CN110782471A - Multi-scale SAR image edge detection method - Google Patents
Multi-scale SAR image edge detection method Download PDFInfo
- Publication number
- CN110782471A CN110782471A CN201910981758.0A CN201910981758A CN110782471A CN 110782471 A CN110782471 A CN 110782471A CN 201910981758 A CN201910981758 A CN 201910981758A CN 110782471 A CN110782471 A CN 110782471A
- Authority
- CN
- China
- Prior art keywords
- image
- gradient
- pixel
- pixels
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000003708 edge detection Methods 0.000 title claims abstract description 27
- 230000001629 suppression Effects 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 6
- 238000003672 processing method Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 2
- 238000003384 imaging method Methods 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
- G06T2207/10044—Radar image
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种多尺度SAR图像边缘检测方法,利用大小不同的窗口计算图像中不同方向的边缘梯度,然后将不同大小、不同方向的所有的梯度中的最大值及其对应的方向信息保留下来,最后通过非极大值抑制得到最终宽度为一个像素的边缘图像,该方法可以利用不同大小、不同方向的窗口检测边缘,有效克服单一窗口边缘检测时得到的边缘位置不准的缺陷。
The invention discloses a multi-scale SAR image edge detection method, which uses windows of different sizes to calculate edge gradients in different directions in an image, and then retains the maximum value among all gradients of different sizes and directions and its corresponding direction information Finally, an edge image with a final width of one pixel is obtained through non-maximum suppression. This method can use windows of different sizes and directions to detect edges, effectively overcoming the defect of inaccurate edge positions obtained during edge detection of a single window.
Description
技术领域technical field
本发明属于图像处理技术领域,尤其涉及一种多尺度SAR图像边缘检测方法。The invention belongs to the technical field of image processing, and in particular relates to a multi-scale SAR image edge detection method.
背景技术Background technique
图像中的边缘是图像中最基本的、不易改变的特征,是图像中信息最集中的地方,是进行图像特征提取、目标识别、图像分割等处理的基础,因此,边缘检测是图像处理领域最基本的问题之一。然而,由于成像过程中传感器、成像原理、成像位置及成像对象等因素的影响,图像中的边缘信息在图像中的表现千差万别,这使得边缘难于被精确检测出来。The edge in the image is the most basic and difficult to change feature in the image. It is the place where the information in the image is most concentrated. It is the basis for image feature extraction, target recognition, image segmentation and other processing. Therefore, edge detection is the most important in the field of image processing. one of the basic questions. However, due to the influence of factors such as sensor, imaging principle, imaging position and imaging object in the imaging process, the performance of edge information in the image varies widely, which makes it difficult to accurately detect the edge.
目前的图像边缘检测算法大致可分为:1)基于空域梯度的边缘检测算法;2)基于频域的小波边缘检测算法;3)基于机器学习的边缘检测算法;4)基于其它理论技术的边缘检测算法。这些方法中,基于空域梯度的边缘检测算法最为经典、影响最大,而其中又以Canny边缘检测算法最为典型。但是这类算法的检测窗口均为固定大小,在图像噪声水平较高时,表现很差。The current image edge detection algorithms can be roughly divided into: 1) edge detection algorithm based on spatial gradient; 2) wavelet edge detection algorithm based on frequency domain; 3) edge detection algorithm based on machine learning; 4) edge detection algorithm based on other theoretical techniques detection algorithm. Among these methods, the edge detection algorithm based on spatial gradient is the most classic and the most influential, and among them, the Canny edge detection algorithm is the most typical. However, the detection windows of these algorithms are all fixed size, and the performance is poor when the image noise level is high.
在合成孔径雷达(Synthetic Aperture Radar,SAR)图像处理领域,由于相干斑噪声强烈,一般的边缘检测算法难以达到理想效果,常用的边缘检测器是均值比(Ratio ofAverage,ROA)检测器。该检测器是一种基于空域梯度的检测器,其检测窗口和方向均可以作为参数进行手动调节,并且由于采用了区域均值来代替单个像素值,因此具有较好的抗噪性。但是,该检测器的窗口大小仍然是单一的,而对于一幅图像来说,可能在不同的区域其合适的检测窗口大小是不同的。例如,在细节信息丰富的区域,一般比较适合用小窗口进行检测,因为当使用较大窗口进行边缘检测时,在一些点、线等目标周围检测出的边缘位置会有较大偏差;而边缘信息较弱,同质像素较多的区域,一般比较适合用大窗口进行检测,因为小窗口对噪声较为敏感,检测出的虚假边缘较多。因此,单一大小的检测窗口无法同时满足要求。In the field of Synthetic Aperture Radar (SAR) image processing, due to the strong speckle noise, it is difficult for general edge detection algorithms to achieve ideal results. The commonly used edge detector is the Ratio of Average (ROA) detector. The detector is a spatial gradient-based detector, and its detection window and direction can be adjusted manually as parameters, and it has better noise immunity because the regional mean is used instead of a single pixel value. However, the window size of the detector is still single, and for an image, the appropriate detection window size may be different in different regions. For example, in areas with rich detailed information, it is generally more suitable to use a small window for detection, because when a larger window is used for edge detection, the detected edge positions around some points, lines and other objects will have a large deviation; Areas with weak information and more homogeneous pixels are generally more suitable for detection with large windows, because small windows are more sensitive to noise and detect false edges. Therefore, a detection window of a single size cannot meet the requirements at the same time.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服常规ROA边缘检测器利用单一大小的检测窗口无法满足要求的缺陷,提出了一种综合利用不同大小检测窗口的多尺度SAR图像边缘检测方法。The purpose of the present invention is to overcome the defect that the conventional ROA edge detector cannot meet the requirements by using a single-sized detection window, and proposes a multi-scale SAR image edge detection method that comprehensively utilizes detection windows of different sizes.
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种多尺度SAR图像边缘检测方法,包括以下步骤:Technical solution: In order to achieve the purpose of the present invention, the technical solution adopted in the present invention is: a multi-scale SAR image edge detection method, comprising the following steps:
步骤1:设置最大检测窗口Wmax和最小检测窗口Wmin,获得NW=(Wmax–Wmin)/2+1个大小不同的窗口W;Step 1: Set the maximum detection window W max and the minimum detection window W min to obtain N W =(W max -W min )/2+1 windows W of different sizes;
步骤2:对于NW个大小不同的窗口,分别设置其检测模板参数l、w、d、θ,每个大小为W的窗口可获得Nθ=π/θ个模板,则共获得N=NW*Nθ个不同大小W、不同方向θ的模板;其中,l是模板长度,w是模板宽度,d是模板区域R1和R2间的距离,θ是模板对应的角度;Step 2: For N W windows of different sizes, set the detection template parameters l, w, d, θ respectively, and each window of size W can obtain N θ = π/θ templates, then N=N W *N θ templates of different sizes W and different directions of θ; wherein, l is the length of the template, w is the width of the template, d is the distance between the template regions R 1 and R 2 , and θ is the angle corresponding to the template;
步骤3:对于每个像素p,利用N个不同大小W、不同方向θ的模板,计算模板区域R1和R2之间的梯度DW(θ),共获得N个梯度值以及对应的角度值;Step 3: For each pixel p, use N templates of different sizes W and different directions θ to calculate the gradient D W (θ) between the template regions R 1 and R 2 , and obtain N gradient values and corresponding angles in total. value;
步骤4:选择N个梯度值中的最大值,记录该值及其对应的角度,继续处理下一个像素,直到所有像素都处理完毕,得到一幅梯度图像和一幅角度图像;Step 4: Select the maximum value among the N gradient values, record the value and its corresponding angle, and continue to process the next pixel until all pixels are processed to obtain a gradient image and an angle image;
步骤5:进行梯度方向非极大值抑制,得到细化后的梯度图像;具体如下:Step 5: Perform non-maximum suppression in the gradient direction to obtain a refined gradient image; the details are as follows:
对于梯度图像中的每个像素p,沿对应角度图像中所指示的角度的法线方向,比较相邻像素值的大小;如果像素p小于其相邻像素,则将像素p的梯度值设为0,否则,保留其原始值,所有像素处理完毕后得到细化后的梯度图像;For each pixel p in the gradient image, along the normal direction of the angle indicated in the corresponding angle image, compare the magnitude of the adjacent pixel values; if the pixel p is smaller than its adjacent pixels, set the gradient value of the pixel p as 0, otherwise, keep its original value, and obtain a refined gradient image after all pixels are processed;
步骤6:将细化后的梯度图像进行二值化处理,得到最终的单像素宽度的边缘图像。Step 6: Binarize the refined gradient image to obtain a final edge image with a width of one pixel.
进一步,所述步骤3中,对于SAR图像,梯度的计算公式为:Further, in the step 3, for the SAR image, the gradient calculation formula is:
其中,x1、x2分别表示方向θ下模板区域R1和区域R2的SAR图像幅度或强度;Wherein, x 1 and x 2 represent the SAR image amplitude or intensity of template region R 1 and region R 2 in the direction θ, respectively;
对于极化SAR图像,梯度的计算公式为:For polarimetric SAR images, the gradient is calculated as:
DW(θ)=2ln|X1+X2|-ln|X1|-ln|X2|+2qln2D W (θ)=2ln|X 1 +X 2 |-ln|X 1 |-ln|X 2 |+2qln2
其中,X1、X2分别表示方向θ下模板区域R1和区域R2的q×q的极化SAR图像相干矩阵或协方差矩阵,q表示矩阵维度。Wherein, X 1 and X 2 represent the q×q polarimetric SAR image coherence matrix or covariance matrix of template region R 1 and region R 2 in the direction θ, respectively, and q represents the matrix dimension.
进一步,所述步骤6中,采用熵阈值法进行二值化处理,具体包括:Further, in the step 6, the entropy threshold method is used to perform binarization processing, which specifically includes:
步骤6.1:对细化后的梯度图像进行图像增强处理,方法如下:Step 6.1: Perform image enhancement processing on the refined gradient image as follows:
首先,对细化后的梯度图像进行对数变换,计算公式为:x=10*log10(x),其中,x表示像素值;First, logarithmically transform the refined gradient image, and the calculation formula is: x=10*log 10 (x), where x represents the pixel value;
然后,进行最大值及最小值拉伸,处理方法为:将图像像素值按从小到大的顺序排序,取第a%位置上的像素值为最小值min,取第b%位置上的像素值为最大值max;Then, stretch the maximum value and the minimum value. The processing method is: sort the image pixel values in ascending order, take the pixel value at the a% position as the minimum value min, and take the pixel value at the b% position. is the maximum value max;
最后,利用最大值及最小值进行归一化处理,归一化公式为:x=(x-min)/(max-min),其中,x表示像素值;Finally, the maximum value and the minimum value are used for normalization, and the normalization formula is: x=(x-min)/(max-min), where x represents the pixel value;
步骤6.2:将步骤6.1处理后的梯度图像中的像素分为n个灰度级,计算每个灰度级i中像素占总像素数的比率pi;Step 6.2: Divide the pixels in the gradient image processed in Step 6.1 into n gray levels, and calculate the ratio p i of the pixels in each gray level i to the total number of pixels;
步骤6.3:设灰度级s将图像分为A和B两部分,每个部分的熵定义如下:Step 6.3: Set the gray level s to divide the image into two parts A and B, and the entropy of each part is defined as follows:
则A和B的熵的和为:Hsum=HA+HB,计算每个灰度级i对应的Hsum;Then the sum of the entropy of A and B is: H sum =H A +H B , calculate the H sum corresponding to each gray level i;
步骤6.4:求出n个灰度级中最大的Hsum及其对应的灰度级s,则s就是分割阈值,将小于或等于s的像素设为0,将大于s的像素设为1,即得到二值化图像。Step 6.4: Find the largest H sum among the n gray levels and its corresponding gray level s, then s is the segmentation threshold, set the pixels less than or equal to s to 0, and set the pixels greater than s to 1, That is, a binarized image is obtained.
有益效果:与现有技术相比,本发明的技术方案具有以下有益的技术效果:Beneficial effects: compared with the prior art, the technical solution of the present invention has the following beneficial technical effects:
本发明提出利用大小不同的窗口模板对图像进行边缘检测,并将各窗口得到的边缘信息进行综合,得到最终的边缘检测结果,从而克服常规单一窗口进行边缘检测无法兼顾纹理丰富区域和弱边缘区域的缺陷,既可最大程度上检测出可能的边缘,又保证了边缘检测的精确度。The invention proposes to use window templates of different sizes to perform edge detection on the image, and to synthesize the edge information obtained by each window to obtain the final edge detection result, thereby overcoming the inability of conventional single-window edge detection to take into account texture-rich regions and weak edge regions It can not only detect possible edges to the greatest extent, but also ensure the accuracy of edge detection.
附图说明Description of drawings
图1是本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2是本发明实施例中的边缘检测模板图。FIG. 2 is an edge detection template diagram in an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below with reference to the accompanying drawings and embodiments.
如图1所示,本发明所述的一种多尺度SAR图像边缘检测方法,包括以下步骤:As shown in Figure 1, a method for detecting edges of a multi-scale SAR image according to the present invention includes the following steps:
步骤1:设置最大检测窗口Wmax和最小检测窗口Wmin,获得NW=(Wmax–Wmin)/2+1个大小不同的窗口W;Step 1: Set the maximum detection window W max and the minimum detection window W min to obtain N W =(W max -W min )/2+1 windows W of different sizes;
本实施例设置Wmax=7,Wmin=3,则共有NW=3个大小不同的窗口,即W取3、5、7。In this embodiment, W max =7 and W min =3 are set, then there are N W =3 windows of different sizes in total, that is, W takes 3, 5, and 7.
步骤2:对于3个大小不同的窗口,分别设置其模板参数l、w、d、θ,如图2所示;每个大小为W的窗口可获得Nθ=π/θ个模板,则共获得N=NW*Nθ个不同大小W、不同方向θ的模板;其中,l是模板长度,w是模板宽度,d是模板区域R1和R2间的距离,θ是模板对应的角度;一般情况下模板为正方形,即l=2*w+d;Step 2: For 3 windows of different sizes, set their template parameters l, w, d, θ respectively, as shown in Figure 2; each window of size W can obtain N θ = π/θ templates, then a total of Obtain N=N W *N θ templates of different sizes W and different directions θ; where l is the length of the template, w is the width of the template, d is the distance between the template regions R 1 and R 2 , and θ is the angle corresponding to the template ; In general, the template is a square, that is, l=2*w+d;
本实施例中,在窗口大小为3时,设置l=3,w=1,d=1,θ=45°;在窗口大小为5时,设置l=5,w=2,d=1,θ=45°;在窗口大小为7时,设置l=7,w=3,d=1,θ=45°;则共有N=3*(180°/45°)=12个不同大小、不同方向的模板。In this embodiment, when the window size is 3, set l=3, w=1, d=1, θ=45°; when the window size is 5, set l=5, w=2, d=1, θ=45°; when the window size is 7, set l=7, w=3, d=1, θ=45°; then a total of N=3*(180°/45°)=12 different sizes, different Orientation template.
步骤3:对于每个像素p,利用12个不同大小、不同方向的模板,计算模板区域R1和R2之间的梯度DW(θ),共获得12个梯度值以及对应的角度值;Step 3: For each pixel p, use 12 templates of different sizes and different directions to calculate the gradient D W (θ) between the template regions R 1 and R 2 , and obtain a total of 12 gradient values and corresponding angle values;
本实施例中,对于SAR图像,步骤3所述的梯度的计算公式为:In this embodiment, for the SAR image, the calculation formula of the gradient described in step 3 is:
其中,x1、x2分别表示方向θ下模板区域R1和区域R2的SAR图像幅度或强度;Among them, x 1 and x 2 represent the SAR image amplitude or intensity of template region R 1 and region R 2 in the direction θ, respectively;
本实施例中,对于极化SAR图像,步骤3所述的梯度的计算公式为:In this embodiment, for polarimetric SAR images, the calculation formula of the gradient described in step 3 is:
DW(θ)=2ln|X1+X2|-ln|X1|-ln|X2|+2qln2D W (θ)=2ln|X 1 +X 2 |-ln|X 1 |-ln|X 2 |+2qln2
其中,X1、X2分别表示方向θ下模板区域R1和区域R2的q×q的极化SAR图像相干矩阵或协方差矩阵,q表示矩阵维度。Wherein, X 1 and X 2 represent the q×q polarimetric SAR image coherence matrix or covariance matrix of template region R 1 and region R 2 in the direction θ, respectively, and q represents the matrix dimension.
步骤4:计算12个梯度值中的最大值,记录该值及其对应的角度,继续处理下一个像素,直到所有像素都处理完毕,所有像素都处理完毕后,得到一幅梯度图像和一幅角度图像。Step 4: Calculate the maximum value of the 12 gradient values, record the value and its corresponding angle, and continue to process the next pixel until all pixels are processed. After all pixels are processed, a gradient image and a gradient image are obtained. angle image.
步骤5:进行梯度方向非极大值抑制,得到细化后的梯度图像;具体如下:Step 5: Perform non-maximum suppression in the gradient direction to obtain a refined gradient image; the details are as follows:
对于梯度图像中的每个像素p,沿对应角度图像中所指示的角度的法线方向,比较相邻像素值的大小,如果像素p小于其相邻像素,则将像素p的梯度值设为0,否则,保留其原始值,所有像素处理完毕后得到细化后的梯度图像。For each pixel p in the gradient image, along the normal direction of the angle indicated in the corresponding angle image, compare the magnitudes of the adjacent pixel values, if the pixel p is smaller than its adjacent pixels, set the gradient value of the pixel p as 0, otherwise, keep its original value, and get a refined gradient image after all pixels are processed.
步骤6:将细化后的梯度图像进行二值化处理,得到最终的单像素宽度的边缘图像;Step 6: Binarize the refined gradient image to obtain a final edge image with a width of one pixel;
本实施例中,采用熵阈值法进行二值化处理,具体包括:In this embodiment, the entropy threshold method is used for binarization, which specifically includes:
步骤6.1:对细化后的梯度图像进行图像增强处理,方法如下:Step 6.1: Perform image enhancement processing on the refined gradient image as follows:
首先,对细化后的梯度图像进行对数变换,计算公式为:x=10*log10(x),其中,x表示像素值;First, logarithmically transform the refined gradient image, and the calculation formula is: x=10*log 10 (x), where x represents the pixel value;
然后,进行最大值及最小值拉伸,处理方法为:将图像像素值按从小到大的顺序排序,取第6.25%位置上的像素值为最小值min,取第93.75%位置上的像素值为最大值max;Then, stretch the maximum value and the minimum value. The processing method is: sort the image pixel values in ascending order, take the pixel value at the 6.25% position as the minimum value min, and take the pixel value at the 93.75% position. is the maximum value max;
最后,利用最大值及最小值进行归一化处理,归一化公式为:x=(x-min)/(max-min),其中,x表示像素值;Finally, the maximum value and the minimum value are used for normalization, and the normalization formula is: x=(x-min)/(max-min), where x represents the pixel value;
步骤6.2:将步骤6.1处理后的梯度图像中的像素分为n个灰度级,计算每个灰度级i中像素占总像素数的比率pi;本实施例中n=256;Step 6.2: divide the pixels in the gradient image processed in step 6.1 into n gray levels, and calculate the ratio p i of the pixels in each gray level i to the total number of pixels; n=256 in this embodiment;
步骤6.3:假设灰度级s将图像分为A和B两部分,每个部分的熵定义如下:Step 6.3: Suppose the gray level s divides the image into two parts A and B, and the entropy of each part is defined as follows:
则A和B的熵的和为:Hsum=HA+HB,计算每个灰度级i对应的Hsum;Then the sum of the entropy of A and B is: H sum =H A +H B , calculate the H sum corresponding to each gray level i;
步骤6.4:求出n个灰度级中最大的Hsum及其对应的灰度级s,则s就是分割阈值,将小于或等于s的像素设为0,将大于s的像素设为1,即得到二值化图像。Step 6.4: Find the largest H sum among the n gray levels and its corresponding gray level s, then s is the segmentation threshold, set the pixels less than or equal to s to 0, and set the pixels greater than s to 1, That is, a binarized image is obtained.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代。如模板参数θ可设置为其它值;梯度可采用其它公式代替;二值化方法可以选择其它方法代替熵阈值法;等等。但这并不会超出本发明所提算法的框架,不会偏离本发明的精神,或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention pertains can make various modifications or additions to the specific embodiments described or substitute in similar manners. For example, the template parameter θ can be set to other values; the gradient can be replaced by other formulas; the binarization method can choose other methods to replace the entropy threshold method; and so on. However, this does not go beyond the framework of the proposed algorithm of the present invention, does not deviate from the spirit of the present invention, or goes beyond the scope defined by the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910981758.0A CN110782471A (en) | 2019-10-16 | 2019-10-16 | Multi-scale SAR image edge detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910981758.0A CN110782471A (en) | 2019-10-16 | 2019-10-16 | Multi-scale SAR image edge detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110782471A true CN110782471A (en) | 2020-02-11 |
Family
ID=69385591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910981758.0A Pending CN110782471A (en) | 2019-10-16 | 2019-10-16 | Multi-scale SAR image edge detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110782471A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113298839A (en) * | 2021-05-18 | 2021-08-24 | 中国矿业大学 | Semi-automatic threshold extraction method for SAR (synthetic aperture radar) image |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103778613A (en) * | 2014-02-21 | 2014-05-07 | 武汉大学 | Polarization SAR image filtering method for window self-adaptation |
CN103886562A (en) * | 2014-04-14 | 2014-06-25 | 苏州大学 | SAR image edge detection method and system |
CN105930847A (en) * | 2016-03-31 | 2016-09-07 | 中国人民解放军空军航空大学 | Combined edge detection-base SAR image linear feature extraction method |
CN106683107A (en) * | 2016-11-08 | 2017-05-17 | 成都理工大学 | SAR image edge detection method based on ROEWA improvement |
CN108961290A (en) * | 2018-07-10 | 2018-12-07 | 中国计量大学 | A kind of Ratio operator adapting to image edge detection method based on Otsu |
-
2019
- 2019-10-16 CN CN201910981758.0A patent/CN110782471A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103778613A (en) * | 2014-02-21 | 2014-05-07 | 武汉大学 | Polarization SAR image filtering method for window self-adaptation |
CN103886562A (en) * | 2014-04-14 | 2014-06-25 | 苏州大学 | SAR image edge detection method and system |
CN105930847A (en) * | 2016-03-31 | 2016-09-07 | 中国人民解放军空军航空大学 | Combined edge detection-base SAR image linear feature extraction method |
CN106683107A (en) * | 2016-11-08 | 2017-05-17 | 成都理工大学 | SAR image edge detection method based on ROEWA improvement |
CN108961290A (en) * | 2018-07-10 | 2018-12-07 | 中国计量大学 | A kind of Ratio operator adapting to image edge detection method based on Otsu |
Non-Patent Citations (3)
Title |
---|
JESPER SCHOU等: "CFAR Edge Detector for Polarimetric SAR Images", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 * |
沈夏炯 等: "一种面向SAR图像的多窗口道路边缘检测算法", 《计算机工程与应用》 * |
郎丰铠: "极化SAR影像滤波及分割方法研究", 《中国优秀博硕学位论文全文数据库(博士)基础科学辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113298839A (en) * | 2021-05-18 | 2021-08-24 | 中国矿业大学 | Semi-automatic threshold extraction method for SAR (synthetic aperture radar) image |
CN113298839B (en) * | 2021-05-18 | 2023-08-15 | 中国矿业大学 | SAR image semiautomatic threshold extraction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107301661B (en) | High-resolution remote sensing image registration method based on edge point features | |
CN106874949B (en) | Infrared image-based moving target detection method and system for moving imaging platform | |
CN103996209B (en) | Infrared vessel object segmentation method based on salient region detection | |
CN107274401B (en) | High-resolution SAR image ship detection method based on visual attention mechanism | |
CN109035195B (en) | Fabric defect detection method | |
CN105279772B (en) | A kind of trackability method of discrimination of infrared sequence image | |
WO2013148566A1 (en) | Image blur detection | |
Li et al. | Road lane detection with gabor filters | |
Krishnan et al. | A survey on different edge detection techniques for image segmentation | |
CN108109155A (en) | A kind of automatic threshold edge detection method based on improvement Canny | |
Xia et al. | A novel sea-land segmentation algorithm based on local binary patterns for ship detection | |
CN106845457A (en) | Method for detecting infrared puniness target based on spectrum residual error with fuzzy clustering | |
CN110659649A (en) | Image processing and character recognition algorithm based on near infrared light imaging | |
CN107167810A (en) | A kind of submarine target rapid extracting method of side-scan sonar imaging | |
CN103778613A (en) | Polarization SAR image filtering method for window self-adaptation | |
Sidhu | Improved canny edge detector in various color spaces | |
CN110335233A (en) | Defect detection system and method for expressway guardrail board based on image processing technology | |
CN108664983A (en) | A kind of scale and the adaptive SURF characteristic point matching methods of characteristic strength | |
Reddy et al. | Comparative analysis of common edge detection algorithms using pre-processing technique | |
CN110263778A (en) | A kind of meter register method and device based on image recognition | |
CN103914829B (en) | Method for detecting edge of noisy image | |
CN110135312A (en) | A Fast Small Target Detection Method Based on Hierarchical LCM | |
CN110533679A (en) | SAR image edge detection method based on logarithmic transformation Yu gal cypress convolution | |
Ma et al. | Artificial object edge detection based on enhanced Canny algorithm for high-speed railway apparatus identification | |
CN109767442B (en) | Remote sensing image airplane target detection method based on rotation invariant features |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |