CN110796270A - 一种机器学习模型选择方法 - Google Patents
一种机器学习模型选择方法 Download PDFInfo
- Publication number
- CN110796270A CN110796270A CN201911034545.3A CN201911034545A CN110796270A CN 110796270 A CN110796270 A CN 110796270A CN 201911034545 A CN201911034545 A CN 201911034545A CN 110796270 A CN110796270 A CN 110796270A
- Authority
- CN
- China
- Prior art keywords
- model
- test
- performance
- algorithm
- resource consumption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010801 machine learning Methods 0.000 title claims abstract description 30
- 238000010187 selection method Methods 0.000 title claims 6
- 238000012360 testing method Methods 0.000 claims abstract description 125
- 238000012549 training Methods 0.000 claims abstract description 53
- 238000011156 evaluation Methods 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000012544 monitoring process Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 13
- 238000003860 storage Methods 0.000 claims description 29
- 230000006870 function Effects 0.000 claims description 22
- 230000002159 abnormal effect Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000005457 optimization Methods 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 3
- 238000012502 risk assessment Methods 0.000 claims description 3
- 238000013179 statistical model Methods 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000007477 logistic regression Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
真实类型/推理类型 | C<sub>1</sub> | C<sub>2</sub> | C<sub>3</sub> |
C1 | 0 | 0.12 | 0.90 |
C2 | 0.18 | 0 | 0.80 |
C3 | 0.21 | 0.35 | 0 |
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911034545.3A CN110796270A (zh) | 2019-10-25 | 2019-10-25 | 一种机器学习模型选择方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911034545.3A CN110796270A (zh) | 2019-10-25 | 2019-10-25 | 一种机器学习模型选择方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110796270A true CN110796270A (zh) | 2020-02-14 |
Family
ID=69441863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911034545.3A Pending CN110796270A (zh) | 2019-10-25 | 2019-10-25 | 一种机器学习模型选择方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110796270A (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111242304A (zh) * | 2020-03-05 | 2020-06-05 | 北京物资学院 | O-ran系统中基于联邦学习的人工智能模型处理方法和装置 |
CN111415015A (zh) * | 2020-03-27 | 2020-07-14 | 支付宝(杭州)信息技术有限公司 | 业务模型训练方法、装置、系统及电子设备 |
CN111582498A (zh) * | 2020-04-30 | 2020-08-25 | 重庆富民银行股份有限公司 | 基于机器学习的qa辅助决策方法及系统 |
CN112232019A (zh) * | 2020-10-19 | 2021-01-15 | 上海国微思尔芯技术股份有限公司 | 一种逻辑资源评估方法 |
CN112529078A (zh) * | 2020-12-07 | 2021-03-19 | 杭州海康威视数字技术股份有限公司 | 一种业务处理方法、装置及设备 |
CN112817839A (zh) * | 2020-09-08 | 2021-05-18 | 腾讯科技(深圳)有限公司 | 人工智能引擎测试方法、平台及终端、计算设备和存储介质 |
CN113065658A (zh) * | 2021-03-30 | 2021-07-02 | 山东英信计算机技术有限公司 | 一种提高人工智能推论结果正确率的方法及系统 |
CN113449753A (zh) * | 2020-03-26 | 2021-09-28 | 中国电信股份有限公司 | 业务风险预测方法、装置和系统 |
CN114331238A (zh) * | 2022-03-17 | 2022-04-12 | 北京航天晨信科技有限责任公司 | 智能模型算法优选方法、系统、存储介质及计算机设备 |
CN114443506A (zh) * | 2022-04-07 | 2022-05-06 | 浙江大学 | 一种用于测试人工智能模型的方法及装置 |
CN114492214A (zh) * | 2022-04-18 | 2022-05-13 | 支付宝(杭州)信息技术有限公司 | 利用机器学习的选择算子确定、策略组合优化方法及装置 |
WO2023274213A1 (zh) * | 2021-06-29 | 2023-01-05 | 华为技术有限公司 | 一种数据处理方法及相关装置 |
US12112287B1 (en) * | 2022-09-28 | 2024-10-08 | Amazon Technologies, Inc. | Automated estimation of resources related to testing within a service provider network |
-
2019
- 2019-10-25 CN CN201911034545.3A patent/CN110796270A/zh active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111242304A (zh) * | 2020-03-05 | 2020-06-05 | 北京物资学院 | O-ran系统中基于联邦学习的人工智能模型处理方法和装置 |
CN113449753A (zh) * | 2020-03-26 | 2021-09-28 | 中国电信股份有限公司 | 业务风险预测方法、装置和系统 |
CN113449753B (zh) * | 2020-03-26 | 2024-01-02 | 天翼云科技有限公司 | 业务风险预测方法、装置和系统 |
CN111415015A (zh) * | 2020-03-27 | 2020-07-14 | 支付宝(杭州)信息技术有限公司 | 业务模型训练方法、装置、系统及电子设备 |
CN111582498A (zh) * | 2020-04-30 | 2020-08-25 | 重庆富民银行股份有限公司 | 基于机器学习的qa辅助决策方法及系统 |
CN112817839A (zh) * | 2020-09-08 | 2021-05-18 | 腾讯科技(深圳)有限公司 | 人工智能引擎测试方法、平台及终端、计算设备和存储介质 |
CN112817839B (zh) * | 2020-09-08 | 2024-03-12 | 腾讯科技(深圳)有限公司 | 人工智能引擎测试方法、平台及终端、计算设备和存储介质 |
CN112232019A (zh) * | 2020-10-19 | 2021-01-15 | 上海国微思尔芯技术股份有限公司 | 一种逻辑资源评估方法 |
CN112232019B (zh) * | 2020-10-19 | 2023-03-07 | 上海思尔芯技术股份有限公司 | 一种逻辑资源评估方法 |
CN112529078A (zh) * | 2020-12-07 | 2021-03-19 | 杭州海康威视数字技术股份有限公司 | 一种业务处理方法、装置及设备 |
CN113065658A (zh) * | 2021-03-30 | 2021-07-02 | 山东英信计算机技术有限公司 | 一种提高人工智能推论结果正确率的方法及系统 |
WO2023274213A1 (zh) * | 2021-06-29 | 2023-01-05 | 华为技术有限公司 | 一种数据处理方法及相关装置 |
CN114331238A (zh) * | 2022-03-17 | 2022-04-12 | 北京航天晨信科技有限责任公司 | 智能模型算法优选方法、系统、存储介质及计算机设备 |
CN114443506B (zh) * | 2022-04-07 | 2022-06-10 | 浙江大学 | 一种用于测试人工智能模型的方法及装置 |
CN114443506A (zh) * | 2022-04-07 | 2022-05-06 | 浙江大学 | 一种用于测试人工智能模型的方法及装置 |
CN114492214A (zh) * | 2022-04-18 | 2022-05-13 | 支付宝(杭州)信息技术有限公司 | 利用机器学习的选择算子确定、策略组合优化方法及装置 |
US12112287B1 (en) * | 2022-09-28 | 2024-10-08 | Amazon Technologies, Inc. | Automated estimation of resources related to testing within a service provider network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110796270A (zh) | 一种机器学习模型选择方法 | |
Li et al. | Three-way decisions based software defect prediction | |
Liu et al. | Failure mode and effects analysis using D numbers and grey relational projection method | |
Su et al. | An evaluation of the robustness of MTS for imbalanced data | |
CN107634857B (zh) | 基于svm的故障检测模型构建及评估方法 | |
Rezaeipanah et al. | Providing a new approach to increase fault tolerance in cloud computing using fuzzy logic | |
Jin et al. | Artificial neural network-based metric selection for software fault-prone prediction model | |
CN111625516A (zh) | 检测数据状态的方法、装置、计算机设备和存储介质 | |
Hu et al. | System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization | |
Gupta et al. | A supervised deep learning framework for proactive anomaly detection in cloud workloads | |
CN116501444B (zh) | 智能网联汽车域控制器虚拟机异常云边协同监测和恢复系统及方法 | |
US20230334300A1 (en) | Methods and systems for time-series classification using reservoir-based spiking neural network | |
Scherger et al. | The OWA distance operator and its application in business failure | |
Azyus et al. | Determining the method of predictive maintenance for aircraft engine using machine learning | |
Terceño et al. | Prediction of business failure with fuzzy models | |
Hafzan et al. | Review on predictive modelling techniques for identifying students at risk in university environment | |
Georgoulopoulos et al. | A survey on hardware failure prediction of servers using machine learning and deep learning | |
Kumar et al. | Model-based Software Defect Prediction from Software Quality Characterized Code Features by using Stacking Ensemble Learning. | |
Chaibub Neto | A causal look at statistical definitions of discrimination | |
US11544620B2 (en) | System and method for context-based training of a machine learning model | |
Yadav | Software reliability prediction by using deep learning technique | |
Kingetsu et al. | Born-again decision boundary: Unsupervised concept drift detection by inspector neural network | |
Li | Identifying the Optimal Machine Learning Model for Predicting Car Insurance Claims: A Comparative Study Utilising Advanced Techniques | |
CN115831339B (zh) | 基于深度学习的医疗系统风险管控事前预测方法、系统 | |
Zada et al. | Classification of software failure incidents using SVM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230322 Address after: 528313 401-118, 4th Floor, Building 18, Shunlian Machinery City, No. 18, Xingye 4th Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town, Shunde District, Foshan City, Guangdong Province Applicant after: Linker Technology (Foshan) Co.,Ltd. Address before: 1303-1305, 13 / F, block B2, building 9, Shenzhen Bay science and technology ecological park, 1819 Shahe West Road, Yuehai street, Nanshan District, Shenzhen, Guangdong 518000 Applicant before: SHENZHEN COOS Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230523 Address after: 518000 Building A, Building 1, Shenzhen International Innovation Valley, Dashi 1st Road, Xili Community, Xili Street, Nanshan District, Shenzhen City, Guangdong Province, 1001 Applicant after: Shenzhen Qianshu Technology Co.,Ltd. Address before: 528313 401-118, 4th Floor, Building 18, Shunlian Machinery City, No. 18, Xingye 4th Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town, Shunde District, Foshan City, Guangdong Province Applicant before: Linker Technology (Foshan) Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20241017 Address after: Building 3, Xunmei Technology Plaza, No. 8 Keyuan Road, Science Park Community, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province, 518000, China 16293 Applicant after: Shenzhen Yuanyishu Intelligent Technology Co.,Ltd. Country or region after: China Address before: 518000 Building A, Building 1, Shenzhen International Innovation Valley, Dashi 1st Road, Xili Community, Xili Street, Nanshan District, Shenzhen City, Guangdong Province, 1001 Applicant before: Shenzhen Qianshu Technology Co.,Ltd. Country or region before: China |