shows the influence of the width W 2 of the meandering structure on the antenna impedance bandwidth and the axial ratio bandwidth according to the embodiment of the present invention.
图5是本本发明实施例方形互补开口谐振环外侧方形环的宽W12、中间方形环的宽W11内、侧方向贴片的宽W10对天线阻抗带宽和轴比带宽的影响。5 shows the influence of the width W 12 of the outer square ring, the width W 11 of the middle square ring, and the width W 10 of the side patch on the antenna impedance bandwidth and the axial ratio bandwidth of the square complementary split resonator ring according to the embodiment of the present invention.
图6是本发明实施例植入皮肤层深度示意图。FIG. 6 is a schematic diagram of the depth of the implanted skin layer according to an embodiment of the present invention.
图7是本发明实施例不同植入深度H对天线阻抗带宽和轴比带宽的影响。FIG. 7 shows the effects of different implantation depths H on the antenna impedance bandwidth and the axial ratio bandwidth according to the embodiment of the present invention.
图8是本发明实施例仿真与实测阻抗带宽曲线。FIG. 8 is a simulated and measured impedance bandwidth curve according to an embodiment of the present invention.
图9是本发明实施例在频率为2.45GHz时的E面辐射方向图。FIG. 9 is an E-plane radiation pattern at a frequency of 2.45 GHz according to an embodiment of the present invention.
图10是本发明实施例在频率为2.45GHz时的H面辐射方向图。FIG. 10 is an H-plane radiation pattern at a frequency of 2.45 GHz according to an embodiment of the present invention.
具体实施方式Detailed ways
本发明的具体实施方式是:如图1所示,用于无线生物医疗的加载方形谐振环植入式圆极化天线,由介质基板1、加载方形谐振环辐射贴片2、短路探针3、短路探针4、同轴接头5、地板6构成,其特征在于:所述的加载方形谐振环辐射贴片2是在辐射贴片四周开矩形槽,在矩形槽内增加蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4,蜿蜒曲折结构2-1以介质基板1为中心分别旋转90度而得到蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4,在辐射贴片四周增加蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4可以使天线表面电流沿蜿蜒曲折结构蜿蜒流动,从而增加天线表面电流路径,降低天线谐振频率,调节蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4的尺寸可以进一步优化阻抗匹配,在加载方形谐振环辐射贴片2中间开一个方形槽,在方形槽内加载方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8,方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8由两个方形环和一个方形贴片组成,通过三个矩形导带与加载方形谐振环辐射贴片2相连接,三个矩形导带之间相对于方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8中心的角度差为90度,在加载方形谐振环辐射贴片2中心加载的方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8是一种具有负磁导率的超材料结构阵列,能够进一步增强单个互补开口谐振环所产生的效能,使天线谐振频率向低频方向偏移,缩小天线的整体尺寸,通过调节方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8的尺寸可以激励出两个正交模式,从而产生圆极化特性;所述的短路探针3、短路探针4设置在加载方形谐振环辐射贴片2的左下侧和左上侧,短路探针3、短路探针4关于天线介质基板1横轴对称,增加短路探针3、短路探针4能够增加谐振点,从而展宽天线的阻抗带宽;所述的同轴接头5位于加载方形谐振环辐射贴片2右上侧的对角线上,同轴接头5的内芯与加载方形谐振环辐射贴片2相连接,同轴接头5的外芯与地板6相连接;所述的地板6为一个方形的完整金属贴片结构,不增设开槽或缝隙,在植入式圆极化天线与下层无线生物医疗装置电子器件之间形成一道屏蔽层,能够降低植入式圆极化天线对其它电子器件的干扰,提高植入式圆极化天线的电磁兼容性能。The specific embodiment of the present invention is as follows: as shown in FIG. 1 , an implanted circularly polarized antenna with a loaded square resonant ring for wireless biomedicine is composed of a
所述的介质基板1的长L为10mm~12mm,宽W为10mm~12mm。The length L of the
所述的加载方形谐振环辐射贴片2辐射贴片四周开矩形槽的长L2为1.3mm~1.5mm,宽W4为5.5mm~5.7mm,蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4的宽W2为0.15mm~0.25mm,与矩形槽左边的距离W3为0.25mm~0.3mm,与矩形槽下边的距离L1为0.25mm~0.35mm,加载方形谐振环辐射贴片2中间方形槽的宽W6为4.9mm~5.1mm,方形槽内加载的方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8外侧方形环的宽W12为2.2mm~2.3mm,外侧方形环与方形槽左边的距离W7为0.1mm~0.2mm,中间方形环的宽W11为1.6mm~1.7mm,中间方形环与外侧方形环的距离W8为0.1mm~0.2mm,内侧方向贴片的宽W10为1mm~1.2mm,内侧方向贴片与中间方形环的距离W9为0.1mm~0.2mm,连接两个方形环和一个方形贴片的三个矩形导带的宽W5为0.1mm~0.3mm。The said loaded square resonant ring radiation patch 2 has a rectangular groove around the radiation patch with a length L 2 of 1.3mm-1.5mm, a width W 4 of 5.5mm-5.7mm, a meandering structure 2-1, meandering The width W 2 of the structure 2-2, the meandering structure 2-3, and the meandering structure 2-4 is 0.15mm~0.25mm, and the distance W3 from the left side of the rectangular groove is 0.25mm~0.3mm, and the lower side of the rectangular groove is 0.25mm~0.3mm. The distance L1 is 0.25mm~0.35mm, the width W6 of the square slot in the middle of the loaded square resonant ring radiation patch 2 is 4.9mm~5.1mm, the square complementary opening resonator ring 2-5 loaded in the square slot, the square complementary opening Resonator ring 2-6, square complementary split resonator ring 2-7, square complementary split resonator ring 2-8 The width W 12 of the outer square ring is 2.2mm to 2.3mm, and the distance W 7 between the outer square ring and the left side of the square groove is 0.1 mm~0.2mm, the width W11 of the middle square ring is 1.6mm~1.7mm, the distance W8 between the middle square ring and the outer square ring is 0.1mm~0.2mm, and the width W10 of the inner side patch is 1mm~1.2mm , the distance W 9 between the inner side patch and the middle square ring is 0.1mm-0.2mm, and the width W 5 of the three rectangular conducting strips connecting two square rings and one square patch is 0.1mm-0.3mm.
所述的短路探针3、短路探针4半径R1为0.2mm~0.4mm,短路探针3、短路探针4中心距介质基板1中心的距离R2为5.8mm~6.2mm,短路探针3、短路探针4与介质基板1纵向对称轴的夹角a1为40度~50度,短路探针3、短路探针4半径与同轴接头5的内芯半径相等。The radius R 1 of the short-
所述的同轴接头5中心距介质基板1横向对称轴的距离L0为2.8mm~3.2mm,距介质基板1纵向对称轴的距离W0为2.8mm~3.2mm。The distance L 0 from the center of the coaxial joint 5 to the transverse axis of symmetry of the
所述的地板6为一个完整的方形金属贴片,地板6的尺寸与介质基板1的尺寸相同,长L为10mm~12mm,宽W为10mm~12mm。The
所述的用于无线生物医疗的加载方形谐振环植入式圆极化天线外表面镀一层对天线增益和反射系数影响很小的超薄生物兼容薄膜氧化铝,与介质基板1的介电常数相近,介电常数εr为9.2,损耗正切tanδ为0.008,镀膜厚度为0.02mm,隔离人体组织与植入式圆极化天线,防止人体组织与天线的导电贴片直接接触,降低人体组织对植入式圆极化天线性能的影响。The outer surface of the loaded square resonant ring implantable circularly polarized antenna for wireless biomedicine is coated with a layer of ultra-thin biocompatible thin-film alumina that has little effect on the antenna gain and reflection coefficient, and the dielectric of the
实施例:具体制作过程如实施方式所述。选择Rogers RO3210介质基板,介电常数εr=10.2,损耗正切tanδ=0.003,厚度H=0.635mm,同轴接头采用标准SMA接头。介质基板的长L为11mm,宽W为11mm。辐射贴片四周增加蜿蜒曲折结构可以使天线表面电流沿蜿蜒曲折结构蜿蜒流动,从而增加天线表面电流路径,降低天线谐振频率,调节蜿蜒曲折结构尺寸可以进一步优化阻抗匹配。加载方形谐振环辐射贴片2辐射贴片四周开矩形槽的长L2为1.4mm,宽W4为5.67mm,蜿蜒曲折结构2-1、蜿蜒曲折结构2-2、蜿蜒曲折结构2-3、蜿蜒曲折结构2-4的宽W2为0.21mm,与矩形槽左边的距离W3为0.27mm,与矩形槽下边的距离L1为0.27mm。在加载方形谐振环辐射贴片中心加载的方形互补开口谐振环,是一种具有负磁导率的超材料结构阵列,能够进一步增强单个互补开口谐振环所产生的效能,使天线谐振频率向低频方向偏移,缩小天线的整体尺寸,通过调节方形互补开口谐振环的尺寸可以激励出两个正交模式,从而产生圆极化特性。加载方形谐振环辐射贴片2中间方形槽的宽W6为5mm,方形槽内加载的方形互补开口谐振环2-5、方形互补开口谐振环2-6、方形互补开口谐振环2-7、方形互补开口谐振环2-8外侧方形环的宽W12为2.22mm,外侧方形环与方形槽左边的距离W7为0.14mm,中间方形环的宽W11为1.66mm,中间方形环与外侧方形环的距离W8为0.14mm,内侧方向贴片的宽W10为1.1mm,内侧方向贴片与中间方形环的距离W9为0.14mm,连接两个方形环和一个方形贴片的三个矩形导带的宽W5为0.14mm。增加短路探针能够增加谐振点,从而展宽天线的阻抗带宽。短路探针3、短路探针4半径R1为0.3mm,短路探针3、短路探针4中心距介质基板1中心的距离R2为6mm,短路探针3、短路探针4与介质基板1纵向对称轴的夹角a1为46度,短路探针3、短路探针4半径与同轴接头5的内芯半径相等。同轴接头5中心距介质基板1横向对称轴的距离L0为3mm,距介质基板1纵向对称轴的距离W0为3mm。地板是一个方形的完整金属贴片结构,不增设开槽或缝隙,在植入式圆极化天线与下层无线生物医疗装置电子器件之间形成一道屏蔽层,能够降低植入式圆极化天线对其它电子器件的干扰,提高植入式圆极化天线的电磁兼容性能。地板6为一个完整的方形金属贴片,地板6的尺寸与介质基板1的尺寸相同,长L为11mm,宽W为11mm。在用于无线生物医疗的加载方形谐振环植入式圆极化天线外表面镀一层对天线增益和反射系数影响很小的超薄生物兼容薄膜氧化铝,与介质基板1的介电常数相近,介电常数εr为9.2,损耗正切tanδ为0.008,镀膜厚度为0.02mm,隔离人体组织与植入式圆极化天线,防止人体组织与天线的导电贴片直接接触,降低人体组织对植入式圆极化天线性能的影响。Example: The specific production process is as described in the embodiment. Select Rogers RO3210 dielectric substrate, dielectric constant ε r =10.2, loss tangent tanδ = 0.003, thickness H = 0.635mm, and the coaxial connector adopts standard SMA connector. The length L of the dielectric substrate is 11 mm, and the width W is 11 mm. Adding a meandering structure around the radiation patch can make the antenna surface current meander along the meandering structure, thereby increasing the current path on the antenna surface and reducing the antenna resonant frequency. Adjusting the meandering structure size can further optimize impedance matching. Loading the square resonator
选取蜿蜒曲折结构的宽W2分析对天线阻抗带宽和轴比带宽的影响如图4所示,分别选取W2=0.15mm、W2=0.21mm和W2=0.25mm这三种情况对天线性能进行分析,从图4中可以看出,随着曲折结构的宽W2的增加,天线的谐振频率向低频方向偏移,谐振程度逐渐增加,轴比系数也随之偏移,原因是辐射贴片四周增加蜿蜒曲折结构可以使天线表面电流沿蜿蜒曲折结构蜿蜒流动,从而增加天线表面电流路径,降低天线谐振频率,调节蜿蜒曲折结构尺寸可以进一步优化阻抗匹配。当W2=0.21mm时,天线性能最佳,阻抗带宽和轴比带宽都覆盖所需的ISM2.45GHz频段。The influence of the width W 2 of the meandering structure on the antenna impedance bandwidth and the axial ratio bandwidth is shown in Figure 4. The three cases of W 2 =0.15mm, W 2 =0.21mm and W 2 =0.25mm are selected respectively. The performance of the antenna is analyzed. It can be seen from Figure 4 that with the increase of the width W of the meander structure, the resonant frequency of the antenna shifts to the low frequency direction, the resonance degree gradually increases, and the axial ratio coefficient also shifts. The reason is that Adding a meandering structure around the radiation patch can make the antenna surface current meander along the meandering structure, thereby increasing the current path on the antenna surface and reducing the antenna resonant frequency. Adjusting the meandering structure size can further optimize impedance matching. When W 2 =0.21mm, the performance of the antenna is the best, and both the impedance bandwidth and the axial ratio bandwidth cover the required ISM2.45GHz frequency band.
选取方形互补开口谐振环外侧方形环的宽W12、中间方形环的宽W11内、侧方向贴片的宽W10分析对天线阻抗带宽和轴比带宽的影响如图5所示,分别选取W12=2.2mm、W11=1.6mm、W10=1mm、W12=2.22mm、W11=1.66mm、W10=1.1mm和W12=2.3mm、W11=1.7mm、W10=1.2mm这三种情况对天线性能进行分析,从图5中可以看出,随着方形互补开口谐振环尺寸的增加,天线谐振频点向低频方向偏移,谐振程度先增加后减小,轴比系数也随之向低频处偏移,原因是在加载方形谐振环辐射贴片中心加载的方形互补开口谐振环,是一种具有负磁导率的超材料结构阵列,能够进一步增强单个互补开口谐振环所产生的效能,使天线谐振频率向低频方向偏移,缩小天线的整体尺寸,通过调节方形互补开口谐振环的尺寸可以激励出两个正交模式,从而产生圆极化特性。当W12=2.22mm、W11=1.66mm、W10=1.1mm时,天线性能最佳,阻抗带宽和轴比带宽都覆盖所需的ISM 2.45GHz频段。Select the width W 12 of the outer square ring of the square complementary split resonator ring, the width W 11 of the middle square ring, and the width W 10 of the side patch to analyze the influence on the antenna impedance bandwidth and the axial ratio bandwidth as shown in Figure 5. W12 =2.2mm, W11=1.6mm, W10 =1mm, W12= 2.22mm , W11 = 1.66mm , W10 =1.1mm and W12 =2.3mm, W11 =1.7mm, W10 = The performance of the antenna is analyzed in the three cases of 1.2mm. It can be seen from Figure 5 that with the increase of the size of the square complementary split resonant ring, the resonant frequency of the antenna shifts to the low frequency direction, and the resonance degree first increases and then decreases. The ratio coefficient also shifts to low frequencies because the square complementary split resonator loaded at the center of the loaded square resonator radiating patch is an array of metamaterial structures with negative permeability that can further enhance a single complementary opening The efficiency produced by the resonant ring shifts the resonant frequency of the antenna to the low frequency direction, reducing the overall size of the antenna. By adjusting the size of the square complementary split resonator ring, two orthogonal modes can be excited, thereby generating circular polarization characteristics. When W 12 =2.22mm, W 11 =1.66mm, W 10 =1.1mm, the antenna performance is the best, and both the impedance bandwidth and the axial ratio bandwidth cover the required ISM 2.45GHz frequency band.
本发明设计的植入式圆极化天线应用环境主要为皮肤层,仿真环境为90mm×90mm×25mm的单层皮肤模型,天线置于单层皮肤模型中心,皮肤模型上层与天线上表面的距离为H,植入皮肤层深度示意图如图6所示,不同植入深度H对天线阻抗带宽和轴比带宽的影响如图7所示,植入深度H在3mm~7mm范围内,植入式圆极化天线反射系数和轴比系数相对稳定,各项性能具有很好的鲁棒性,能够很好的覆盖所需的ISM 2.45GHz频段。The application environment of the implanted circularly polarized antenna designed by the present invention is mainly the skin layer, the simulation environment is a single-layer skin model of 90mm×90mm×25mm, the antenna is placed in the center of the single-layer skin model, and the distance between the upper layer of the skin model and the upper surface of the antenna is is H, the schematic diagram of the implanted skin layer depth is shown in Figure 6, and the effects of different implantation depths H on the antenna impedance bandwidth and axial ratio bandwidth are shown in Figure 7. The implantation depth H is in the range of 3mm to 7mm, and the implant The reflection coefficient and axial ratio coefficient of the circularly polarized antenna are relatively stable, and each performance has good robustness, which can well cover the required ISM 2.45GHz frequency band.
将植入式圆极化天线放置在模拟人体皮肤的溶液中进行测试,皮肤溶液包括去离子水58.2%,二乙二醇单丁醚5.1%和聚乙二醇辛基苯基醚36.7%。使用矢量网络分析仪测试天线的阻抗带宽,通过体外线极化偶极子天线配合的间接方式测试天线的圆极化特性,阻抗带宽和轴比带宽的仿真结果与测试结果如图8所示,植入式圆极化天线的仿真阻抗带宽为2.26GHz~2.71GHz,谐振频率为2.45GHz,仿真轴比带宽为2.28GHz~2.52GHz,实测阻抗带宽为2.29GHz~2.75GHz,谐振频率为2.46GHz,谐振程度有明显增加,实测轴比带宽为2.30GHz~2.56GHz,轴比带宽能够覆盖所需的工作频率,仿真结果与测试结果差距较小,在ISM频段能够实现较好的谐振,植入式圆极化天线工作频带内阻抗特性和轴比特性较好,谐振频率和轴比系数略向高频方向偏移,造成频率偏移的原因主要是植入式天线加工测试误差、同轴电缆、与模拟人体组织之间存在气泡对天线测试的影响以及仿真测试环境介电常数存在差异所导致。The implanted circularly polarized antenna was placed in a solution simulating human skin for testing. The skin solution included deionized water 58.2%, diethylene glycol monobutyl ether 5.1% and polyethylene glycol octyl phenyl ether 36.7%. The impedance bandwidth of the antenna is tested by a vector network analyzer, and the circular polarization characteristics of the antenna are tested indirectly through the coordination of the external linearly polarized dipole antenna. The simulation results and test results of the impedance bandwidth and the axial ratio bandwidth are shown in Figure 8. The simulated impedance bandwidth of the implanted circularly polarized antenna is 2.26GHz~2.71GHz, the resonant frequency is 2.45GHz, the simulated axial ratio bandwidth is 2.28GHz~2.52GHz, the measured impedance bandwidth is 2.29GHz~2.75GHz, and the resonance frequency is 2.46GHz , the degree of resonance has increased significantly, the measured axial ratio bandwidth is 2.30GHz ~ 2.56GHz, the axial ratio bandwidth can cover the required operating frequency, the gap between the simulation results and the test results is small, and good resonance can be achieved in the ISM frequency band. The impedance characteristics and axial ratio characteristics of the circularly polarized antenna in the working frequency band are good, and the resonant frequency and axial ratio coefficient are slightly shifted to the high frequency direction. , the effect of air bubbles on the antenna test and the difference in the dielectric constant of the simulated test environment.
对植入式圆极化天线在2.45GHz频率点处的E面和H面辐射方向图进行测试,检验天线的辐射特性,实测方向图如图9、图10所示。从辐射方向图可以看出,天线的方向性较好,植入式圆极化天线的最大辐射方向沿Z轴方向,即朝向人体外侧,主极化为左旋圆极化,沿Z轴方向的实际增益值为-28.8dBi,主极化与交叉极化之间相差32.1dBi,主要是通过调节方形互补开口谐振环的尺寸可以激励出两个正交模式,从而产生圆极化特性,天线在工作频段内轴比波束较宽,辐射特性优良,适用于ISM 2.45GHz工作频带,能够满足复杂植入环境的需求。The radiation patterns of the implanted circularly polarized antenna at the 2.45GHz frequency point of the E and H surfaces are tested to check the radiation characteristics of the antenna. The measured patterns are shown in Figure 9 and Figure 10. It can be seen from the radiation pattern that the antenna has good directivity. The maximum radiation direction of the implanted circularly polarized antenna is along the Z-axis direction, that is, toward the outside of the human body. The main polarization is left-handed circular polarization. The actual gain value is -28.8dBi, and the difference between the main polarization and the cross-polarization is 32.1dBi. The main reason is that two orthogonal modes can be excited by adjusting the size of the square complementary split resonator ring, thereby generating circular polarization characteristics. The axial ratio beam in the working frequency band is wider and the radiation characteristics are excellent. It is suitable for the ISM 2.45GHz working frequency band and can meet the needs of complex implantation environments.
考虑到植入人体组织的安全因素,对植入式圆极化天线安全性进行综合分析,设定植入式圆极化天线输入功率为1W,利用平均SAR值评估人体模型吸收能量的安全范围,经仿真计算,植入式圆极化天线在2.45GHz处的1-g人体组织最大平均SAR值为392.5W/kg,10-g人体组织最大平均SAR值为82.7W/kg,为符合IEEEC95.1-1999及IEEEC95.1-2005对SAR值的安全标准,植入式圆极化天线对应的最大输入功率分别为3.1mW和21.6mW,植入式圆极化天线满足上述条件下的电磁辐射对人体组织是安全无害的。Considering the safety factors of implantation in human tissue, the safety of implantable circularly polarized antenna is comprehensively analyzed. The input power of the implanted circularly polarized antenna is set to 1W, and the average SAR value is used to evaluate the safe range of energy absorbed by the human body model. , after simulation calculation, the maximum average SAR value of the implanted circularly polarized antenna at 2.45GHz is 392.5W/kg for 1-g human tissue, and the maximum average SAR value for 10-g human tissue is 82.7W/kg, which is in line with IEEEC95. .1-1999 and IEEEC95.1-2005 safety standards for SAR values, the maximum input power corresponding to the implanted circularly polarized antenna is 3.1mW and 21.6mW respectively, and the implanted circularly polarized antenna meets the electromagnetic Radiation is safe and harmless to human tissue.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911263098.9A CN110808451A (en) | 2019-12-11 | 2019-12-11 | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911263098.9A CN110808451A (en) | 2019-12-11 | 2019-12-11 | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110808451A true CN110808451A (en) | 2020-02-18 |
Family
ID=69492963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911263098.9A Pending CN110808451A (en) | 2019-12-11 | 2019-12-11 | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110808451A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782973A (en) * | 2021-08-26 | 2021-12-10 | 西南交通大学 | Miniaturized dual-band antenna loaded with ferrite dielectric for UHF band |
CN117525906A (en) * | 2023-12-18 | 2024-02-06 | 南京理工大学 | Multifunctional electromagnetic super-surface integrating wave absorption, transmission, polarization torsion and diffuse scattering |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110323562A (en) * | 2019-07-08 | 2019-10-11 | 哈尔滨工业大学 | Tunable ultra wide band mimo antenna based on complementary openings resonant ring |
CN110444879A (en) * | 2019-08-23 | 2019-11-12 | 华南理工大学 | A kind of double-frequency broadband implanted antenna loading complementary openings resonance monocycle |
CN110544824A (en) * | 2019-10-10 | 2019-12-06 | 吉林医药学院 | Square-Ring Circularly Polarized Implantable Antennas for Wireless Biomedicine |
CN210984938U (en) * | 2019-12-11 | 2020-07-10 | 吉林医药学院 | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical |
-
2019
- 2019-12-11 CN CN201911263098.9A patent/CN110808451A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110323562A (en) * | 2019-07-08 | 2019-10-11 | 哈尔滨工业大学 | Tunable ultra wide band mimo antenna based on complementary openings resonant ring |
CN110444879A (en) * | 2019-08-23 | 2019-11-12 | 华南理工大学 | A kind of double-frequency broadband implanted antenna loading complementary openings resonance monocycle |
CN110544824A (en) * | 2019-10-10 | 2019-12-06 | 吉林医药学院 | Square-Ring Circularly Polarized Implantable Antennas for Wireless Biomedicine |
CN210984938U (en) * | 2019-12-11 | 2020-07-10 | 吉林医药学院 | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical |
Non-Patent Citations (1)
Title |
---|
MERVE USLUER, 《2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS)》/DUAL BAND IMPLANTABLE ANTENNA FOR BIOMEDICAL APPLICATION, 22 September 2016 (2016-09-22), pages 528 - 529 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782973A (en) * | 2021-08-26 | 2021-12-10 | 西南交通大学 | Miniaturized dual-band antenna loaded with ferrite dielectric for UHF band |
CN117525906A (en) * | 2023-12-18 | 2024-02-06 | 南京理工大学 | Multifunctional electromagnetic super-surface integrating wave absorption, transmission, polarization torsion and diffuse scattering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210984938U (en) | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical | |
CN110854522B (en) | Implantable small circularly polarized antenna loaded with octagonal complementary split ring resonator | |
CN109473766A (en) | Graphene-based broadband circularly polarized implantable antenna for wireless biomedical devices | |
CN110350299A (en) | The implanted circular polarized antenna of loop checking installation sector load patch based on graphene | |
CN110890625B (en) | Square annular capacitive loading implanted circularly polarized antenna with double bending resonant rings | |
Noroozi et al. | Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring | |
CN105846072B (en) | A kind of wide axis for biomedical telemetry is than wave beam circular polarized antenna | |
CN110808451A (en) | Square resonant ring loaded implanted circularly polarized antenna for wireless biomedical | |
CN110544824A (en) | Square-Ring Circularly Polarized Implantable Antennas for Wireless Biomedicine | |
CN209133683U (en) | Graphene-based broadband circularly polarized implantable antenna for wireless biomedical devices | |
CN211088504U (en) | Square Ring Descriptively Loaded Implantable Circularly Polarized Antenna Introducing Double Bend Resonant Rings | |
CN209298336U (en) | Graphene-based dual-frequency implantable antennas for rehabilitation care devices | |
Lei et al. | Miniaturized differentially fed dual-band implantable antenna: Design, realization, and in vitro test | |
CN205621856U (en) | A width axial ratio beam circular polarized antenna for biomedical telemetering measurement | |
CN109768371B (en) | Graphene-based dual-frequency implantable antenna for rehabilitation and nursing device | |
Angeline J et al. | Design and analysis of a small implantable antenna for blood glucose monitoring | |
Alptekin et al. | Dual band PIFA design for biomedical applications | |
CN210576443U (en) | Implantable Circularly Polarized Antennas Loaded with Gradient Structures for Wireless Biomedical Applications | |
CN216872252U (en) | An implantable small antenna | |
Pal et al. | A circularly polarized wideband implantable patch antenna for biomedical applications | |
Leib et al. | Design and characterization of a UWB slot antenna optimized for radiation in human tissue | |
CN210576441U (en) | Square ring-shaped circularly polarized implanted antenna for wireless biomedical treatment | |
Ou et al. | Design of small circular polarized antenna with ring descriptive loading for biomedical applications | |
Khaleghi et al. | Capacitively coupled electrode antenna: A practical solution for biomedical implants | |
Karacolak et al. | Electrical properties of nude rat skin and design of implantable antennas for wireless data telemetry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination |