CN110794682A - Thrust distribution method for multi-propeller rotatable ship - Google Patents
Thrust distribution method for multi-propeller rotatable ship Download PDFInfo
- Publication number
- CN110794682A CN110794682A CN201911171621.5A CN201911171621A CN110794682A CN 110794682 A CN110794682 A CN 110794682A CN 201911171621 A CN201911171621 A CN 201911171621A CN 110794682 A CN110794682 A CN 110794682A
- Authority
- CN
- China
- Prior art keywords
- propeller
- thrust
- population
- matrix
- ship
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000005457 optimization Methods 0.000 claims abstract description 11
- 230000014759 maintenance of location Effects 0.000 claims abstract description 7
- 230000002068 genetic effect Effects 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 29
- 230000035772 mutation Effects 0.000 claims description 9
- 230000033001 locomotion Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 3
- 210000000349 chromosome Anatomy 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 3
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提出了一种用于可回转多螺旋桨船的推力分配方法,首先建立了船舶三自由度推力分配模型,然后建立了关于螺旋桨能耗、机械磨损、奇异性和推力误差的多目标优化目标函数及约束条件,最后利用改进的带有精英保留策略的快速非支配遗传算法对所提出的问题进行求解。其优点是:可以有效地降低推进系统的能耗和机械损耗,并且可以保证船舶控制的精度。
The present invention proposes a thrust distribution method for a rotatable multi-screw ship. First, a three-degree-of-freedom thrust distribution model of the ship is established, and then a multi-objective optimization objective regarding propeller energy consumption, mechanical wear, singularity and thrust error is established. Finally, the proposed problem is solved by an improved fast non-dominated genetic algorithm with elite retention strategy. The advantages are: the energy consumption and mechanical loss of the propulsion system can be effectively reduced, and the precision of ship control can be guaranteed.
Description
技术领域technical field
涉及船舶控制领域,具体涉及一种用于可回转多螺旋桨船的推力分配方法。The invention relates to the field of ship control, in particular to a thrust distribution method for a rotatable multi-propeller ship.
背景技术Background technique
可回转螺旋桨可以绕轴线进行回转,可以在任何方向获得最大推力,它可以使船舶原地回转、横向移动、急速后退等特殊驾驶操作。可回转螺旋桨适合于各种工程船舶,例如拖轮、浮动起重船、挖泥船、渡轮、作业用平底船等,具有广阔的市场应用前景和军事意义。为了提高这些工程船舶的机动性能、效率及系统可靠性,通常配置多于两个螺旋桨。然而,一方面,由于船舶航行惯性力与螺旋桨推力的互相作用,使多螺旋桨推进运行状态呈现出非对称且不规则动力紊乱特性,各桨不规则特性的叠加,也给船舶航向控制带来了困难;另一方面,海况作用下推进负荷剧烈波动,使得各个螺旋桨之间的动力分配极不均衡,这给船舶的航速控制带来了难度。因此,如何精确分配每个可回转螺旋桨的推力和角度成为了关键问题。The rotatable propeller can rotate around the axis, and can obtain the maximum thrust in any direction. It can make the ship turn on the spot, move laterally, and retreat rapidly and other special driving operations. The rotatable propeller is suitable for all kinds of engineering ships, such as tugboats, floating cranes, dredgers, ferries, working flat-bottomed boats, etc., and has broad market application prospects and military significance. In order to improve the maneuverability, efficiency and system reliability of these engineering ships, more than two propellers are usually configured. However, on the one hand, due to the interaction between the inertial force of the ship and the thrust of the propeller, the multi-propeller propulsion operating state presents asymmetric and irregular dynamic turbulence characteristics, and the superposition of the irregular characteristics of each propeller also brings about the ship heading control On the other hand, the propulsion load fluctuates violently under the action of sea conditions, which makes the power distribution among the propellers extremely unbalanced, which brings difficulties to the speed control of the ship. Therefore, how to precisely distribute the thrust and angle of each rotatable propeller becomes a key issue.
发明内容SUMMARY OF THE INVENTION
本发明提出了一种用于可回转多螺旋桨船的推力分配方法,首先根据条件建立了船舶三自由度推力分配模型,然后建立了关于螺旋桨能耗、磨损、奇异性和推力误差的多目标优化目标函数及约束条件,最后利用改进的带有精英保留策略的快速非支配多目标优化算法对所提出的问题进行求解。The present invention proposes a thrust distribution method for a rotatable multi-propeller ship. First, a three-degree-of-freedom thrust distribution model of the ship is established according to conditions, and then a multi-objective optimization of propeller energy consumption, wear, singularity and thrust error is established. The objective function and constraints are obtained. Finally, the proposed problem is solved by an improved fast non-dominated multi-objective optimization algorithm with elite retention strategy.
主要包括以下步骤:It mainly includes the following steps:
步骤1、建立三自由度推力分配模型;Step 1. Establish a three-degree-of-freedom thrust distribution model;
垂荡、横摇、纵摇方向上的运动忽略不计,在纵荡、横荡和艏摇方向上的三自由度运动的船舶动力学模型可归结如下:The motions in the heave, roll, and pitch directions are ignored, and the ship dynamics model of the three-degree-of-freedom motion in the heave, roll, and yaw directions can be summarized as follows:
其中,η=[x,y,ψ]T为船舶在大地坐标系XEOYE下的实际位置向量,ηd为期望位置向量。v=[u,v,r]T为船体坐标系XOY下的实际速度向量,vd为期望速度向量。R(ψ)为旋转矩阵,M是船体的惯性矩阵,C(v)代表科氏向心力矩阵,D(v)为阻尼矩阵。τ为船舶推进系统产生的实际合力及合力矩,τd为期望合力及合力矩。Among them, η=[x, y, ψ] T is the actual position vector of the ship in the geodetic coordinate system X E OY E , and η d is the expected position vector. v=[u, v, r] T is the actual velocity vector in the hull coordinate system XOY, and v d is the desired velocity vector. R(ψ) is the rotation matrix, M is the inertia matrix of the hull, C(v) is the Coriolis centripetal force matrix, and D(v) is the damping matrix. τ is the actual resultant force and resultant moment generated by the ship propulsion system, and τd is the expected resultant force and resultant moment.
对于配备可回转多螺旋桨的船舶,τ由螺旋桨的工作状态和推力结构组成:For ships equipped with swivel multi-propellers, τ consists of the working state of the propeller and the thrust structure:
τ=B(α)f=B(α)[f1,f2,f3,f4]T (3)τ=B(α)f=B(α)[f 1 , f 2 , f 3 , f 4 ] T (3)
其中,B(α)∈R3×4推力结构矩阵,f为各个螺旋桨的推力组成的推力矩阵,fi为螺旋桨i的推力。全回转螺旋桨和导管式螺旋桨的推力结构矩阵分别为Bazi(αi)和Btun:Among them, B(α)∈R 3×4 thrust structure matrix, f is the thrust matrix composed of the thrust of each propeller, f i is the thrust of the propeller i. The thrust structure matrices of the azimuth propeller and the ducted propeller are B azi (α i ) and B tun , respectively:
B(α)=[Bazi(α1),Bazi(α2),Bazi(α3),Btun] (5)B(α) = [ Bazi (α1),Bazi( α2 ), Bazi(α3),Btun ] ( 5 )
i为螺旋桨的序号,i=1,2,3,4。αi为螺旋桨i的角度。li=[lxi,lyi]T为船体坐标系XOY下螺旋桨i安装在船体上的位置坐标,lxi为螺旋桨i的X坐标,lyi为螺旋桨i的Y坐标。i is the serial number of the propeller, i=1,2,3,4. α i is the angle of the propeller i. l i =[l xi , l yi ] T is the position coordinate of the propeller i installed on the hull under the hull coordinate system XOY, l xi is the X coordinate of the propeller i, and l yi is the Y coordinate of the propeller i.
步骤2、建立推力分配约束条件;Step 2. Establish thrust distribution constraints;
其中,螺旋桨i最大输出正向、反向推力分别为fimax和fimin,fi0是前一步螺旋桨i产生的推力,fi是当前时刻的推力。αimin和αimax分别是螺旋桨旋转角度的上限和下限,αi0是前一步螺旋桨i的角度,αi是当前时刻螺旋桨的角度。Δfimin和Δfimax分别为螺旋桨i的推力变化率的下限和上限。Δαimin和Δαimax分别为螺旋桨i的角度变化率的下限和上限。Among them, the maximum output forward and reverse thrusts of the propeller i are f imax and f imin , respectively, f i0 is the thrust generated by the propeller i in the previous step, and f i is the thrust at the current moment. α imin and α imax are the upper and lower limits of the propeller rotation angle, respectively, α i0 is the angle of the propeller i in the previous step, and α i is the angle of the propeller at the current moment. Δfimin and Δfimax are the lower and upper limits of the thrust change rate of the propeller i, respectively. Δα imin and Δα imax are the lower limit and the upper limit of the angle change rate of the propeller i, respectively.
步骤3、建立推力分配优化目标;Step 3. Establish thrust distribution optimization objective;
其中,Pw为多螺旋桨的整体功耗,ci为螺旋桨i的功率系数;Je为推力误差惩罚项,s为实际推力与理想推力之间的误差,Q为误差惩罚项的权重矩阵。JΩ为角度变化惩罚项,Ω为角度变化惩罚项的权重矩阵。Js为奇异结构惩罚项,δ为奇异结构惩罚项的权重矩阵,ε为常数。Among them, P w is the overall power consumption of the multi-propeller, c i is the power coefficient of the propeller i; J e is the thrust error penalty term, s is the error between the actual thrust and the ideal thrust, and Q is the weight matrix of the error penalty term. J Ω is the angle change penalty item, and Ω is the weight matrix of the angle change penalty item. J s is the singular structure penalty term, δ is the weight matrix of the singular structure penalty term, and ε is a constant.
步骤4、使用改进的带有精英保留策略的快速非支配排序遗传算法求解推力分配目标函数,包括以下子步骤:Step 4. Use the improved fast non-dominated sorting genetic algorithm with elite retention strategy to solve the thrust distribution objective function, including the following sub-steps:
4-1)选择螺旋桨的角度和推力作为决策变量,设计染色体Ch={f1,f2,f3,f4,α1,α2,α3};初始化种群,产生种群规模为N的父代种群Pt,t的初始值为0;4-1) Select the angle and thrust of the propeller as decision variables, and design the chromosome Ch={f 1 , f 2 , f 3 , f 4 , α 1 , α 2 , α 3 }; initialize the population to generate a population size of N Parent population P t , the initial value of t is 0;
4-2)对父代种群Pt进行多项式变异产生子代种群Qt;4-2) Perform polynomial mutation on the parent population P t to generate the offspring population Q t ;
4-3)将父代种群Pt与子代种群Qt进行融合,得到临时融合种群Rt;4-3) fuse the parent population P t with the child population Q t to obtain a temporary fusion population R t ;
4-4)对Rt进行快速非支配排序,得到不同的帕累托前沿Fj。种群中的N个个体最多分为N个帕累托前沿,即j=1,2...N;4-4) Perform fast non-dominated sorting on R t to obtain different Pareto frontiers F j . N individuals in the population are divided into at most N Pareto frontiers, that is, j=1,2...N;
4-5)对每个前沿Fj中的个体按照拥挤距离降序排列,拥挤距离Dk的计算方式如下:4-5) Arrange the individuals in each frontier F j in descending order of crowding distance. The calculation method of crowding distance Dk is as follows:
其中,|Fj|为前沿Fj中的个体数量。where |F j | is the number of individuals in frontier F j .
4-6)Pt+1的初始种群中无个体。选择Fj的前N-Pt+1放入Pt+1中。如果Fj+Pt+1<N,Pt+1=Pt+1∪Fj,j=j+1,返回执行4-4);否则,返回执行4-5);4-6) There are no individuals in the initial population of P t+1 . The first NP t+1 of F j is selected and placed in P t+1 . If F j +P t+1 <N, P t+1 =P t+1 ∪F j , j=j+1, return to 4-4); otherwise, return to 4-5);
4-7)Gmax为进化的最大代数,若t≥Gmax,输出最优解集,优化算法结束;否则,t=t+1,将Pt进行交叉、差分变异操作,生成种群Qt,并循环执行步骤4-3),直至结束。差分变异的方式如下:4-7) G max is the maximum algebra of evolution, if t ≥ G max , output the optimal solution set, and the optimization algorithm ends; otherwise, t=t+1, perform crossover and differential mutation operations on P t to generate a population Q t , and repeat steps 4-3) until the end. The way of differential mutation is as follows:
Qt=βPbest+(1-β)Pt (9)Q t =βP best +(1-β)P t (9)
其中,β∈[0,1],Pbest为前沿F1中的最佳个体。Among them, β∈ [0,1], Pbest is the best individual in frontier F1.
本方法具有如下效果和优点:This method has the following effects and advantages:
所提出的推力分配方法得到的推力不会发生频繁跳变,可以实现对船舶期望力和力矩的准确跟踪。该推力分配方法控制螺旋桨的角度不会反复改变,避免推进装置的机械磨损;可以有效地降低推进系统的能耗,并且可以保证船舶控制的精度和实时性。The thrust obtained by the proposed thrust distribution method does not have frequent jumps, and can accurately track the expected force and moment of the ship. The thrust distribution method controls the angle of the propeller to not change repeatedly, and avoids the mechanical wear of the propulsion device; it can effectively reduce the energy consumption of the propulsion system, and can ensure the precision and real-time performance of the ship control.
附图说明Description of drawings
图1为多螺旋桨船舶的推力分配示意图Figure 1 is a schematic diagram of the thrust distribution of a multi-propeller ship
图2为多螺旋桨分布示意图Figure 2 is a schematic diagram of the distribution of multi-propellers
图3改进的带有精英保留策略的快速非支配排序遗传算法流程图Fig. 3 Flow chart of improved fast non-dominated sorting genetic algorithm with elite retention strategy
具体实施方式Detailed ways
本发明提出了一种用于可回转多螺旋桨船的推力分配方法,首先根据条件建立了船舶三自由度推力分配模型,然后建立了关于螺旋桨能耗、磨损、奇异性和推力误差的多目标优化目标函数及约束条件,最后利用改进的带有精英保留策略的快速非支配多目标优化算法对所提出的问题进行求解。包括以下步骤:The present invention proposes a thrust distribution method for a rotatable multi-propeller ship. First, a three-degree-of-freedom thrust distribution model of the ship is established according to conditions, and then a multi-objective optimization of propeller energy consumption, wear, singularity and thrust error is established. The objective function and constraints are obtained. Finally, the proposed problem is solved by an improved fast non-dominated multi-objective optimization algorithm with elite retention strategy. Include the following steps:
步骤1、建立三自由度推力分配模型;Step 1. Establish a three-degree-of-freedom thrust distribution model;
垂荡、横摇、纵摇方向上的运动忽略不计,在纵荡、横荡和艏摇方向上的三自由度运动的船舶动力学模型可归结如下:The motions in the heave, roll, and pitch directions are ignored, and the ship dynamics model of the three-degree-of-freedom motion in the heave, roll, and yaw directions can be summarized as follows:
其中,η=[x,y,ψ]T为船舶在大地坐标系XEOYE下的实际位置向量,ηd为期望位置向量。v=[u,v,r]T为船体坐标系XOY下的实际速度向量,vd为期望速度向量。R(ψ)为旋转矩阵,M是船体的惯性矩阵,C(v)代表科氏向心力矩阵,D(v)为阻尼矩阵。τ为船舶推进系统产生的实际合力及合力矩,τd为期望合力及合力矩。Among them, η=[x, y, ψ] T is the actual position vector of the ship in the geodetic coordinate system X E OY E , and η d is the expected position vector. v=[u, v, r] T is the actual velocity vector in the hull coordinate system XOY, and v d is the desired velocity vector. R(ψ) is the rotation matrix, M is the inertia matrix of the hull, C(v) is the Coriolis centripetal force matrix, and D(v) is the damping matrix. τ is the actual resultant force and resultant moment generated by the ship propulsion system, and τd is the expected resultant force and resultant moment.
如图1所示,推力分配算法的目的是将船舶运动控制器计算的控制力及力矩分配到各个螺旋桨上,使各个螺旋桨产生的实际合力及合力矩τ能够满足τd。As shown in Figure 1, the purpose of the thrust distribution algorithm is to distribute the control force and torque calculated by the ship motion controller to each propeller, so that the actual resultant force and resultant moment τ generated by each propeller can satisfy τ d .
对于配备可回转多螺旋桨的船舶,螺旋桨的配置如图2所示,τ由螺旋桨的工作状态和推力结构组成:For ships equipped with rotatable multi-propellers, the configuration of the propellers is shown in Figure 2, and τ consists of the working state of the propellers and the thrust structure:
τ=B(α)f=B(α)[f1,f2,f3,f4]T (3)τ=B(α)f=B(α)[f 1 , f 2 , f 3 , f 4 ] T (3)
其中,B(α)∈R3×4推力结构矩阵,f为各个螺旋桨的推力组成的推力矩阵,fi为螺旋桨i的推力。导管式螺旋桨由于其方向固定,其推力结构矩阵仅与螺旋桨所在位置有关。全回转螺旋桨和导管式螺旋桨的推力结构矩阵分别为Bazi(αi)和Btun:Among them, B(α)∈R 3×4 thrust structure matrix, f is the thrust matrix composed of the thrust of each propeller, f i is the thrust of the propeller i. Due to the fixed direction of the ducted propeller, its thrust structure matrix is only related to the position of the propeller. The thrust structure matrices of the azimuth propeller and the ducted propeller are B azi (α i ) and B tun , respectively:
B(α)=[Bazi(α1),Bazi(α2),Bazi(α3),Btun] (5)B(α) = [ Bazi (α1),Bazi( α2 ), Bazi(α3),Btun ] ( 5 )
i为螺旋桨的序号,i=1,2,3,4。αi为螺旋桨i的角度。li=[lxi,lyi]T为船体坐标系XOY下螺旋桨i安装在船体上的位置坐标,lxi为螺旋桨i的X坐标,lyi为螺旋桨i的Y坐标。i is the serial number of the propeller, i=1,2,3,4. α i is the angle of the propeller i. l i =[l xi , l yi ] T is the position coordinate of the propeller i installed on the hull under the hull coordinate system XOY, l xi is the X coordinate of the propeller i, and l yi is the Y coordinate of the propeller i.
步骤2、建立推力分配约束条件;Step 2. Establish thrust distribution constraints;
其中,螺旋桨i最大输出正向、反向推力分别为fimax和fimin,fi0是前一步螺旋桨i产生的推力,fi是当前时刻的推力。αimin和αimax分别是螺旋桨旋转角度的上限和下限,αi0是前一步螺旋桨i的角度,αi是当前时刻螺旋桨的角度。Δfimin和Δfimax分别为螺旋桨i的推力变化率的下限和上限,Δαimin和Δαimax分别为螺旋桨i的角度变化率的下限和上限。Among them, the maximum output forward and reverse thrusts of the propeller i are f imax and f imin , respectively, f i0 is the thrust generated by the propeller i in the previous step, and f i is the thrust at the current moment. α imin and α imax are the upper and lower limits of the propeller rotation angle, respectively, α i0 is the angle of the propeller i in the previous step, and α i is the angle of the propeller at the current moment. Δf imin and Δf imax are the lower and upper limits of the thrust change rate of the propeller i, respectively, and Δα imin and Δα imax are the lower and upper limits of the angular change rate of the propeller i, respectively.
步骤3、建立推力分配优化目标;Step 3. Establish thrust distribution optimization objective;
其中,Pw为多螺旋桨的整体功耗,ci为螺旋桨i的功率系数;Je为推力误差惩罚项,s为实际推力与理想推力之间的误差,Q为误差惩罚项的权重矩阵。JΩ为角度变化惩罚项,Ω为角度变化惩罚项的权重矩阵。Js为奇异结构惩罚项,δ为奇异结构惩罚项的权重矩阵,ε为常数。推力分配的目标是在保证推力误差足够小的前提下减少船舶螺旋桨的整体功耗并且避免机械磨损和推力奇异结构。Among them, P w is the overall power consumption of the multi-propeller, c i is the power coefficient of the propeller i; J e is the thrust error penalty term, s is the error between the actual thrust and the ideal thrust, and Q is the weight matrix of the error penalty term. J Ω is the angle change penalty item, and Ω is the weight matrix of the angle change penalty item. J s is the singular structure penalty term, δ is the weight matrix of the singular structure penalty term, and ε is a constant. The goal of thrust distribution is to reduce the overall power consumption of the ship's propeller and avoid mechanical wear and thrust singularity under the premise of ensuring that the thrust error is sufficiently small.
步骤4、使用改进的带有精英保留策略的快速非支配排序遗传算法求解推力分配目标函数,其算法流程图如图3所示。步骤4包括以下子步骤:Step 4. Use the improved fast non-dominated sorting genetic algorithm with elite retention strategy to solve the thrust distribution objective function, and the algorithm flow chart is shown in Figure 3. Step 4 includes the following sub-steps:
4-1)选择螺旋桨的角度和推力作为决策变量,设计染色体Ch={f1,f2,f3,f4,α1,α2,α3};初始化种群,产生种群规模为N的父代种群Pt,t的初始值为0;4-1) Select the angle and thrust of the propeller as decision variables, and design the chromosome Ch={f 1 , f 2 , f 3 , f 4 , α 1 , α 2 , α 3 }; initialize the population to generate a population size of N Parent population P t , the initial value of t is 0;
4-2)对父代种群Pt进行多项式变异产生子代种群Qt;4-2) Perform polynomial mutation on the parent population P t to generate the offspring population Q t ;
4-3)将父代种群Pt与子代种群Qt进行融合,得到临时融合种群Rt;4-3) fuse the parent population P t with the child population Q t to obtain a temporary fusion population R t ;
4-4)对Rt进行快速非支配排序,得到不同的帕累托前沿Fj。种群中的N个个体最多分为N个帕累托前沿,即j=1,2...N;4-4) Perform fast non-dominated sorting on R t to obtain different Pareto frontiers F j . N individuals in the population are divided into at most N Pareto frontiers, that is, j=1,2...N;
4-5)对每个前沿Fj中的个体按照拥挤距离降序排列,拥挤距离Dk的计算方式如下:4-5) Arrange the individuals in each frontier F j in descending order of crowding distance. The calculation method of crowding distance Dk is as follows:
其中,|Fj|为前沿Fj中的个体数量。where |F j | is the number of individuals in frontier F j .
4-6)Pt+1的初始种群中无个体。选择Fj的前N-Pt+1放入Pt+1中。如果Fj+Pt+1<N,Pt+1=Pt+1∪Fj,j=j+1,返回执行4-4);否则,返回执行4-5);4-6) There are no individuals in the initial population of P t+1 . The first NP t+1 of F j is selected and placed in P t+1 . If F j +P t+1 <N, P t+1 =P t+1 ∪F j , j=j+1, return to 4-4); otherwise, return to 4-5);
4-7)Gmax为进化的最大代数,若t≥Gmax,输出最优解集,优化算法结束;否则,t=t+1,将Pt进行交叉、差分变异操作,生成种群Qt,并循环执行步骤4-3),直至结束。差分变异的方式如下:4-7) G max is the maximum algebra of evolution, if t ≥ G max , output the optimal solution set, and the optimization algorithm ends; otherwise, t=t+1, perform crossover and differential mutation operations on P t to generate a population Q t , and repeat steps 4-3) until the end. The way of differential mutation is as follows:
Qt=βPbest+(1-β)Pt (9)Q t =βP best +(1-β)P t (9)
其中,β∈[0,1],Pbest为前沿F1中的最佳个体。Among them, β∈ [0,1], Pbest is the best individual in frontier F1.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911171621.5A CN110794682A (en) | 2019-11-26 | 2019-11-26 | Thrust distribution method for multi-propeller rotatable ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911171621.5A CN110794682A (en) | 2019-11-26 | 2019-11-26 | Thrust distribution method for multi-propeller rotatable ship |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110794682A true CN110794682A (en) | 2020-02-14 |
Family
ID=69446162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911171621.5A Pending CN110794682A (en) | 2019-11-26 | 2019-11-26 | Thrust distribution method for multi-propeller rotatable ship |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110794682A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111452933A (en) * | 2020-04-07 | 2020-07-28 | 哈尔滨工程大学 | Thrust redistribution method in the case of ship dynamic positioning ship propulsion failure |
CN111812976A (en) * | 2020-06-06 | 2020-10-23 | 智慧航海(青岛)智能系统工程有限公司 | Ship thrust distribution system and thrust distribution method |
CN111966118A (en) * | 2020-08-14 | 2020-11-20 | 哈尔滨工程大学 | ROV thrust distribution and reinforcement learning-based motion control method |
CN118153200A (en) * | 2024-03-11 | 2024-06-07 | 南通大学杏林学院 | Ship thrust distribution method based on multi-strategy improved whale algorithm |
-
2019
- 2019-11-26 CN CN201911171621.5A patent/CN110794682A/en active Pending
Non-Patent Citations (1)
Title |
---|
DIJU GAO: "Optimal Thrust Allocation Strategy of Electric Propulsion Ship Based on Improved Non-Dominated Sorting Genetic Algorithm II", 《IEEE ACCESS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111452933A (en) * | 2020-04-07 | 2020-07-28 | 哈尔滨工程大学 | Thrust redistribution method in the case of ship dynamic positioning ship propulsion failure |
CN111812976A (en) * | 2020-06-06 | 2020-10-23 | 智慧航海(青岛)智能系统工程有限公司 | Ship thrust distribution system and thrust distribution method |
CN111966118A (en) * | 2020-08-14 | 2020-11-20 | 哈尔滨工程大学 | ROV thrust distribution and reinforcement learning-based motion control method |
CN118153200A (en) * | 2024-03-11 | 2024-06-07 | 南通大学杏林学院 | Ship thrust distribution method based on multi-strategy improved whale algorithm |
CN118153200B (en) * | 2024-03-11 | 2024-11-22 | 南通大学杏林学院 | A ship thrust distribution method based on multi-strategy improved whale algorithm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110794682A (en) | Thrust distribution method for multi-propeller rotatable ship | |
JP4339016B2 (en) | Thrust distribution method and thrust distribution apparatus | |
CN112147899B (en) | An autonomous obstacle avoidance control method for underwater robots based on fuzzy sliding mode algorithm | |
CN101549754B (en) | A rotary-fixed-wing composite aircraft and its design method | |
Yu et al. | Parameter optimization of simplified propulsive model for biomimetic robot fish | |
CN103129729A (en) | Thrust distribution optimizing method for power positioning system of dredge boat | |
CN104648643A (en) | Arrangement structure of underwater robot propelling device | |
CN106695834A (en) | Double-body detection underwater robot device and control method | |
CN103144752A (en) | Underwater towed body with multiple degrees of manipulation freedom | |
CN103640444B (en) | The oblique side amphibious unmanned boat of the binary water surface | |
Dong et al. | Hydrodynamic analysis and verification of an innovative whale shark-like underwater glider | |
CN112224359A (en) | Ship power distribution method capable of being used in different navigational speed modes | |
Fan et al. | A formation reconfiguration method for multiple unmanned surface vehicles executing target interception missions | |
CN102183889B (en) | Heading robust intelligent coordination control method for pump-paddle hybrid propelled ship | |
CN206475196U (en) | A kind of binary detects underwater robot device | |
CN103552680B (en) | Fan-shaped bow jet positioning and control method for trailing suction hopper dredger | |
CN114030579B (en) | A kind of unmanned ship stability control method and propulsion device | |
CN110147120A (en) | An active fault-tolerant control method for the rudder surface of an autonomous underwater vehicle | |
CN116981616A (en) | Hydrofoil vessel | |
JP7385254B2 (en) | Electric aircraft and its attitude control method | |
CN104590517B (en) | Compound posture and orbit control method for underwater vehicle | |
CN103640445A (en) | Amphibious unmanned vehicle with front-mounted double bodies on inclined sides and three bodies on water surface | |
CN109533233B (en) | Self-adaptive control method of underwater robot propeller | |
Ding et al. | Based on disturbance observer of Air Cushion Vehicle course sliding backstepping control | |
JPH03281495A (en) | Sailing body in fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200214 |