CN110802672A - Apparatus for punching electrode plate of battery - Google Patents

Apparatus for punching electrode plate of battery Download PDF

Info

Publication number
CN110802672A
CN110802672A CN201910710418.4A CN201910710418A CN110802672A CN 110802672 A CN110802672 A CN 110802672A CN 201910710418 A CN201910710418 A CN 201910710418A CN 110802672 A CN110802672 A CN 110802672A
Authority
CN
China
Prior art keywords
die
electrode plate
protrusion
top surface
stripper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910710418.4A
Other languages
Chinese (zh)
Other versions
CN110802672B (en
Inventor
李在旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN110802672A publication Critical patent/CN110802672A/en
Application granted granted Critical
Publication of CN110802672B publication Critical patent/CN110802672B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/40Cutting-out; Stamping-out using a press, e.g. of the ram type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/01Means for holding or positioning work
    • B26D7/015Means for holding or positioning work for sheet material or piles of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • B26F2001/449Cutters therefor; Dies therefor for shearing, e.g. with adjoining or abutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F2210/00Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products
    • B26F2210/02Perforating, punching, cutting-out, stamping-out, severing by means other than cutting of specific products of stacked sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is an apparatus for punching an electrode plate of a battery, which can prevent a coating layer from falling off from an electrode current collector by protrusions provided on a die. To this end, the device comprises: a guide roller conveying an electrode plate including an electrode current collector and a coating layer; a die for supporting the electrode plate transferred by the guide roller from below; a stripper which is positioned on the punching die and fixes the electrode plate between the punching die and the stripper while ascending and descending up and down; and a punch punching the fixed electrode plate protruding from one side surface of the die and one side surface of the stripper, wherein the die includes a protrusion protruding upward by a predetermined height at an end portion of a top surface of the die adjacent to the one side surface of the die and the one side surface of the stripper.

Description

Apparatus for punching electrode plate of battery
This application claims priority and benefit from and full benefit from korean patent application No. 10-2018-0091139, filed by the korean intellectual property office at 8/6/2018, the entire contents of which are incorporated herein by reference.
Technical Field
The present invention relates to an apparatus for punching electrode plates of a battery.
Background
A secondary battery is an electric power storage system capable of converting electric energy into chemical energy and storing the energy at a relatively high energy density. Unlike a primary battery, which is not generally charged any more, a secondary battery can be repeatedly recharged and is widely used for IT devices such as smart phones, cellular phones, notebook computers, or tablet PCs.
The secondary battery is manufactured by housing an electrode assembly including a positive electrode plate, a negative electrode plate, and a separator located between the two electrode plates together with an electrolyte.
The electrode assembly may be formed by stacking two electrode plates and a separator and winding the stacked structure or by punching the electrode plates and stacking the punched electrode plates and the separator. Here, each of the positive and negative electrode plates may be formed by coating an active material on a foil-type current collector. The secondary battery may have a reduced capacity if the active material is released from the current collector during the punching of the electrode plate.
The above information disclosed in this background section is only for enhancement of understanding of the background of the described technology and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
Disclosure of Invention
Embodiments of the present invention provide an apparatus for punching an electrode plate of a battery, which can prevent a coating layer from falling off an electrode current collector by a protrusion, thereby suppressing a voltage drop and improving battery characteristics.
According to an aspect of the present invention, there is provided an apparatus for punching an electrode plate of a battery, the apparatus including: a guide roller conveying an electrode plate including an electrode current collector and a coating layer; a die for supporting the electrode plate transferred by the guide roller from below; a stripper which is positioned on the punching die and fixes the electrode plate between the punching die and the stripper while ascending and descending up and down; and a punch punching the fixed electrode plate protruding from one side surface of the die and one side surface of the stripper, wherein the die includes a protrusion protruding upward at an end portion of a top surface of the die adjacent to the one side surface of the die and the one side surface of the stripper.
The height of the protrusion from the top surface of the die may be in the range of 0.001mm to 1 mm.
The width of the protrusion, which is a length from the one side surface of the die in the first direction, may be in a range of 0.1mm to 5 mm.
The protrusion may have a top surface parallel to the top surface of the die and an inclined surface connecting the top surface of the protrusion with the top surface of the die.
The angle of the inclined surface of the protrusion may be in the range of 5 to 45 degrees.
The protrusion has a curved edge between the top surface and the inclined surface.
The radius of curvature of the edge may be in the range 0.1mm to 0.5 mm.
The protrusion may extend along an end of the top surface of the die to have a predetermined height and a predetermined width.
The stripper may have a flat planar bottom surface with the protrusion closer to the flat planar bottom surface than the top surface of the die.
As described above, the electrode plate punching apparatus according to the present invention can compress the fixing region of the electrode plate more than other regions by the protrusion provided at one end of the top surface of the die, thereby preventing the coating layer from falling off from the electrode current collector during punching of the electrode plate at the punching line of the electrode plate.
Drawings
Fig. 1 is a view showing the configuration of an apparatus for punching electrode plates of a battery according to the present invention.
Fig. 2A to 2C are views sequentially showing a punching process of the electrode plate punching apparatus shown in fig. 1.
Fig. 3A and 3B are an enlarged perspective view and an enlarged sectional view illustrating a portion of a die in the electrode plate punching device shown in fig. 1.
Fig. 4 is a perspective view showing another example of the die shown in fig. 3A.
Fig. 5A and 5B show a press line of an electrode plate pressed by the electrode plate pressing apparatus shown in fig. 1 and a press line of an electrode plate of a comparative example.
Detailed Description
Hereinafter, example embodiments of the invention will be described in detail with reference to the accompanying drawings.
The various embodiments of the invention may be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein. Rather, these example embodiments disclosed are provided so that this disclosure will be thorough and complete and will convey the disclosed inventive concepts to those skilled in the art.
In addition, in the drawings, the size or thickness of various components may be exaggerated for clarity and conciseness. Like numbers refer to like elements throughout. In addition, it will be understood that when element a is referred to as being "connected to" element B, element a can be directly connected to element B or intervening elements C may be present, and element a and element B are indirectly connected to one another.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular is intended to include the plural unless the context clearly dictates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, for example, a first element, component, or section discussed below could be termed a second element, component, or section without departing from the teachings of the present invention.
Referring to fig. 1, there is shown a view illustrating the construction of an apparatus for punching an electrode plate of a battery according to the present invention. Referring to fig. 2A to 2C, there are sequentially shown views illustrating a punching process of the electrode plate punching apparatus shown in fig. 1. Referring to fig. 3A and 3B, there are shown an enlarged perspective view and an enlarged sectional view illustrating a portion of a die in the electrode plate punching device shown in fig. 1.
As shown in fig. 1, the electrode plate punching apparatus may include a guide roller 110, a die 120, a stripper 130, and a punch 140. In the electrode plate punching apparatus 100, if the plate-shaped electrode plate 10 is fed between the die 120 and the stripper 130, the punch 140 descends to cut the electrode plate 10.
First, the guide roller 110 may include at least two or more guide rollers and allow the electrode plate 10 to be fed in the form of a film between the die 120 and the stripper 130 while having a constant tension. That is, the guide roller 110 may transfer the electrode plate 10 with a constant tension. The electrode plate 10 may be continuously fed between the die 120 and the stripper 130 in the first direction a by means of the guide roller 110. Here, the first direction a denotes a direction in which the electrode plate 10 is supplied.
The guide roller 110 may be disposed in front of the die 120 and the stripper 130, and the punch 140 may be disposed behind the die 120 and the stripper 130. That is, based on the die 120 and the stripper 130, the guide roller 110 and the punch 140 may be located at opposite sides in the first direction a.
Here, the electrode plate 10 may be a positive electrode plate or a negative electrode plate for a battery. The electrode plate 10 may include an electrode collector 11 and a coating layer 12, the electrode collector 11 being a thin metal sheet (e.g., a known metal foil), the coating layer 12 having a slurry including an active material coated on at least one surface of the electrode collector 11. If the electrode plate 10 is a positive electrode plate, aluminum or nickel may be used for the electrode collector 11, and a transition metal oxide may be used as the positive electrode active material of the coating layer 12. If the electrode plate 10 is a negative electrode plate, copper, a copper alloy, nickel, or a nickel alloy may be used for the electrode collector 11, and graphite or carbon may be used as the negative electrode active material of the coating layer 12. In addition, although the electrode plate 10 including the coating layers 12 on both surfaces of the electrode collector 11 is shown in the present invention, the coating layers 12 may be only on at least one surface, but aspects of the present invention are not limited thereto.
In addition, the electrode plate 10 may be wound in a roll configuration and may be supplied to the electrode plate punching apparatus 100. The electrode plate 10 may be supplied to the guide roller 110 from a member (not shown) supporting and fixing the electrode plate 10.
The die 120 may support the electrode plate 10 moved by the guide roller 110 from below. That is, the electrode plate 10 may be moved by the guide roller 110 in a state in which the bottom surface of the electrode plate 10 is in contact with the top surface 121 of the die 120. In addition, although not shown, a side or lower region of the die 120 may be fixed to the electrode plate punching apparatus 100. The specific configuration of the die 120 will be described in detail below.
Stripper 130 may be located on die 120. Here, the bottom surface 131 of the stripper 130 may face the die top surface 121 and may be a flat plane. The stripper 130 may fix the continuously supplied electrode plate 10 to the die 120 while ascending and descending. The stripper 130 is mounted to be raised and lowered by means of a common drive means (not shown), such as a hydraulic or pneumatic cylinder. Although the stripper 130 having a rectangular shape is illustrated, it may have any shape having a flat plane on a bottom surface thereof, but aspects of the present invention are not limited thereto. If the stripper 130 moves downward, the electrode plate 10 may be fixed between the die top surface 121 and the bottom surface 131 of the stripper 130. If the stripper 130 is moved upward, the electrode plate 10 may be moved along the die top surface 121 by the guide roller 110.
The punch 140 may move up and down along one side surface of the stripper 130 and one side surface of the die 120 and may punch the protruding electrode plate 10. Here, the electrode plate 10 may be fixed between the die 120 and the stripper 130. In addition, one side surface of the stripper 130 and one side surface of the die 120 may serve as a guide line for movement of the punch 140. As shown in fig. 2A to 2C, the punch 140 may punch the fixed electrode plate 10 protruding from one side surface of the die 120 and one side surface of the stripper 130. The punch 140 is installed to be elevated up and down by means of a general driving device (not shown) such as a hydraulic cylinder or a pneumatic cylinder.
As shown in fig. 3A and 3B, the die 120 has a substantially flat top surface 121 and a flat one side surface 123 bent in a substantially vertical direction from the die top surface 121. One side surface 123 may be a surface adjacent to the punch 140 and may function as a guide line during punching by the punch 140. In addition, the die 120 may further include a protrusion 122 protruding upward at an end of the die top surface 121 adjacent to the one side surface 123. Here, an end of the die top surface 121 adjacent to the one side surface 123 may be referred to as a top surface end of the die 120.
The protrusion 122 may have a protrusion top surface 122a extending parallel to the die top surface 121 and an inclined surface 122b connecting the protrusion top surface 122a with the die top surface 121.
The protrusion 122 may extend along the top surface end of the die 120 in the second direction B. Here, the second direction B may be a direction perpendicular to the first direction a in which the electrode plates 10 are supplied, preferably a direction of the width of the electrode plates 10 perpendicular to the first direction a. The protrusion 122 may protrude upward to have the same height at the entire end of the die top surface 121. In addition, the protrusions 122 may be closer to the bottom surface 131 of the stripper 130 than the die top surface 121. In addition, the fixing region 10a of the electrode plate 10 fixed between the die 120 and the stripper 130 may be more compressed than other regions by the protrusion 122. Here, the fixing region 10a of the electrode plate 10 denotes a portion of the electrode plate 10 fixed between the protrusion top surface 122a and the bottom surface 131 of the stripper 130 during the punching of the electrode plate 10. In addition, a region of the electrode plate 10 protruding from the fixing region 10a toward the punch 140 may be punched. That is, the fixing region 10a of the electrode plate 10 may be a region closest to the punching line 10b of the electrode plate 10 punched by the punch 140. Preferably, the pressing line 10b of the electrode plate 10 fixed between the die 120 and the stripper 130 may be located on the same line as one side surface 123 of the die 120.
Since the die 120 compresses the fixing region 10a of the electrode plate 10 more by the protrusion 122, the coating layer 12 on the press line 10b of the electrode plate 10 can be prevented from falling off the electrode collector 11.
The protrusion 122 may be disposed along the die top surface 121 to have a width W and a height H. Here, the width W of the protrusion 122 denotes a length from the one side surface 123 in the first direction a, and preferably a length of the protrusion top surface 122a in the first direction a. In addition, the height H of the protrusion 122 may represent a distance from the die top surface 121 to the protrusion top surface 122 a.
The width W of the protrusion 122 from the one side surface 123 may be in the range of 0.1mm to 5 mm. If the width W of the protrusion 122 is less than 0.1mm, the coating layer 12 on the press line 10b of the electrode plate 10 cannot be prevented from falling off from the electrode current collector 11 during the press of the electrode plate 10. In addition, if the width W of the protrusion 122 is greater than 5mm, since the pressure locally applied to the fixing region 10a of the electrode plate 10 may be reduced due to the increase in the width of the protrusion 122, resulting in a reduction in the compression ratio, it is not possible to prevent the coating layer 12 from falling off from the electrode current collector 11.
In addition, the height H of the protrusion 122 from the die top surface 121 may be in the range of 0.001mm to 1 mm. If the height H of the protrusion 122 is less than 0.001mm, the coating layer 12 on the press line 10b of the electrode plate 10 cannot be prevented from falling off from the electrode current collector 11 during pressing. In addition, if the height H of the protrusion 122 is greater than 1mm, the fixing region 10a of the electrode plate 10 may be deformed and damaged. More preferably, the height of the protrusion 122 may be in the range of 0.05mm to 0.1 mm.
The angle C of the inclined surface 122b of the protrusion 122 may be in the range of 5 degrees to 45 degrees. When the height H and the width W of the protrusion 122 are varied, the angle C of the inclined surface 122b of the protrusion 122 may be varied within the above-described range. The inclined surface 122b may be linear or may have a curved profile.
For example, as shown in fig. 3B, the inclined surface 122B of the protrusion 122 may be linear. For another example, as shown in fig. 4, the inclined surface 122b of the protrusion 122 may have a curved profile. If the inclined surface 122b of the protrusion 122 has a curved profile, the edge connecting the protrusion top surface 122a and the inclined surface 122b may be curved.
If the edges connecting the protrusion top surface 122a and the inclined surface 122b are curved as described above, the radius of curvature of the curved edges may be in the range of 0.1mm to 5 mm.
Referring to fig. 5A, a photographed image of a punching line 10B of the electrode plate 10 punched by the electrode plate punching apparatus 100 shown in fig. 1 is shown, and referring to fig. 5B, a photographed image of a punching line 20B of the electrode plate 20 punched by a die without a protrusion (comparative example) is shown.
Here, when the protrusion 122 has a width W of 1mm and a height H of 0.1mm and the electrode plate 10 is punched by the electrode plate punching apparatus 100, a photographed image of the electrode plate 10 shown in fig. 5A is obtained.
If the protrusion 122 is provided at one end of the top surface 121 of the die 120, as shown in fig. 5A, the fixing region 10a of the electrode plate 10 is compressed more than other regions of the electrode plate 10 by the protrusion 122. Therefore, the coating layer 12 on the press line 10b of the electrode plate 10 may be prevented from falling off from the electrode collector 11 during pressing. In contrast, if the die has a flat top surface without protrusions, the coating layer 22 on the punching line 20B of the electrode plate 20 is peeled off from the electrode collector 21 during punching, as shown in fig. 5B.
As described above, when the electrode plate 10 is punched according to the electrode plate punching apparatus 100 of the present invention, the coating layer 12 can be prevented from falling off the electrode current collector 11 by the protrusion 122, thereby suppressing a voltage drop of the battery and improving battery characteristics.
While the electrode plate punching apparatus of the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims (9)

1. An apparatus for stamping an electrode plate of a battery, the apparatus comprising:
a guide roller conveying an electrode plate including an electrode current collector and a coating layer;
a die for supporting the electrode plate transferred by the guide roller from below;
a stripper which is positioned on the punching die and fixes the electrode plate between the punching die and the stripper while ascending and descending up and down; and
a punch for punching the fixed electrode plate protruding from one side surface of the die and one side surface of the stripper,
wherein the die includes a protrusion protruding upward at an end of a top surface of the die adjacent to the one side surface of the die and the one side surface of the stripper.
2. The apparatus of claim 1, wherein the height of the protrusion from the top surface of the die is in the range of 0.001mm to 1 mm.
3. The apparatus of claim 1, wherein a width of the protrusion is in a range of 0.1mm to 5mm, the width being a length from the one side surface of the die in the first direction.
4. The apparatus of claim 1, wherein the protrusion has a top surface parallel to the top surface of the die and an inclined surface connecting the top surface of the protrusion with the top surface of the die.
5. The device of claim 4, wherein the angle of the inclined surface of the protrusion is in the range of 5 degrees to 45 degrees.
6. The device of claim 4, wherein the protrusion has a curved edge between the top surface and the sloped surface.
7. The device of claim 6, wherein the radius of curvature of the edge is in the range of 0.1mm to 5 mm.
8. The apparatus of claim 1, wherein the protrusion extends along the end of the top surface of the die to have a predetermined height and a predetermined width.
9. The apparatus of claim 1, wherein the stripper has a bottom surface of flat planar shape with the protrusion being closer to the bottom surface of flat planar shape than the top surface of the die.
CN201910710418.4A 2018-08-06 2019-08-02 Apparatus for punching electrode plate of battery Active CN110802672B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0091139 2018-08-06
KR1020180091139A KR20200015994A (en) 2018-08-06 2018-08-06 Apparatus for punching electrode plate of battery

Publications (2)

Publication Number Publication Date
CN110802672A true CN110802672A (en) 2020-02-18
CN110802672B CN110802672B (en) 2021-09-10

Family

ID=69487425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910710418.4A Active CN110802672B (en) 2018-08-06 2019-08-02 Apparatus for punching electrode plate of battery

Country Status (2)

Country Link
KR (1) KR20200015994A (en)
CN (1) CN110802672B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599253A (en) * 1981-09-14 1986-07-08 The D. L. Auld Company Method for making decorative emblems and the like and shapes prepared by that method
JPH0459354A (en) * 1990-06-29 1992-02-26 Toyota Motor Corp Laminating device with trimming mechanism
CN1230033A (en) * 1998-03-25 1999-09-29 阿苏拉布股份有限公司 Batch manufacturing method for photovoltaic cells
JP2005199381A (en) * 2004-01-15 2005-07-28 Tdk Corp Punching method and punching device
JP2006236698A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Manufacturing method and device of membrane-electrode assembly
JP3833084B2 (en) * 2001-08-08 2006-10-11 三井金属鉱業株式会社 Manufacturing method of film carrier tape for mounting electronic components
CN102544434A (en) * 2010-12-30 2012-07-04 三星Sdi株式会社 Method for making plate electrode and plate electrode making with the method
JP5708531B2 (en) * 2012-02-29 2015-04-30 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method and manufacturing apparatus thereof.
JP5920102B2 (en) * 2012-08-10 2016-05-18 トヨタ自動車株式会社 Cutting apparatus and cutting method
JP2016150426A (en) * 2015-02-19 2016-08-22 株式会社豊田自動織機 Method of manufacturing electrode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599253A (en) * 1981-09-14 1986-07-08 The D. L. Auld Company Method for making decorative emblems and the like and shapes prepared by that method
JPH0459354A (en) * 1990-06-29 1992-02-26 Toyota Motor Corp Laminating device with trimming mechanism
CN1230033A (en) * 1998-03-25 1999-09-29 阿苏拉布股份有限公司 Batch manufacturing method for photovoltaic cells
JP3833084B2 (en) * 2001-08-08 2006-10-11 三井金属鉱業株式会社 Manufacturing method of film carrier tape for mounting electronic components
JP2005199381A (en) * 2004-01-15 2005-07-28 Tdk Corp Punching method and punching device
JP2006236698A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Manufacturing method and device of membrane-electrode assembly
CN102544434A (en) * 2010-12-30 2012-07-04 三星Sdi株式会社 Method for making plate electrode and plate electrode making with the method
JP5708531B2 (en) * 2012-02-29 2015-04-30 トヨタ自動車株式会社 Membrane electrode assembly manufacturing method and manufacturing apparatus thereof.
JP5920102B2 (en) * 2012-08-10 2016-05-18 トヨタ自動車株式会社 Cutting apparatus and cutting method
JP2016150426A (en) * 2015-02-19 2016-08-22 株式会社豊田自動織機 Method of manufacturing electrode

Also Published As

Publication number Publication date
CN110802672B (en) 2021-09-10
KR20200015994A (en) 2020-02-14

Similar Documents

Publication Publication Date Title
US9531032B2 (en) Battery case for secondary battery
EP3671896B1 (en) Device and method for mounting battery cell
CN108701783B (en) Pouch type secondary battery and pouch film forming apparatus
EP4338934A2 (en) Method for manufacturing secondary battery and pouch for secondary battery
US20130014625A1 (en) Electrode plate manufacturing device
US20140308577A1 (en) Battery case for secondary battery
CN114303278A (en) Pouch type battery case, apparatus for manufacturing pouch type battery case, and pouch type secondary battery
US20130252081A1 (en) Battery case for secondary battery
CN110802672B (en) Apparatus for punching electrode plate of battery
CN109950604B (en) Bag forming method and bag forming device
JP2994798B2 (en) Sealed rectangular storage battery and method of manufacturing the same
US10910663B2 (en) Secondary battery
CN114497916A (en) Tab, electrochemical device, electric equipment and compression roller
CN114868319A (en) Apparatus for charging and discharging battery cell and method of charging and discharging battery cell using the same
JP2023530688A (en) Pouch, Pouch Molding Apparatus, and Method for Manufacturing Rechargeable Battery Including Pouch
EP4108416A1 (en) Battery case forming apparatus, and battery case manufacturing method using same
EP4238739A1 (en) Apparatus for manufacturing pouch of secondary battery
EP4379882A1 (en) Apparatus for manufacturing electrode assembly
KR102546635B1 (en) Method of manufacturing pocketing positive electrode body and pocketing positive electrode body
CN114270614A (en) Battery module cover member having protrusion patterns protruding in different directions formed thereon, method of manufacturing the same, and battery module including the same
US20230061623A1 (en) Power storage device
EP4357101A1 (en) Pouch molding apparatus
US20240217145A1 (en) Pouch Molding Apparatus and Method
KR101493423B1 (en) Winding-typed Electrode Assembly of Stair Structure
US20240228214A1 (en) Electrode Running Roller and Notching Device Comprising the Same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant