CN110796679A - 一种面向航拍影像的目标跟踪方法 - Google Patents

一种面向航拍影像的目标跟踪方法 Download PDF

Info

Publication number
CN110796679A
CN110796679A CN201911043274.8A CN201911043274A CN110796679A CN 110796679 A CN110796679 A CN 110796679A CN 201911043274 A CN201911043274 A CN 201911043274A CN 110796679 A CN110796679 A CN 110796679A
Authority
CN
China
Prior art keywords
target
frame
tracking
conv
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911043274.8A
Other languages
English (en)
Other versions
CN110796679B (zh
Inventor
王正宁
赵德明
何庆东
蓝先迪
曾浩
曾怡
刘怡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911043274.8A priority Critical patent/CN110796679B/zh
Publication of CN110796679A publication Critical patent/CN110796679A/zh
Application granted granted Critical
Publication of CN110796679B publication Critical patent/CN110796679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/207Analysis of motion for motion estimation over a hierarchy of resolutions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种面向航拍影像的目标跟踪方法,包括:S100在上一帧的目标位置周围,执行增量式的搜索策略;S200采样的样本经过孪生网络和区域推荐网络,得到预测位置的目标;S300通过计算预测位置的目标与目标模板的相似度判断预测是否成功;若预测成功,则保存具体的目标位置并用于下一次预测;预测失败时,若系统在连续的N帧内有n帧预测失败,则判断为目标丢失,进入步骤S400,否则判断为误检测;S400将检测框初始化,并置于当前帧图像的中心点,执行增量式的搜索策略,重新检测和跟踪,直到重新定位到目标。本发明对于目标被遮挡后的重新检测速度有明显的提升,减少了检测框的误采样计算,能够快速的重新定位。

Description

一种面向航拍影像的目标跟踪方法
技术领域
本发明属于图像处理和计算机视觉技术领域,特别涉及一种面向航拍影像的目标跟踪方法。
背景技术
目标跟踪是计算机视觉中的一个重要研究方向,作为视频信息分析的重要研究内容,其主要目的是在视频序列中对人们感兴趣的目标进行运动轨迹估计,自动地获得目标物体在整个视频序列中的运动信息和位置信息,从而为场景识别、动作识别、无人驾驶等更高级的计算机视觉任务提供重要的研究基础。
现代的目标跟踪大致可以分为两个分支。第一个分支是基于相关滤波器,利用循环性质训练回归器,在频域中进行相关运算。它可以进行在线跟踪,同时有效地更新滤波器的权重。对比文件1(Danelljan M,Bhat G,Shahbaz Khan F,et al.Eco:Efficientconvolution operators for tracking[C].Proceedings of the IEEE conference oncomputer vision and pattern recognition.2017:6638-6646.)中Martin Danelljan等人提出的ECO算法属于相关滤波分支,对于目标的运动模糊、变形和背景的光照变化等不利因素,有着很强的适应能力。当系统进入在线跟踪阶段,每间隔6帧更新一次网络参数,有效地提高了跟踪算法的速度;同时为了保证跟踪的准确性,对在线跟踪中的样本集进行每帧更新,这样间隔帧更新的方式不会错过间隔期的样本变化信息,因此提高了模型对遮挡,目标突变等情况的稳定性。但是当目标被长时间遮挡后,在线更新的模型将会采用遮挡的背景作为采样样本,则模型变得不再可靠,难以继续跟踪原目标。对比文件2(上海交通大学.基于相关滤波的抗遮挡目标跟踪方法:中国,201811071458.0[P].2019-02-01.)中提出一种基于相关滤波的抗遮挡目标跟踪方法。在手动选择跟踪目标之后,先使用LCT跟踪器中的运动相关滤波器和外观相关滤波器,分别对目标的平移及目标的尺度进行估计并得到目标跟踪结果,并在丢失目标时采用在线分类器的检测结果作为跟踪结果以恢复准确目标跟踪。另一个分支是以深度学习为代表的目标跟踪方法。对比文件3(山东大学.基于分层卷积特征的长时间目标跟踪方法及系统:中国,201811318709.0[P].2018-12-25.)中提出了基于分层卷积特征的长时间目标跟踪方法及系统,采用预训练好的深度卷积神经网络对每一帧视频数据提取各层的卷积特征;在逐帧更新的过程中设定阈值,只有当跟踪响应值大于阈值时进行更新相关滤波器模型,否则采用上一帧的相关滤波器模型,同时,跟踪响应值低于设定的阈值时,采用随机算法进行目标的重新检测。对比文件4(Zhu Z,Wang Q,Li B,etal.Distractor-aware siamese networks for visual object tracking[C].Proceedings of the European Conference on Computer Vision(ECCV).2018:101-117.)中Zheng Zhu提出的DaSiamRPN,通过一系列数据增强手段扩充样本以提高跟踪器的泛化能力,可以很好地应对长时跟踪问题。但是,由于深度学习用到了大量的模型参数,在跟踪速度上很难应用于实际。
发明内容
针对现有目标跟踪算法难以应用于实际的不足,提出了一种面向航拍影像的目标跟踪方法,通过提高深度学习方法的检测和跟踪速度,使其应用于实际工程。
一种面向航拍影像的目标跟踪方法,包括如下步骤:
S100在上一帧的目标位置周围,执行增量式的搜索策略;
S200采样的样本经过孪生网络和区域推荐网络,得到预测位置的目标;
S300通过计算预测位置的目标与目标模板的相似度判断预测是否成功;
若预测成功,则保存目标位置并用于下一次预测;
若系统在连续的N帧内有n帧预测失败,则判断为目标丢失,进入步骤S400;其中,1≤n≤N;
S400将检测框初始化,并置于当前帧图像的中心点,执行增量式的搜索策略,重新检测和跟踪,直到重新定位到目标。
优选的,所述步骤S100,包括:
目标在上一帧中的位置记为Pt-1,当前帧以上一帧目标位置Pt-1为初始点在周围进行采样,设置一个模板尺寸大小的初始采样框,增量式地增长采样框的大小,扩大检测的覆盖区域,直至确定出目标的位置;
其中,base_w、base_h分别表示采样框的初始宽高,α1、α2表示增长系数,取值范围为[0.1,1],w、h分别表示当前采样框的宽高。
优选的,所述步骤S200,包括:
采样框当前的宽高记为w×h,采样的样本经过孪生网络NS和区域推荐网络NR,得到预测位置的目标。
优选的,所述步骤S300,包括:
计算预测位置的目标与目标模板的相似度S,计算目标的具体位置Pt,相似度S的取值范围为[0,1],s为阈值;S∈[0,s)为预测失败,S∈[s,1]为预测成功;
当系统在连续的N帧内有n帧预测失败时,则判断为目标丢失,启动检测功能,重新寻找目标并设置为模板帧Ft
其中,T表示阈值,flag表示重新检测开始的标志位。
优选的,所述步骤S400,包括:
当系统判断检测框连续n帧预测失败后,启动检测框初始化,将检测框置于当前帧图像的中心点Pt,执行增量式的搜索策略,重新检测和跟踪;
Figure BDA0002253428440000042
当系统从目标丢失状态重新定位到目标时,从步骤S100继续顺序执行,完成持续跟踪,否则继续执行步骤S400,直到重新定位出目标。
优选的,所述的孪生网络和区域推荐网络的训练方法:
对目标跟踪数据集和目标检测数据集进行数据增强;
从视频序列中设定模板帧Ft和待跟踪帧Fc并进行预处理;模板帧Ft的宽高设为wt、ht,待跟踪帧Fc的宽高设为wc、hc
孪生网络NS由两个并行的ResNet网络分支N1、N2,通过权值共享构成;模板帧Ft和待跟踪帧Fc分别输入N1、N2,依次经过卷积、池化和ReLU进行特征提取,Conv(Ft)和Conv(Fc)表示特征提取后输出的特征图;
区域推荐网络NR,网络内部存在两个分支Bcls、Breg,一个用于前景和背景的分类分支Bcls,另一个用于推荐框的回归分支Breg;每个分支中各包含一个特征图互相关操作用于生成相应结果;
将特征图Conv(Ft)和Conv(Fc)送入区域推荐网络NR,通过并行的两个卷积层将Conv(Ft)增加为含有不同通道数目的两个分支[Conv(Ft)]cls和[Conv(Ft)]reg;通过并行的两个卷积层将Conv(Fc)增加为含有相同特征图尺寸的两个分支[Conv(Fc)]cls和[Conv(Fc)]reg;k为特征图上设置的参考框数,k的取值范围为[1,10];
分类分支Bcls和回归分支Breg分别计算互相关,互相关的定义是令模板帧的特征图Conv(Ft)和待跟踪帧的特征图Conv(Fc)进行卷积运算,得到目标的响应特征图Acls和Areg,网络输出2k个通道用于目标分类,4k个通道用于目标框回归;
Figure BDA0002253428440000052
表示卷积符号;
Figure BDA0002253428440000051
训练网络时的分类损失Lcls使用交叉熵损失,回归损失Lreg使用具有标准化坐标的平滑L1损失;
归一化后的误差为:
Figure BDA0002253428440000061
Figure BDA0002253428440000062
其中,y为标签值,
Figure BDA0002253428440000064
为实际分类值;Ax,Ay表示参考框的中心点,Aw,Ah表示参考框的宽高,Tx,Ty,Tw,Th表示ground truth框,σ表示方差值;
λ是一个超参数,用于平衡两类损失,优化损失函数为:
loss=Lcls+λLreg
孪生网络NS和区域推荐网络NR联合训练,利用随机梯度下降对误差求偏导,共训练m个周期,初始学习率为ε1,参考框的比率设置为[r1,r2,r3,…,rp]。
与现有技术相比,本发明的有益效果:
1.本发明提出了一种新的搜索触发方式。当系统判断目标丢失时,不立即触发全局的目标检测功能,而是以当前帧开始计数,若连续的N帧有n帧目标丢失,本发明认为目标的确丢失,开启目标的重新检测功能,否则认为是系统的误检测。避免系统的额外操作,减少运算量。
2.当系统确定目标丢失后,本发明启用一种增量搜索模型。由于目标在连续帧间隔内,运动状态差别小,本发明在当前帧以上一帧目标位置为初始点在周围进行采样,增量式地增长检测框的大小,逐渐扩大检测框的覆盖区域。相比于在整张图像上进行检测,本发明方法显著减少了系统的运算量,提升了重新检测速度。
3.提出了一种检测框的重新初始化机制,当系统判断检测框连续n帧预测失败后,将检测框强行置于图像的中心点,再执行增量式的搜索策略。避免检测框因检测错误导致长时间停留在图像边缘,陷入图像的局部,无法检测到图像中央区域等其它部分。
4.本发明将检测和跟踪进行有效结合,通过对检测和跟踪判决机制的改进和优化,减小了系统的运算量,提升了系统的处理速度,对于航拍影像具有更长时间的稳定跟踪,更适用于实际应用。
附图说明:
图1为本发明的测试流程图示意图。
图2为本发明的训练流程图示意图。
图3为本实施例中的模板帧示意图。
图4为本实施例中的待跟踪帧示意图。
图5为本实施例中的孪生网络示意图。
图6为本实施例中的通道扩充示意图。
图7为本实施例中的互相关操作示意图。
图8为本实施例中的网络总框架图示意图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
一种面向航拍影像的目标跟踪方法,如图1所示,通过提高深度学习方法的检测和跟踪速度,使其应用于实际工程。通过在目标跟踪中设计一种新的目标搜索触发方式,降低系统误检率;通过在待检测位置设计一种增量式的检测框,避免了全域检测带来的计算量过大问题;通过设计一种检测框的重新初始化方法,避免系统在跟踪失败后使目标框陷入局部。经过上述创新方法的组合,本发明显著减少了跟踪过程中的冗余计算,加快了系统的处理速度,在目标丢失后,能够快速重新定位目标并对目标进行长时有效跟踪。具体的步骤如下:
(1)在训练阶段,对目标跟踪数据集(采用OTB、VOT)和目标检测数据集(COCO)进行数据增强(图像平移、旋转、缩放、裁减、颜色变化)。从视频序列中设定模板帧Ft和待跟踪帧Fc并进行预处理,如图3、图4。模板帧Ft的宽高设为wt、ht,其大小设置为127×127,待跟踪帧Fc的宽高设为wc、hc,其大小设置为255×255。
(2)设计两个并行的ResNet网络分支N1、N2,通过权值共享构成孪生网络NS。模板帧Ft和待跟踪帧Fc分别输入N1、N2,依次经过卷积、池化和ReLU进行特征提取,Conv(Ft)和Conv(Fc)表示特征提取后输出的特征图,如图5。
(3)设计区域推荐网络NR,网络内部存在两个分支Bcls、Breg,一个用于前景和背景的分类分支Bcls,另一个用于推荐框的回归分支Breg。每个分支中各包含一个特征图互相关操作用于生成相应结果。
(4)将特征图Conv(Ft)和Conv(Fc)送入区域推荐网络NR,通过并行的两个卷积层将Conv(Ft)增加为含有不同通道数目的两个分支[Conv(Ft)]cls和[Conv(Ft)]reg;通过并行的两个卷积层将Conv(Fc)增加为含有相同特征图尺寸的两个分支[Conv(Fc)]cls和[Conv(Fc)]reg,如图6。k为特征图上设置的参考框数,k的取值范围为[1,10],本实施例设置为5。
(5)分类分支Bcls和回归分支Breg分别计算互相关,互相关的定义是令模板帧的特征图Conv(Ft)和待跟踪帧的特征图Conv(Fc)进行卷积运算(见公式(1)),得到目标的响应特征图Acls和Areg,如图7,网络输出2k个通道用于目标分类,4k个通道用于目标框回归。
Figure BDA0002253428440000091
表示卷积符号。
Figure BDA0002253428440000092
(6)训练网络时的分类损失Lcls使用交叉熵损失,回归损失Lreg使用具有标准化坐标的平滑L1损失。令y表示标签值,表示实际分类值。令Ax,Ay表示参考框的中心点,Aw,Ah表示参考框的宽高,令Tx,Ty,Tw,Th表示ground truth框,归一化后的误差为:
Figure BDA0002253428440000094
Figure BDA0002253428440000101
Figure BDA0002253428440000102
最后,优化损失函数,λ是一个超参数,用于平衡两类损失。
loss=Lcls+λLreg (5)
(7)孪生网络NS和区域推荐网络NR联合训练,如图8,利用随机梯度下降对误差求偏导,共训练m个epoch(周期),初始学习率为ε1,参考框的比率设置为[r1,r2,r3,…,rp]。
本实施例中m设置为50,初始学习率ε1设置为10-3,学习率每隔10个epoch降低10倍,参考框的比率设置为[0.33,0.5,1,2,3],训练流程如图2。
(8)跟踪过程中,目标在上一帧中的位置记为Pt-1,当前帧以上一帧目标位置Pt-1为初始点在周围进行采样,采样框当前的宽高记为w×h。采样的样本经过孪生网络NS和区域推荐网络NR,计算与目标模板的相似度S,计算目标的具体位置Pt,相似度S的取值范围为[0,1],s为阈值;S∈[0,s)为预测失败,S∈[s,1]为预测成功,本实施例s为0.8;。
(9)为了更快地预测出目标,且使用最少的运算量,设置一个模板尺寸大小的初始采样框,增量式地增长采样框的大小,扩大检测的覆盖区域,直至确定出目标的位置(见公式(6))。base_w、base_h分别表示采样框的初始宽高(本实施例中设置为127、127),α1、α2表示增长系数(本实施例都设置为0.5),取值范围为[0.1,1],w、h分别表示当前采样框的宽高。
Figure BDA0002253428440000111
(10)当系统在连续的N帧内有n帧预测(本实施例N设置为30,n设置为20)失败时,则判断为目标丢失,启动检测功能,重新寻找目标并设置为模板帧Ft;否则判断为误检测,不开启检测功能。T表示阈值,flag表示重新检测开始的标志位。
Figure BDA0002253428440000112
(11)当系统判断检测框连续n帧预测失败后,启动检测框初始化,将检测框置于当前帧图像的中心点Pt,执行增量式的搜索策略(公式(6)),重新检测和跟踪。
Figure BDA0002253428440000113
(12)当系统从目标丢失状态重新定位到目标时,从步骤(8)继续顺序执行,完成持续跟踪,否则继续执行步骤(11),直到重新定位出目标。
采用本发明方法与采用现有技术SiamRPN++(SiamRPN++算法于2018年提出,属于孪生网络算法的改进。在OTB、VOT等数据集上的测试精度位列前茅,综合其跟踪精度和速度来看,是目前最先进的目标跟踪算法)进行对比,如表1所示:
表1在无人机航拍影像上的性能对比
Figure BDA0002253428440000121
航拍影像中的目标容易被背景遮挡,目标丢失频繁。FPS表示每秒的帧数,FPS数值越高,表示系统的运行速度越快。从表格结果可知,本发明改进的方法对于目标被遮挡后的重新检测速度有明显的提升,减少了检测框的误采样计算,具有快速的重新定位能力。
以上所述,仅为本发明具体实施方式的详细说明,而非对本发明的限制。相关技术领域的技术人员在不脱离本发明的原则和范围的情况下,做出的各种替换、变型以及改进均应包含在本发明的保护范围之内。

Claims (6)

1.一种面向航拍影像的目标跟踪方法,其特征在于,包括如下步骤:
S100在上一帧的目标位置周围,执行增量式的搜索策略;
S200采样的样本经过孪生网络和区域推荐网络,得到预测位置的目标;
S300通过计算预测位置的目标与目标模板的相似度判断预测是否成功;
若预测成功,则保存目标位置并用于下一次预测;
若系统在连续的N帧内有n帧预测失败,则判断为目标丢失,进入步骤S400;其中,1≤n≤N;
S400将检测框初始化,并置于当前帧图像的中心点,执行增量式的搜索策略,重新检测和跟踪,直到重新定位到目标。
2.根据权利要求1所述的一种面向航拍影像的目标跟踪方法,其特征在于,所述步骤S100,包括:
目标在上一帧中的位置记为Pt-1,当前帧以上一帧目标位置Pt-1为初始点在周围进行采样,设置一个模板尺寸大小的初始采样框,增量式地增长采样框的大小,扩大检测的覆盖区域,直至确定出目标的位置;
Figure FDA0002253428430000011
其中,base_w、base_h分别表示采样框的初始宽高,α1、α2表示增长系数,取值范围为[0.1,1],w、h分别表示当前采样框的宽高。
3.根据权利要求2所述的一种面向航拍影像的目标跟踪方法,其特征在于,所述步骤S200,包括:
采样框当前的宽高记为w×h,采样的样本经过孪生网络NS和区域推荐网络NR,得到预测位置的目标。
4.根据权利要求3所述的一种面向航拍影像的目标跟踪方法,其特征在于,所述步骤S300,包括:
计算预测位置的目标与目标模板的相似度S,计算目标的具体位置Pt,相似度S的取值范围为[0,1],s为阈值;S∈[0,s)为预测失败,S∈[s,1]为预测成功;
当系统在连续的N帧内有n帧预测失败时,则判断为目标丢失,启动检测功能,重新寻找目标并设置为模板帧Ft
Figure FDA0002253428430000021
其中,T表示阈值,flag表示重新检测开始的标志位。
5.根据权利要求4所述的一种面向航拍影像的目标跟踪方法,其特征在于,所述步骤S400,包括:
当系统判断检测框连续n帧预测失败后,启动检测框初始化,将检测框置于当前帧图像的中心点Pt,执行增量式的搜索策略,重新检测和跟踪;
Figure FDA0002253428430000022
当系统从目标丢失状态重新定位到目标时,从步骤S100继续顺序执行,完成持续跟踪,否则继续执行步骤S400,直到重新定位出目标。
6.根据权利要求1所述的一种面向航拍影像的目标跟踪方法,其特征在于,所述的孪生网络和区域推荐网络的训练方法:
对目标跟踪数据集和目标检测数据集进行数据增强;
从视频序列中设定模板帧Ft和待跟踪帧Fc并进行预处理;模板帧Ft的宽高设为wt、ht,待跟踪帧Fc的宽高设为wc、hc
孪生网络NS由两个并行的ResNet网络分支N1、N2,通过权值共享构成;模板帧Ft和待跟踪帧Fc分别输入N1、N2,依次经过卷积、池化和ReLU进行特征提取,Conv(Ft)和Conv(Fc)表示特征提取后输出的特征图;
区域推荐网络NR,网络内部存在两个分支Bcls、Breg,一个用于前景和背景的分类分支Bcls,另一个用于推荐框的回归分支Breg;每个分支中各包含一个特征图互相关操作用于生成相应结果;
将特征图Conv(Ft)和Conv(Fc)送入区域推荐网络NR,通过并行的两个卷积层将Conv(Ft)增加为含有不同通道数目的两个分支[Conv(Ft)]cls和[Conv(Ft)]reg;通过并行的两个卷积层将Conv(Fc)增加为含有相同特征图尺寸的两个分支[Conv(Fc)]cls和[Conv(Fc)]reg;k为特征图上设置的参考框数,k的取值范围为[1,10];
分类分支Bcls和回归分支Breg分别计算互相关,互相关的定义是令模板帧的特征图Conv(Ft)和待跟踪帧的特征图Conv(Fc)进行卷积运算,得到目标的响应特征图Acls和Areg,网络输出2k个通道用于目标分类,4k个通道用于目标框回归;
Figure FDA0002253428430000032
表示卷积符号;
Figure FDA0002253428430000031
训练网络时的分类损失Lcls使用交叉熵损失,回归损失Lreg使用具有标准化坐标的平滑L1损失;
归一化后的误差为:
Figure FDA0002253428430000041
Figure FDA0002253428430000043
其中,y为标签值,
Figure FDA0002253428430000044
为实际分类值;Ax,Ay表示参考框的中心点,Aw,Ah表示参考框的宽高,Tx,Ty,Tw,Th表示ground truth框,σ表示方差值;
λ是一个超参数,用于平衡两类损失,优化损失函数为:
loss=Lcls+λLreg
孪生网络NS和区域推荐网络NR联合训练,利用随机梯度下降对误差求偏导,共训练m个周期,初始学习率为ε1,参考框的比率设置为[r1,r2,r3,…,rp]。
CN201911043274.8A 2019-10-30 2019-10-30 一种面向航拍影像的目标跟踪方法 Active CN110796679B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911043274.8A CN110796679B (zh) 2019-10-30 2019-10-30 一种面向航拍影像的目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911043274.8A CN110796679B (zh) 2019-10-30 2019-10-30 一种面向航拍影像的目标跟踪方法

Publications (2)

Publication Number Publication Date
CN110796679A true CN110796679A (zh) 2020-02-14
CN110796679B CN110796679B (zh) 2023-04-07

Family

ID=69441999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911043274.8A Active CN110796679B (zh) 2019-10-30 2019-10-30 一种面向航拍影像的目标跟踪方法

Country Status (1)

Country Link
CN (1) CN110796679B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640138A (zh) * 2020-05-28 2020-09-08 济南博观智能科技有限公司 一种目标跟踪方法、装置、设备及存储介质
CN111640136A (zh) * 2020-05-23 2020-09-08 西北工业大学 一种复杂环境中的深度目标跟踪方法
CN111696136A (zh) * 2020-06-09 2020-09-22 电子科技大学 一种基于编解码结构的目标跟踪方法
CN111797716A (zh) * 2020-06-16 2020-10-20 电子科技大学 一种基于Siamese网络的单目标跟踪方法
CN111931685A (zh) * 2020-08-26 2020-11-13 北京建筑大学 一种基于双向跟踪策略的视频卫星移动目标检测方法
CN113536933A (zh) * 2021-06-17 2021-10-22 杭州电子科技大学 一种目标跟踪型水下航行器
CN113743455A (zh) * 2021-07-23 2021-12-03 北京迈格威科技有限公司 目标检索方法、装置、电子设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052555A1 (en) * 2011-08-30 2014-02-20 Digimarc Corporation Methods and arrangements for identifying objects
CN107545582A (zh) * 2017-07-04 2018-01-05 深圳大学 基于模糊逻辑的视频多目标跟踪方法及装置
CN109191491A (zh) * 2018-08-03 2019-01-11 华中科技大学 基于多层特征融合的全卷积孪生网络的目标跟踪方法及系统
CN109284669A (zh) * 2018-08-01 2019-01-29 辽宁工业大学 基于Mask RCNN的行人检测方法
CN109784155A (zh) * 2018-12-10 2019-05-21 西安电子科技大学 基于验证和纠错机制的视觉目标跟踪方法、智能机器人
CN110021033A (zh) * 2019-02-22 2019-07-16 广西师范大学 一种基于金字塔孪生网络的目标跟踪方法
CN110210551A (zh) * 2019-05-28 2019-09-06 北京工业大学 一种基于自适应主体敏感的视觉目标跟踪方法
CN110276780A (zh) * 2019-06-17 2019-09-24 广州织点智能科技有限公司 一种多目标跟踪方法、装置、电子设备及存储介质
CN110298404A (zh) * 2019-07-02 2019-10-01 西南交通大学 一种基于三重孪生哈希网络学习的目标跟踪方法
CN110335290A (zh) * 2019-06-04 2019-10-15 大连理工大学 基于注意力机制的孪生候选区域生成网络目标跟踪方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140052555A1 (en) * 2011-08-30 2014-02-20 Digimarc Corporation Methods and arrangements for identifying objects
CN107545582A (zh) * 2017-07-04 2018-01-05 深圳大学 基于模糊逻辑的视频多目标跟踪方法及装置
CN109284669A (zh) * 2018-08-01 2019-01-29 辽宁工业大学 基于Mask RCNN的行人检测方法
CN109191491A (zh) * 2018-08-03 2019-01-11 华中科技大学 基于多层特征融合的全卷积孪生网络的目标跟踪方法及系统
CN109784155A (zh) * 2018-12-10 2019-05-21 西安电子科技大学 基于验证和纠错机制的视觉目标跟踪方法、智能机器人
CN110021033A (zh) * 2019-02-22 2019-07-16 广西师范大学 一种基于金字塔孪生网络的目标跟踪方法
CN110210551A (zh) * 2019-05-28 2019-09-06 北京工业大学 一种基于自适应主体敏感的视觉目标跟踪方法
CN110335290A (zh) * 2019-06-04 2019-10-15 大连理工大学 基于注意力机制的孪生候选区域生成网络目标跟踪方法
CN110276780A (zh) * 2019-06-17 2019-09-24 广州织点智能科技有限公司 一种多目标跟踪方法、装置、电子设备及存储介质
CN110298404A (zh) * 2019-07-02 2019-10-01 西南交通大学 一种基于三重孪生哈希网络学习的目标跟踪方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XING CHEN: ""Multi-granularity Hierarchical Attention Siamese Network for Visual Tracking"" *
ZHENGNING WANG: ""Cylinder radius determination of cylindrical panoramic image mosaic"" *
孙汉林: ""基于同时进行目标检测与特征提取的深度学习网络的在线多目标行人跟踪"" *
蒋巍: ""基于智能视频监控系统的运动目标检测和跟踪"" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640136A (zh) * 2020-05-23 2020-09-08 西北工业大学 一种复杂环境中的深度目标跟踪方法
CN111640138A (zh) * 2020-05-28 2020-09-08 济南博观智能科技有限公司 一种目标跟踪方法、装置、设备及存储介质
CN111640138B (zh) * 2020-05-28 2023-10-27 济南博观智能科技有限公司 一种目标跟踪方法、装置、设备及存储介质
CN111696136A (zh) * 2020-06-09 2020-09-22 电子科技大学 一种基于编解码结构的目标跟踪方法
CN111696136B (zh) * 2020-06-09 2023-06-16 电子科技大学 一种基于编解码结构的目标跟踪方法
CN111797716A (zh) * 2020-06-16 2020-10-20 电子科技大学 一种基于Siamese网络的单目标跟踪方法
CN111797716B (zh) * 2020-06-16 2022-05-03 电子科技大学 一种基于Siamese网络的单目标跟踪方法
CN111931685A (zh) * 2020-08-26 2020-11-13 北京建筑大学 一种基于双向跟踪策略的视频卫星移动目标检测方法
CN113536933A (zh) * 2021-06-17 2021-10-22 杭州电子科技大学 一种目标跟踪型水下航行器
CN113743455A (zh) * 2021-07-23 2021-12-03 北京迈格威科技有限公司 目标检索方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN110796679B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN110796679B (zh) 一种面向航拍影像的目标跟踪方法
CN113065558B (zh) 一种结合注意力机制的轻量级小目标检测方法
CN110427839B (zh) 基于多层特征融合的视频目标检测方法
CN109146921B (zh) 一种基于深度学习的行人目标跟踪方法
CN106887011B (zh) 一种基于cnn和cf的多模板目标跟踪方法
CN111144364B (zh) 一种基于通道注意更新机制的孪生网络目标跟踪方法
CN110084836B (zh) 基于深度卷积特征分层响应融合的目标跟踪方法
CN110889863B (zh) 一种基于目标感知相关滤波的目标跟踪方法
CN110555868A (zh) 一种复杂地面背景下运动小目标检测方法
CN115273154B (zh) 基于边缘重构的热红外行人检测方法、系统及存储介质
CN110533661A (zh) 基于图像特征级联的自适应实时闭环检测方法
CN112966553A (zh) 基于孪生网络的强耦合目标跟踪方法、装置、介质及设备
CN111723747A (zh) 一种应用于嵌入式平台轻量型高效率的目标检测方法
CN115471525A (zh) 基于融合孪生网络与卡尔曼滤波的目标跟踪方法及系统
CN111639570A (zh) 一种基于运动模型和单目标线索的在线多目标跟踪方法
CN111539987A (zh) 基于判别模型的遮挡检测系统及方法
CN114627156A (zh) 消费级无人机视频运动目标精准追踪方法
CN110660077A (zh) 一种融合多个特征的多尺度目标跟踪方法
CN114266805A (zh) 一种用于无人机目标跟踪的孪生区域建议网络模型
CN112883928A (zh) 一种基于深度神经网络的多目标追踪算法
CN116958057A (zh) 一种策略引导的视觉回环检测的方法
CN111339824A (zh) 基于机器视觉的路面抛洒物检测方法
CN113450321B (zh) 基于边缘检测的单阶段目标检测方法
CN115880332A (zh) 一种低空飞行器视角的目标跟踪方法
Pillai et al. Fine-Tuned EfficientNetB4 Transfer Learning Model for Weather Classification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant