CN110797902A - 一种直流配电网改进主从控制方法 - Google Patents

一种直流配电网改进主从控制方法 Download PDF

Info

Publication number
CN110797902A
CN110797902A CN201911201124.5A CN201911201124A CN110797902A CN 110797902 A CN110797902 A CN 110797902A CN 201911201124 A CN201911201124 A CN 201911201124A CN 110797902 A CN110797902 A CN 110797902A
Authority
CN
China
Prior art keywords
voltage
current
direct current
mmc
distribution network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911201124.5A
Other languages
English (en)
Other versions
CN110797902B (zh
Inventor
霍现旭
徐科
李树鹏
尚学军
李国栋
张剑
杨卫东
吴东
谢兴峰
吴在军
曹骁勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Southeast University
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Southeast University
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Southeast University, State Grid Tianjin Electric Power Co Ltd, Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201911201124.5A priority Critical patent/CN110797902B/zh
Publication of CN110797902A publication Critical patent/CN110797902A/zh
Application granted granted Critical
Publication of CN110797902B publication Critical patent/CN110797902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种直流配电网改进主从控制方法,其技术特点在于:包括以下步骤:步骤1、设计带死区的自适应下垂控制器;步骤2、设定其中一个MMC换流站为主站,工作模式为恒压控制模式,设定其他MMC换流站为从站,工作模式采用步骤1的带死区的自适应下垂控制器的控制模式。本发明能够在通信故障时实现运行模式的无缝切换和确保直流电压的稳定。

Description

一种直流配电网改进主从控制方法
技术领域
本发明属于直流配电网技术领域,涉及换流站的控制方法,尤其是一种直流配电网改进主从控制方法。
背景技术
随着可再生能源的快速发展,越来越多的新能源发电和储能大量接入配电网,配电网的潮流变成了双向流动,这对配电网的容量、可靠性、电能质量等提出了更高的要求,而目前传统的交流配电网并不是针对双向潮流而设计的,已经不能满足某些用户的要求。另外,随着电力电子技术和直流负荷技术取得了较大的进展,使得直流配电网受到了国内外学者的广泛关注。模块化多电平换流器(Modular Multi-level Converter,MMC)相较于传统的电网换相型换流器(Line Commutated Converter,LCC)具有不存在换相失败、输出特性好、结构模块化、能实现快速解耦控制等优势,近些年在直流配电网换流站得到了广泛的应用。
目前,对于直流配电网电压控制大多数文献还是集中在变换器本身或微网控制技术的研究与分析,尚没有成熟的直流配电网控制策略,相关的柔性直流配电网电压协同控制方法主要参考柔性直流输电中的电压控制方法,其中适用于柔性直流配电网的电压控制方法主要有三种:主从控制方式(Master/Slave Control),电压下垂控制方式(DroopControl)和电压裕度控制(Margin Control)。主从控制是利用一个换流站作为松弛节点控制系统直流电压,其它换流站采用定功率控制,这种控制模式依赖各变换器之间的快速通讯,且主站调节压力较大。直流电压下垂控制是指所有具备功率调节能力的换流站利用给定的各直流功率(或电流)与直流电压的斜率关系来实现多个站共同承担直流电压控制,该控制方式无需上层控制器和通信,具有较好的模块性和扩展性,但稳态运行时存在偏差,而直流配网负荷变化复杂,频繁大量的负荷变化将会导致电压波动,甚至稳定运行时电压偏差超出额定范围,该控制方法斜率的选取较为困难。电压裕度控制是当主换流站发生故障或功率超限而无法继续维持直流电压恒定时,另一个换流站将切换至定直流电压控制模式并运行于新的直流电压参考值,这种控制方法无需站间通讯,但直流配网结构复杂,负荷变化大,电压波动厉害,使得电压裕度的选取较为复杂,同时多个后备定电压换流站的优先级确定困难。可见,相对柔性直流输电系统,直流配电网的节点多、潮流更为复杂,而采用主从控制方式比其他方式更易于实现直流配电网的稳定运行,但现有的直流配电网的主从控制方法,仍存在主从控制在通信故障时无法实现运行模式的切换和直流电压稳定控制难的缺点。
发明内容
本发明的目的在于克服现有技术的不足,提出一种直流配电网改进主从控制方法,能够使主从控制在通信故障时实现运行模式的切换和直流电压稳定控制,并在直流配电网受到扰动时提高了直流电压控制的快速性和可靠性。
本发明解决其现实问题是采取以下技术方案实现的:
一种直流配电网改进主从控制方法,包括以下步骤:
步骤1、设计带死区的自适应下垂控制器;
步骤2、设定其中一个MMC换流站为主站,工作模式为恒压控制模式,设定其他MMC换流站为从站,工作模式采用步骤1的带死区的自适应下垂控制器的控制模式。
而且,所述步骤1的具体步骤包括:
(1)测量MMC网侧三相电压和电流,测量MMC直流侧电压和电流;
(2)根据步骤(1)测量获得的三相交流电压,通过锁相获得交流电网的参考相位θ和角频率ω;
(3)根据步骤(2)获得的交流电网的参考相位θ对MMC网侧三相交流电压和电流进行dq变换,得到电压的d轴分量ud和q轴分量uq,得到电流的d轴分量id和q轴分量iq
(4)根据步骤(3)得到的ud、uq,、id、iq计算有功功率Pg和无功功率Qg
(5)设计MMC交流侧外环控制器为定无功功率控制,将无功功率参考值Q*和MMC实际输出无功功率Qg经过PI从而计算电流内环q轴参考值iq *;设计MMC直流侧外环控制为带死区自适应下垂控制,从而计算电流内环d轴参考值id *
(6)设计dq坐标系下解耦的电流内环控制器,通过PI控制器,电压前馈和耦合补偿从而计算获得MMC调制所需的输出电压参考值。
而且,所述步骤1中第(5)步设计MMC直流侧外环控制为带死区自适应下垂控制,从而计算电流内环d轴参考值id *的具体包括:
(1)根据配电网极端运行状况,计算直流配电网在稳定运行时从换流站MMC2直流侧电压可能达到的最大值Udc2max和最小值Udc2min
(2)根据Udc2max和Udc2min确定自适应下垂控制器的死区上界值和下界值
Figure BDA0002295894910000032
(3)根据测得的从站MMC直流电压与
Figure BDA0002295894910000033
Figure BDA0002295894910000034
的关系确定符号函数的值;
Figure BDA0002295894910000041
(4)设计自适应下垂系数的倒数
Figure BDA0002295894910000042
式中,P2max为MMC2换流站可以输出的最大有功功率,P2 *为MMC2换流站有功功率的设定值,δ为直流电压允许的最大偏差范围;
(5)根据直流电压计算从换流站有功功率调节量ΔPdc2 *=sng*β2 *|ΔUdc2|;
(6)将ΔPdc2 *与有功功率给定值P2 *和测量值Pg2的偏差叠加,送入PI控制器,构成带死区的自适应下垂控制器,从而计算电流内环d轴参考值id *
本发明的优点和有益效果:
1、本发明在直流配电网主从控制的基础上,对从换流站的控制方法进行了改进,从换流站的功率外环设计了一种带死区的自适应下垂控制的方法,实现了当直流配电网在稳态时,从换流站工作在定功率模式,能够精确控制有功功率输出,当直流配电网出现运行状态转换和N-1故障等扰动时,例如主站满载,负荷突变,主站因故障退出运行,直流母线断线等,如果直流电压偏差过大,从站可以不依靠通信将运行状态快速切换到自适应下垂控制,辅助主站参与直流电压的快速调节。因此本发明不仅克服了主从控制在通信故障时无法实现运行模式的切换和直流电压稳定控制的缺点,而且在直流配电网受到扰动时提高了直流电压控制的快速性和可靠性。
2、本发明针对主从控制在通信故障时无法实现运行模式的切换和直流电压稳定控制的缺点,本发明提出一种直流配电网改进主从控制方法,该方法在直流配电网主从控制的基础上,对从换流站的控制方法进行了改进,给从换流站的功率外环设计了一种带死区的自适应下垂控制的方法,实现在直流配电网受到扰动时,如果直流电压偏差过大,从站可以不依靠通信将运行状态快速切换到自适应下垂控制,辅助主站参与直流电压的快速调节,提高了系统的可靠性。
3、本发明既适用于双端直流配电网又适用于多端和环状直流配电网,实现了在直流配电网在稳态运行时,从换流站可以精确地控制有功功率的输出。
附图说明
图1为本发明的双端手拉手直流配电系统结构图;
图2为本发明的dq坐标系下解耦的电流内环控制器示意图;
图3为本发明的d轴带死区自适应下垂控制器示意图;
图4为本发明的q轴无功功率控制器示意图;
图5为本发明的Simulink仿真结果图。
具体实施方式
以下结合附图对本发明实施例作进一步详述:
本发明涉及的中压直流配电系统包括两个MMC换流站,即主换流站和从换流站,如图1所示,两个换流站以手拉手的方式构成了双端直流配电网结构,其中一个换流站MMC1设定为主站,另外一个换流站MMC2设定为从站。
一种直流配电网改进主从控制方法,包括以下步骤:
步骤1、设计带死区的自适应下垂控制器;
所述步骤1的具体步骤包括:
(1)测量MMC2网侧三相电压和电流,测量MMC2直流侧电压和电流;
(2)根据步骤(1)测量获得的三相交流电压,通过锁相获得交流电网的参考相位θ和角频率ω;
(3)根据步骤(2)获得的交流电网的参考相位θ对MMC2网侧三相交流电压和电流进行dq变换,得到电压的d轴分量ud和q轴分量uq,得到电流的d轴分量id和q轴分量iq
(4)根据步骤(3)得到的ud、uq,、id、iq计算有功功率Pg和无功功率Qg
(5)设计MMC2交流侧外环控制器为定无功功率控制,如图4所示,将无功功率参考值Q*和MMC实际输出无功功率Qg经过PI从而计算电流内环q轴参考值iq *;设计MMC直流侧外环控制为带死区自适应下垂控制,如图3所示,从而计算电流内环d轴参考值id *
(6)设计dq坐标系下解耦的电流内环控制器,如图2所示,通过PI控制器,电压前馈和耦合补偿从而计算获得MMC调制所需的输出电压参考值。
步骤2、主换流站MMC1设定为定电压控制模式,负责直流电压的控制,从换流站MMC2采用带死区的自适应下垂控制,负责有功功率调节。
在本实施例中,所述步骤1中第(5)步的设计MMC2直流侧外环控制为带死区自适应下垂控制,从而计算电流内环d轴参考值id *的具体步骤包括:
(1)根据配电网极端运行状况,计算直流配电网在稳定运行时从换流站MMC2直流侧电压可能达到的最大值Udc2max和最小值Udc2min
(2)根据Udc2max和Udc2min确定自适应下垂控制器的死区上界值
Figure BDA0002295894910000061
和下界值
Figure BDA0002295894910000062
(3)根据测得的从站MMC直流电压与
Figure BDA0002295894910000063
Figure BDA0002295894910000064
的关系确定符号函数的值;
Figure BDA0002295894910000071
(4)设计自适应下垂系数的倒数
Figure BDA0002295894910000072
式中,P2max为MMC2换流站可以输出的最大有功功率,P2 *为MMC2换流站有功功率的设定值,δ为直流电压允许的最大偏差范围;
(5)根据直流电压计算从换流站有功功率调节量ΔPdc2 *=sng*β2 *|ΔUdc2|;
(6)将ΔPdc2 *与有功功率给定值P2 *和测量值Pg2的偏差叠加,送入PI控制器,构成带死区的自适应下垂控制器,从而计算电流内环d轴参考值id *
为了验证上述电压控制策略的有效性和优越性通过MATLAB/Simulink工具箱搭建图1所示双端手拉手直流配电网仿真系统。系统主要仿真参数如表1所示:
表1系统主要仿真参数
Figure BDA0002295894910000073
启动直流配电网,在1s达到稳态,1.2s直流配电网发生负荷突变,负荷从0MW突变到7MW,1.5s主站MMC2因故障突然退出运行,1.55s从换流站切换为恒压控制模式,分别采用传统主从控制方法和发明的改进主从控制方法对系统进行了仿真,仿真结果如图5所示。从图5可以看出,采用传统主从控制时,当直流配电系统发生扰动时,直流电压的波动范围要大于改进的主从控制策略,1.5s主站MMC2因故障突然退出运行后,传统主从控制策略直流电压偏差超过了额定直流电压值的5%,改进的主从控制策略始终保证直流电压偏差范围在额定直流电压值的5%以内。验证了发明方法的有效性和优越性。
需要强调的是,本发明所述实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (3)

1.一种直流配电网改进主从控制方法,其特征在于:包括以下步骤:
步骤1、设计带死区的自适应下垂控制器;
步骤2、设定其中一个MMC换流站为主站,工作模式为恒压控制模式,设定其他MMC换流站为从站,工作模式采用步骤1的带死区的自适应下垂控制器的控制模式。
2.根据权利要求1所述的一种直流配电网改进主从控制方法,其特征在于:所述步骤1的具体步骤包括:
(1)测量MMC网侧三相电压和电流,测量MMC直流侧电压和电流;
(2)根据步骤(1)测量获得的三相交流电压,通过锁相,获得交流电网的参考相位θ和角频率ω;
(3)根据步骤(2)获得的交流电网的参考相位θ对MMC网侧三相交流电压和电流进行dq变换,得到电压的d轴分量ud和q轴分量uq,得到电流的d轴分量id和q轴分量iq
(4)根据步骤(3)得到的ud、uq,、id、iq计算有功功率Pg和无功功率Qg
(5)设计MMC交流侧外环控制器为定无功功率控制,将无功功率参考值Q*和MMC实际输出无功功率Qg经过PI从而计算电流内环q轴参考值iq *
设计MMC直流侧外环控制为带死区自适应下垂控制,从而计算电流内环d轴参考值id *
(6)设计dq坐标系下解耦的电流内环控制器,通过PI控制器,电压前馈和耦合补偿从而计算获得MMC调制所需的输出电压参考值。
3.根据权利要求2所述的一种直流配电网改进主从控制方法,其特征在于:所述步骤1中第(5)步设计MMC直流侧外环控制为带死区自适应下垂控制,从而计算电流内环d轴参考值id *的具体步骤包括:
(1)根据配电网极端运行状况,计算直流配电网在稳定运行时从换流站MMC2直流侧电压可能达到的最大值Udc2max和最小值Udc2min
(2)根据Uddc2max和Udc2min确定自适应下垂控制器的死区上界值和下界值
Figure FDA0002295894900000022
(3)根据测得的从站MMC直流电压与
Figure FDA0002295894900000023
Figure FDA0002295894900000024
的关系确定符号函数的值;
设ΔUdc2=Udc *-Udc2
Figure FDA0002295894900000025
Figure FDA0002295894900000026
Figure FDA0002295894900000027
(4)设计自适应下垂系数的倒数
Figure FDA0002295894900000028
式中,P2max为MMC2换流站可以输出的最大有功功率,P2 *为MMC2换流站有功功率的设定值,δ为直流电压允许的最大偏差范围;
(5)根据直流电压计算从换流站有功功率调节量ΔPdc2 *=sng*β2*|ΔUdc2|;
(6)将ΔPdc2 *与有功功率给定值P2 *和测量值Pg2的偏差叠加,送入PI控制器,构成带死区的自适应下垂控制器,从而计算电流内环d轴参考值id *
CN201911201124.5A 2019-11-29 2019-11-29 一种直流配电网改进主从控制方法 Active CN110797902B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911201124.5A CN110797902B (zh) 2019-11-29 2019-11-29 一种直流配电网改进主从控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911201124.5A CN110797902B (zh) 2019-11-29 2019-11-29 一种直流配电网改进主从控制方法

Publications (2)

Publication Number Publication Date
CN110797902A true CN110797902A (zh) 2020-02-14
CN110797902B CN110797902B (zh) 2024-01-26

Family

ID=69446864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911201124.5A Active CN110797902B (zh) 2019-11-29 2019-11-29 一种直流配电网改进主从控制方法

Country Status (1)

Country Link
CN (1) CN110797902B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186793A (zh) * 2020-09-15 2021-01-05 湖南工业大学 直流配电网下垂控制方法
CN112398157A (zh) * 2020-09-14 2021-02-23 国电南瑞科技股份有限公司 一种基于损耗最优的多端直流系统运行控制方法和装置
CN112542850A (zh) * 2020-11-27 2021-03-23 清华四川能源互联网研究院 基于主动功率平衡的多端直流配网电压无差控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035878A (en) * 1997-09-22 2000-03-14 Fisher Controls International, Inc. Diagnostic device and method for pressure regulator
KR20040102512A (ko) * 2003-05-28 2004-12-08 엘지전자 주식회사 세탁기의 세탁방법
US20130334887A1 (en) * 2010-06-30 2013-12-19 Abb Technology Ag Multi-terminal dc transmission system and method and means for control there-of
CN105071372A (zh) * 2015-07-20 2015-11-18 清华大学 一种适用于柔性直流配电网的电压控制方法
CN105140907A (zh) * 2015-08-19 2015-12-09 华北电力大学(保定) 直流微网多智能体自适应下垂一致性协调控制方法及装置
US20160164444A1 (en) * 2013-07-20 2016-06-09 Qiang Wei Method and System for Eliminating Low Frequency Oscillation Between Generators
WO2017077045A1 (en) * 2015-11-06 2017-05-11 Danmarks Tekniske Universitet Method to predetermine current/power flow change in a dc grid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035878A (en) * 1997-09-22 2000-03-14 Fisher Controls International, Inc. Diagnostic device and method for pressure regulator
KR20040102512A (ko) * 2003-05-28 2004-12-08 엘지전자 주식회사 세탁기의 세탁방법
US20130334887A1 (en) * 2010-06-30 2013-12-19 Abb Technology Ag Multi-terminal dc transmission system and method and means for control there-of
US20160164444A1 (en) * 2013-07-20 2016-06-09 Qiang Wei Method and System for Eliminating Low Frequency Oscillation Between Generators
CN105071372A (zh) * 2015-07-20 2015-11-18 清华大学 一种适用于柔性直流配电网的电压控制方法
CN105140907A (zh) * 2015-08-19 2015-12-09 华北电力大学(保定) 直流微网多智能体自适应下垂一致性协调控制方法及装置
WO2017077045A1 (en) * 2015-11-06 2017-05-11 Danmarks Tekniske Universitet Method to predetermine current/power flow change in a dc grid

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XIANXU HUO 等: "A Novel DC Voltage Control Strategy for DC Distribution Based on Adaptive Droop Control", 《IEEE》 *
李文勋等: "考虑输电损耗和新能源波动的VSC-MTDC下垂控制策略", 《电力自动化设备》, no. 08 *
米阳等: "基于鲁棒下垂控制策略的微网平滑切换", 《电网技术》, no. 08 *
陈继开等: "适用于功率波动的多端柔性直流系统改进下垂控制方法", 《电网技术》, no. 11, pages 3709 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398157A (zh) * 2020-09-14 2021-02-23 国电南瑞科技股份有限公司 一种基于损耗最优的多端直流系统运行控制方法和装置
CN112398157B (zh) * 2020-09-14 2022-11-04 国电南瑞科技股份有限公司 一种基于损耗最优的多端直流系统运行控制方法和装置
CN112186793A (zh) * 2020-09-15 2021-01-05 湖南工业大学 直流配电网下垂控制方法
CN112542850A (zh) * 2020-11-27 2021-03-23 清华四川能源互联网研究院 基于主动功率平衡的多端直流配网电压无差控制方法
CN112542850B (zh) * 2020-11-27 2022-06-28 清华四川能源互联网研究院 基于主动功率平衡的多端直流配网电压无差控制方法

Also Published As

Publication number Publication date
CN110797902B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
Haileselassie et al. Primary frequency control of remote grids connected by multi-terminal HVDC
Nguyen et al. A self-sustained and flexible control strategy for islanded DC nanogrids without communication links
Qi et al. Improved control strategy of interlinking converters with synchronous generator characteristic in islanded hybrid AC/DC microgrid
Shen et al. Control Techniques for Bidirectional Interlinking Converters in Hybrid Microgrids: Leveraging the advantages of both ac and dc
CN110649642B (zh) 交直流配电系统电压协调控制方法及交直流配电系统
CN110690731A (zh) 一种适用于混合微电网的电力电子变压器及其协调控制和模式切换方法
CN110797873B (zh) 一种可实现功率平滑功能的混合微电网系统
CN110797902A (zh) 一种直流配电网改进主从控制方法
CN104300589A (zh) 一种具备直流电压恢复特性的交直流微电网分层控制方法
CN108092302A (zh) 负荷虚拟同步机低电压穿越控制方法
CN108462203B (zh) 一种海上风电场接入常规高压直流系统的协同控制方法
Ovaskainen et al. Superposed control strategies of a BESS for power exchange and microgrid power quality improvement
TW202127787A (zh) 交流負荷供電系統和方法
CN112436545B (zh) 孤岛/并网双模式下提升微电网运行稳定性的控制方法
CN108039718A (zh) 一种改进的柔性直流电压控制方法及系统
Li et al. Analysis of multi-agent-based adaptive droop-controlled AC microgrids with PSCAD: modeling and simulation
CN115864520A (zh) 一种基于高比例光伏能源接入混合电网的控制方法及系统
Zhang et al. Wind power transmission through LCC-HVDC with wind turbine inertial and primary frequency supports
CN112653176B (zh) 一种用于多端柔性直流系统的变工作点下垂控制方法
CN110061504A (zh) 一种基于准比例谐振复合控制的从电源功率控制方法
CN109217346B (zh) 基于虚拟同步机的背靠背直流输电系统及控制方法
Gan et al. Synchronisation control and operation of microgrids for rural/island applications
Mao et al. Accurate output power control of converters for microgrids based on local measurement and unified control
CN114268116B (zh) 一种考虑通信时延的主从交流微电网的状态空间建模方法
CN115579951A (zh) 多逆变器新能源电站分布式协同稳定控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant