CN110782289B - 一种基于用户画像的业务推荐方法和系统 - Google Patents
一种基于用户画像的业务推荐方法和系统 Download PDFInfo
- Publication number
- CN110782289B CN110782289B CN201911027743.7A CN201911027743A CN110782289B CN 110782289 B CN110782289 B CN 110782289B CN 201911027743 A CN201911027743 A CN 201911027743A CN 110782289 B CN110782289 B CN 110782289B
- Authority
- CN
- China
- Prior art keywords
- user
- portrait
- terminal
- individual
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Economics (AREA)
- General Engineering & Computer Science (AREA)
- Information Transfer Between Computers (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明提供一种基于用户画像的业务推荐方法和系统,包括:终端将为用户生成的至少一个个体标签发送至画像服务器,该个体标签反映了该用户的个人行为特征;终端接收画像服务器为该用户生成的至少一个群体标签,该群体标签是画像服务器至少基于该至少一个个体标签生成的;这样,终端可以使用该群体标签更新用户的用户画像,从而向第一应用提供更新后的该用户画像中的至少一部分。
Description
技术领域
本申请实施例涉及智慧化技术领域,尤其涉及一种基于用户画像的业务推荐方法和系统。
背景技术
随着信息通信技术(information communication technology,ICT)的不断发展,物理世界中的人类活动越来越多的深入到数字世界中。
在数字世界中,手机等终端可以根据用户的使用行为将实际用户抽象为具有一个或多个标签的用户画像。例如,用户A经常使用手机在晚上12点后看动漫,那么,手机可将“晚睡”、“二次元”等标签作为用户A的用户画像。后续,手机可基于用户A的用户画像为用户提供定制化的服务和功能,以提高手机的工作效率。
一个用户完整的用户画像中通常包含多个标签,这些标签中有一部分是直接基于用户在手机上的个体使用行为生成的个体标签,例如,上述“晚睡”的标签是基于用户A玩手机的时间生成的。但上述标签中还有一部分标签是需要通过对不同用户的使用行为进行大数据计算和数据挖掘才能得到的群体标签,例如,服务器可以通过对比多个用户的用户画像确定用户A属于“90后”这一群体标签。
那么,如果由服务器为用户生成用户画像,则需要终端将用户的行为数据上传给服务器,但很多涉及用户隐私的行为数据无法上传到服务器,导致服务器生成的用户画像的准确度下降。相应的,如果由终端为用户生成用户画像,由于终端仅能采集到使用该终端的单个用户的行为数据,因此终端无法确定出该用户所属的群体标签,也会导致生成的用户画像的准确度下降。
发明内容
本申请的实施例提供一种基于用户画像的业务推荐方法和系统,可提高终端生成的用户画像的准确度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供一种基于用户画像的业务推荐方法,包括:终端将为用户生成的至少一个个体标签发送至画像服务器,该个体标签反映了该用户的个人行为特征;终端接收画像服务器为该用户生成的至少一个群体标签(该群体标签反映了该用户所属群体的行为特征),该群体标签是画像服务器至少基于该至少一个个体标签生成的;这样,终端可以使用该群体标签更新用户的用户画像,从而向第一应用提供更新后的该用户画像中的至少一部分。
此时,更新后的该用户画像中不仅反映了用户的个体行为特征,同时反映了用户所属群体的群体行为特征,因此该更新后的该用户画像的完整性和准确率较高,使得第一应用使用该更新后的该用户画像提供的业服服务更加智能和准确。
在一种可能的设计方法中,在终端将为用户生成的至少一个个体标签发送至画像服务器之前,还包括:终端采集该用户使用终端时产生的行为数据;终端根据该行为数据为该用户生成至少一个个体标签,每个个体标签中包括该个体标签的类型和该个体标签的特征值。
在一种可能的设计方法中,终端将为用户生成的至少一个个体标签发送至画像服务器,包括:终端将该至少一个个体标签中敏感度小于阈值的个体标签发送至画像服务器,该敏感度用于指示该个体标签与用户隐私之间的相关程度,从而在提高用户画像准确率的同时降低用户隐私泄露的风险。
在一种可能的设计方法中,终端使用该群体标签更新该用户的用户画像,包括:终端将该群体标签添加至该用户的用户画像中,得到更新后的用户画像,该更新后的用户画像中包括该群体标签和终端生成的至少一个个体标签。
在一种可能的设计方法中,终端使用该群体标签更新该用户的用户画像,包括:终端根据该行为数据和该群体标签更新终端生成的至少一个个体标签,得到更新后的用户画像,该更新后的用户画像中包括该更新后的个体标签。
在一种可能的设计方法中,上述更新后的用户画像中还包括该群体标签。
在一种可能的设计方法中,在终端接收画像服务器为该用户生成的至少一个群体标签之后,还包括:终端接收画像服务器为该用户生成的第一群体标签与第一个体标签之间的关联度,第一群体标签为该至少一个群体标签中的一个,第一个体标签为该至少一个个体标签中的一个;终端根据该关联度校正第一个体标签的特征值,从而进一步提高后续终端生成的用户画像的准确度。
示例性的,终端根据该关联度校正第一个体标签的特征值,具体包括:终端将第一个体标签的特征值与校正值之和作为第一个体标签校正后的特征值,该校正值为该关联度与预设的校正因子的乘积,该校正因子用于反映该关联度对第一个体标签的影响程度。
第二方面,本申请的实施例提供一种基于用户画像的业务推荐方法,包括:画像服务器获取至少一个用户的个体标签;画像服务器根据该至少一个用户中每个用户的个体标签,生成目标用户的群体标签,该群体标签反映了该目标用户所属群体的行为特征,该目标用户为该至少一个用户中的一个;画像服务器将该目标用户的群体标签发送给终端。
在一种可能的设计方法中,画像服务器根据该至少一个用户中每个用户的个体标签,生成目标用户的群体标签,包括:画像服务器根据该至少一个用户中每个用户的个体标签,将该至少一个用户划分为至少一个群体;画像服务器将该目标用户所属群体的标签作为该目标用户的群体标签。
在一种可能的设计方法中,画像服务器根据该至少一个用户中每个用户的个体标签,将该至少一个用户划分为至少一个群体,包括:画像服务器基于该至少一个用户中每个用户的个体标签,通过聚类、特征组合后聚类以及特征转换后聚类中的一种或多种方式,将该至少一个用户划分为至少一个群体。
在一种可能的设计方法中,在画像服务器获取至少一个用户的个体标签之后,还包括:画像服务器确定该目标用户的群体标签分别与该目标用户的每个个体标签之间的关联度;画像服务器将该关联度发送给终端。
第三方面,本申请的实施例提供一种终端,包括:包括画像管理模块,以及与该画像管理模块均相连的数据采集模块、画像计算模块、画像优化模块以及画像查询模块,其中,该画像管理模块,用于:将为用户生成的至少一个个体标签发送至画像服务器,该个体标签反映了该用户的个人行为特征;接收画像服务器为该用户生成的至少一个群体标签,该群体标签是画像服务器至少基于该至少一个个体标签生成的,该群体标签反映了该用户所属群体的行为特征;该画像优化模块,用于:使用该群体标签更新该用户的用户画像;该画像查询模块,用于:向第一应用提供更新后的该用户画像中的至少一部分。
在一种可能的设计方法中,该数据采集模块,用于:采集该用户使用终端时产生的行为数据;该画像计算模块,用于:根据该行为数据为该用户生成至少一个个体标签,每个个体标签中包括该个体标签的类型和该个体标签的特征值。
在一种可能的设计方法中,该画像管理模块,具体用于:将该至少一个个体标签中敏感度小于阈值的个体标签发送至画像服务器,该敏感度用于指示该个体标签与用户隐私之间的相关程度。
在一种可能的设计方法中,该画像优化模块,具体用于:将该群体标签添加至该用户的用户画像中,得到更新后的用户画像,该更新后的用户画像中包括该群体标签和终端生成的至少一个个体标签。
在一种可能的设计方法中,该画像优化模块,具体用于:根据该行为数据和该群体标签更新终端生成的至少一个个体标签,得到更新后的用户画像,该更新后的用户画像中包括该更新后的个体标签。
在一种可能的设计方法中,该更新后的用户画像中还包括该群体标签。
在一种可能的设计方法中,该画像管理模块,还用于:接收画像服务器为该用户生成的第一群体标签与第一个体标签之间的关联度,第一群体标签为该至少一个群体标签中的一个,第一个体标签为该至少一个个体标签中的一个;该画像优化模块,还用于:根据该关联度校正第一个体标签的特征值。
在一种可能的设计方法中,该画像优化模块,具体用于:将第一个体标签的特征值与校正值之和作为第一个体标签校正后的特征值,该校正值为该关联度与预设的校正因子的乘积,该校正因子用于反映该关联度对第一个体标签的影响程度。
第四方面,本申请的实施例提供一种服务器,包括画像管理模块,以及与该画像管理模块相连的画像计算模块,其中,该画像管理模块,用于:获取至少一个用户的个体标签;该画像计算模块,用于:根据该至少一个用户中每个用户的个体标签,生成目标用户的群体标签,该群体标签反映了该目标用户所属群体的行为特征,该目标用户为该至少一个用户中的一个;该画像管理模块,还用于:将该目标用户的群体标签发送给终端。
在一种可能的设计方法中,该画像计算模块,具体用于:根据该至少一个用户中每个用户的个体标签,将该至少一个用户划分为至少一个群体;将该目标用户所属群体的标签作为该目标用户的群体标签。
在一种可能的设计方法中,该画像计算模块,具体用于:基于该至少一个用户中每个用户的个体标签,通过聚类、特征组合后聚类以及特征转换后聚类中的一种或多种方式,将该至少一个用户划分为至少一个群体。
在一种可能的设计方法中,该画像计算模块,还用于:确定该目标用户的群体标签分别与该目标用户的每个个体标签之间的关联度;该画像管理模块,还用于:将该关联度发送给终端。
第五方面,本申请的实施例提供一种终端,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当终端运行时,该处理器执行该存储器存储的该计算机执行指令,以使终端执行上述任一项用户画像的生成方法。
第六方面,本申请的实施例提供一种画像服务器,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当画像服务器运行时,该处理器执行该存储器存储的该计算机执行指令,以使画像服务器执行上述任一项用户画像的生成方法。
第七方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在上述任一项终端上运行时,使得终端执行上述任一项用户画像的生成方法。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在上述任一项画像服务器上运行时,使得画像服务器执行上述任一项用户画像的生成方法。
第九方面,本申请实施例提供一种包含指令的计算机程序产品,当其在上述任一项终端上运行时,使得终端执行上述任一项用户画像的生成方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在上述任一项画像服务器上运行时,使得画像服务器执行上述任一项用户画像的生成方法。
本申请的实施例中,上述终端或画像服务器中各部件的名字对设备本身不构成限定,在实际实现中,这些部件可以以其他名称出现。只要各个部件的功能和本申请的实施例类似,即属于本申请权利要求及其等同技术的范围之内。
另外,第二方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方法所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种终端的结构示意图一;
图2为本申请实施例提供的一种基于用户画像的业务推荐系统的结构示意图。
具体实施方式
随着智慧化业务的发展,可以基于用户的历史行为习惯或者基于一些规则或模型,在终端上进行一些智能的提醒或者服务,以便于用户更方便的使用终端,使得用户觉得终端越来越智能化。
终端可以通过自身或者通过与云端的结合,来实现各种智慧化业务。具体的,终端可以包括规则平台、算法平台和用户画像模块。终端可以通过这三个平台中的一个或多个以及其它资源实现各种智慧化业务,例如:1、服务推荐业务;2、提醒业务;3、通知过滤业务。
、服务推荐业务。
终端包括用于实现该服务推荐业务的推荐服务框架(framework),该推荐服务框架至少可以包括算法平台、规则平台和用户画像模块。
上述规则平台可以根据规则匹配出该终端的用户在当前场景下希望使用的服务。上述算法平台可以根据模型预测出该终端的用户在当前场景下希望使用的服务。该推荐服务框架可以将所述规则平台或所述算法平台预测出的服务置于推荐应用的显示界面中,以便于用户可以方便的通过该推荐应用的显示界面进入该服务对应的界面。
其中,上述规则可以由服务器(即云端)下发给终端。该规则可以通过大数据统计获取,也可以根据经验数据归纳得到。上述模型可以通过以下方式获取:通过所述算法平台训练用户历史数据和用户特征数据,得到模型。并且基于新的用户数据和特征数据可以更新该模型。
其中,用户历史数据可以为用户在一段时间段内使用该终端的行为数据。用户特征数据可以包括用户画像(user profile)或其他类型的特征数据,所述其他类型的特征数据例如可以为当前用户的行为数据。其中,用户画像可以通过终端中的所述用户画像模块得到。
、提醒业务。
终端包括用于实现该提醒业务的推荐框架(framework)。该推荐框架至少可以包括规则平台、图形用户界面(graphical user interface)和用户画像模块。
上述规则平台可以监听各种事件。终端中的应用可以向该规则平台注册各种规则;然后该规则平台根据注册的规则,监听终端中的各种事件;将监听到的事件与规则进行匹配,并当监听到的事件与某个规则的所有条件都匹配时,触发该规则对应的提醒,即向用户推荐一个亮点事件。最终由图形用户界面显示该提醒或者由注册规则的应用显示该提醒。其中,一些规则的条件可以为对用户画像的限定。该规则平台可以向该用户画像模块请求当前的用户画像,以判断当前的用户画像是否与规则中的条件相匹配。
、通知过滤业务。
终端包括用于实现该通知过滤业务的通知过滤框架(framework)。该通知过滤框架至少可以包括规则平台、算法平台和用户画像模块。
上述通知过滤框架在获取到一个通知时,可以通过该规则平台确定该通知的类型,也可以通过该算法平台确定该通知的类型。然后根据该通知的类型以及用户的喜好,确定该通知是否为用户感兴趣的通知,并且对于用户感兴趣的通知和用户不感兴趣的通知,进行不同方式的提醒显示。用户的喜好可以包括用户画像,也可以包括用户对某类通知的历史处理行为。其中,用户画像是由该用户画像模块提供的。
需要说明的是,终端可以包括一个规则平台,该规则平台向上述三种框架提供每个框架所需的能力。终端也可以包括多个规则平台,这多个规则平台分别向上述三种框架提供能力。同样的,终端可以包括一个算法平台,该算法平台向上述推荐服务框架和通知过滤框架提供每个框架所需的能力;或者,终端也可以包括两个算法平台,分别向这两个框架提供能力。终端可以包括一个用户画像模块,该用户画像模块向上述三种框架提供每个框架所需的能力。或者,终端也可以包括多个用户画像模块,分别向每个框架提供能力。
本申请以下各实施例主要对上述的用户画像模块进行详细介绍。
本发明实施例提供的用户画像模块可以包含在终端中。该终端例如可以为:移动电话、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、数码相机、个人数字助理(personal digital assistant,PDA)、导航装置、移动上网装置(mobileinternet device,MID)或可穿戴式设备(wearable device)等。
图1为本发明实施例提供的终端的部分结构框图。该终端以手机100为例进行说明,参考图1,手机100包括:射频(radio frequency,RF)电路110、电源120、处理器130、存储器140、输入单元150、显示单元160、传感器170、音频电路180、以及无线保真(wireless-fidelity,Wi-Fi)模块190等部件。本领域技术人员可以理解,图1中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对手机100的各个构成部件进行具体的介绍:
RF电路110可用于收发信息或在通话过程中进行信号的接收和发送。例如:RF电路110可以将从基站接收的下行数据发送给处理器130处理,并把上行数据发送给基站。
通常,RF电路包括但不限于RF芯片、天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器、射频开关等。此外,RF电路110还可以与网络和其他设备进行无线通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器140可用于存储软件程序以及模块,处理器130通过运行存储在存储器140的软件程序以及模块,从而执行手机100的各种功能应用以及数据处理。存储器140可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机100的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器140可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。存储器140还可以存储知识库、标签库和算法库。
输入单元150可用于接收输入的数字或字符信息,以及产生与手机100的用户设置以及功能控制有关的键信号输入。具体地,输入单元150可包括触控面板151以及其他输入设备152。触控面板151,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板151上或在触控面板151附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板151可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器130,并能接收处理器130发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板151。除了触控面板151,输入单元150还可以包括其他输入设备152。具体地,其他输入设备152可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元160可用于显示由用户输入的信息或提供给用户的信息以及手机100的各种菜单。显示单元160可包括显示面板161,可选的,可以采用液晶显示屏(liquidcrystal display,LCD)、机电激光显示(organic light-emitting diode,OLED)等形式来配置显示面板161。进一步的,触控面板151可覆盖显示面板161,当触控面板151检测到在其上或附近的触摸操作后,传送给处理器130以确定触摸事件的类型,随后处理器130根据触摸事件的类型在显示面板161上提供相应的视觉输出。虽然在图1中,触控面板151与显示面板161是作为两个独立的部件来实现手机100的输入和输入功能,但是在某些实施例中,可以将触控面板151与显示面板161集成而实现手机100的输入和输出功能。
手机100还可包括至少一种传感器170,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板161的亮度,接近传感器可在手机100移动到耳边时,关闭显示面板161和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等。手机100还可以配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路180、扬声器181、麦克风182可提供用户与手机100之间的音频接口。音频电路180可将接收到的音频数据转换后的电信号,传输到扬声器181,由扬声器181转换为声音信号输出;另一方面,麦克风182将收集的声音信号转换为电信号,由音频电路180接收后转换为音频数据,再将音频数据输出至RF电路110以发送给比如另一手机,或者将音频数据输出至存储器140以便进一步处理。
属于短距离无线传输技术,手机100通过Wi-Fi模块190可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了Wi-Fi模块190,但是可以理解的是,其并不属于手机100的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器130是手机100的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器140内的软件程序和/或模块,以及调用存储在存储器140内的数据,执行手机100的各种功能和处理数据,从而实现基于手机的多种业务。可选的,处理器130可包括一个或多个处理单元;优选的,处理器130可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器130中。
本发明实施例中,处理器130可以执行存储器140中存储的程序指令,来在实现以下实施例所示的方法。
手机100还包括给各个部件供电的电源120(比如电池),优选的,电源可以通过电源管理系统与处理器130逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,手机100还可以包括摄像头、蓝牙模块等,在此不予赘述。
本发明实施例提供的终端中包括用户画像模块,该用户画像模块可以通过收集与分析使用该终端的用户的各种行为数据,抽象出一个用户的信息全貌。根据应用的请求,该用户画像模块通过抽象出的信息全貌可以预测用户当前可能的行为或喜好,并将预测的结果返回给应用,即向应用返回用户画像(User Profile)。
其中,用户画像中通常包括一个或多个用于反映用户特征的用户标签,一个用户标签可以划分为两部分,一部分是用户标签类型,另一部分是该用户标签的特征值。以用户A为例,如表1所示,用户A的用户画像中包括4个用户标签,其中,用户标签1的类型为“性别”,该用户标签1的特征值为女性,即说明用户A的性别为女性;用户标签2的类型为“住址”,该用户标签2的特征值为北京市,即说明用户A住在北京市;用户标签3的类型为“熬夜”,该用户标签3的特征值为“85分”(以满分为100分举例),即说明用户A产生熬夜行为的概率较高。当用户B也具有“熬夜”类型的用户标签时,如果其打分为“60分”,则说明用户B产生熬夜行为的概率小于用户A产生熬夜行为的概率。
进一步地,用户画像中的用户标签可划分为个体标签和群体标签两种类型。
其中,个体标签是指可基于用户使用终端时的行为数据直接抽象出的用户特征,个体标签一般反映的是用户的个人行为特征。例如,用户经常在晚上12点之后使用手机,那么手机可以根据用户的使用习惯确定出用户具有“熬夜”类型的个体标签及该个体标签的特征值(即打分情况)。
而群体标签是指需要通过多个用户的行为数据进行聚类等分析后,根据某一用户所属群体的特征,对该用户生成的标签。例如,根据用户A、用户B以及用户C的行为数据可以确定用户A、用户B以及用户C均属于具有“熬夜”特征的一个群体,该群体的群体标签包括“工作狂”,那么,可将“工作狂”作为用户A、用户B以及用户C的一个群体标签。
图2为本发明实施例提供的一种用户画像平台的架构示意图。如图2所示,该用户画像平台中包括至少一个终端10和画像服务器30,其中,终端10中包括用户画像模块20。
上述用户画像模块20可以为终端10中的多种应用提供用户画像。该应用可以为系统级应用,也可以为普通级别应用。系统级应用一般指的是:该应用具有系统级权限,可以获取各种系统资源。普通级别应用一般指的是:该应用具有普通权限,可能无法获取某些系统资源,或者需要用户授权,才能获取一些系统资源。
系统级应用可以为该终端10中预装的应用。普通级别应用可以为终端10中预装的应用,也可以为后续用户自行安装的应用。例如:用户画像模块20可以分别向服务推荐应用、提醒应用、通知过滤应用等系统级应用提供用户画像。其中,服务推荐应用、提醒应用、通知过滤应用分别用于实现上述实施例中的服务推荐业务、提醒业务、通知过滤业务。当然,用户画像模块20还可以为视频应用、新闻应用或其它应用提供用户画像。
用户画像模块20还可以与云侧(即网络侧)的画像服务器30进行通信。
在本申请实施例中,用户画像模块20可以将生成的用户画像中不涉及用户隐私的个体标签发送给画像服务器30,降低用户隐私泄露的风险。同时,画像服务器30接收到某一用户(例如用户A)的个体标签后,可以结合其他终端10发送的其他一个或多个用户的个体标签,通过特征聚类、组合或者特征转换等方法确定用户A所属的群体,从而生成用户A的群体标签。
后续,画像服务器30可将为用户A生成的群体标签发送给终端10,由用户画像模块20结合用户A的个体标签和用户A的群体标签为用户A生成完整性和准确率较高的用户画像,从而提高终端10使用的用户画像的准确度。
本发明实施例提供的一种终端10中用户画像模块的架构示意图。用户画像模块20可以包括第一画像管理模块201、数据采集模块202、第一画像计算模块203、画像优化模块204、以及画像查询模块205。
数据采集模块202
数据采集模块202为用户画像模块20提供基础元数据的采集能力支持。数据采集模块202可以采集用户使用终端10时产生的行为数据,并对采集到的行为数据进行存储和读写管理。
具体的,数据采集模块202采集的行为数据具体可以包括应用层级数据401、系统层级数据402以及传感器层级数据403。
其中,应用层级数据401可以包括应用层的应用在运行时收集到的可反映用户行为特征的数据,例如,应用名、应用使用时间、使用时长等。示例性的,当正在运行的应用为视频应用时,数据采集模块202还可以采集正在播放的视频名、视频停止时间、视频播放集数、视频总集数等;当正在运行的应用为音乐应用时,数据采集模块202还可以采集正在播放的音乐名、音乐类型、播放时长、播放频率等;当正在运行的应用为美食应用时,数据采集模块202还可以采集当前的店铺名、美食类型、店铺地址等。在采集用户的行为数据时,数据采集模块202还可以根据具体情况,使用图片文本感知技术来采集数据,例如:通过光学字符识别(optical character recognition,OCR)技术识别图片中的文字内容,以获取图片中的文本信息。
系统层级数据402可以包括框架层(framework)中提供的各种服务在运行时收集到的可反映用户行为特征的数据。例如,数据采集模块202可以通过监听服务,监听来自操作系统或应用的广播消息,获取蓝牙开关状态、SIM卡状态、应用运行状态、自动旋转开关状态、热点开关状态等信息;又例如,数据采集模块202可以通过调用特定的接口,例如安卓系统提供的联系人提供接口(contact provider API)、内容提供接口(content providerAPI)、日历提供接口(calender provider API)等,获取系统的实时场景信息,例如,音频、视频、图片、通讯录、日程安排、时间、日期、电量、网络状态、耳机状态等信息。
传感器层级数据403可以包括通过传感器等器件收集到的用于反映用户行为特征的数据。例如距离传感器、加速度传感器、气压传感器、重力传感器或陀螺仪等传感器运行时产生的数据,通过这些数据可以识别出用户处于以下的行为状态:车载、骑行、走路、跑步、静止和其他。
在本申请实施例中,可以将数据采集模块202的采集周期设置为时长较短的采集周期,例如,采集周期可以为不超过24小时的任意取值。例如,数据采集模块202可以每隔5分钟采集终端10的GPS数据,每隔24小时采集终端10内图库中存储的图像数量。这样,终端10只需维护最近24小时内采集到的用户的行为数据,避免占用终端10过多的计算资源和存储资源。
示例性的,数据采集模块202可以通过系统监听、读取特定数据接口、调用系统服务、打点采集等方式采集上述应用层级数据401、系统层级数据402以及传感器层级数据403。
第一画像计算模块203
第一画像计算模块203中可包括一系列个体标签的生成算法或模型,第一画像计算模块203用于接收数据采集模块202在一定时间内采集到的用户的行为数据,以及按照上述算法或模型确定用户的个体标签。
可由第一画像管理模块201将数据采集模块202在最近24小时内采集到的行为数据发送给第一画像计算模块203,由第一画像计算模块203按照上述算法或模型通过统计分析、机器学习等方法确定出反映用户行为特征的多个个体标签。
这些个体标签中的有些标签,例如用户的住址、电话等可能涉及用户隐私,因此,第一画像计算模块203还可以对涉及用户隐私的个体标签进行脱敏处理,降低个体标签的敏感度。
用户的个体标签包括但不限于以下六类标签:基本属性、社会属性、行为习惯、兴趣爱好、心理学属性和手机使用喜好等。
其中,上述基本属性包括但不限于:个人信息和生理特征。所述个人信息包括但不限于:姓名、年龄、证件类型、学历、星座、信仰、婚姻状态和邮箱。
上述社会属性包括但不限于:行业/职业、职务、收入水平、孩子状态、车辆使用情况、房屋居住、手机和移动运营商。所述房屋居住可以包括:租房、自有房和还贷中。所述手机可以包括:品牌和价位。所述移动运营商可以包括:品牌、网络、流量特点和手机号码。所述品牌可以包括:移动、联通、电信和其它。所述网络可以包括:无、2G、3G和4G。所述流量特点可以包括:高、中和低。
上述行为习惯包括但不限于:地理位置、生活习惯、交通方式、居住酒店类型、经济/理财特性、餐饮习惯、购物特性和支付情况。所述生活习惯可以包括:作息时间、在家时间、上班时间、电脑上网时间和买菜购物时间。所述购物特性可以包括:购物品类和购物方式。所述支付情况可以包括:支付时间、支付地点、支付方式、单次支付金额和支付总金额。
上述兴趣爱好包括但不限于:读书喜好、新闻喜好、视频喜好、音乐喜好、运动喜好和旅游喜好。所述读书喜好可以包括:读书频率、读书时间段、读书总时长和读书分类。
上述心理学属性包括但不限于:生活方式、个性和价值观。
上述手机使用喜好包括但不限于:应用喜好、通知提醒、应用内操作、用户常用、系统应用和常用设置。
那么,第一画像管理模块201通过统计分析、机器学习等方法确定用户的个体标签后,可结合当前用户所处的动态场景,例如,当前时间、当前位置(经纬度)、运动状态、天气、地点(POI)、手机状态和开关状态等,得到对当前实时场景的感知结果,例如,感知结果为上班路上、旅行中等。那么,基于对当前实时场景的感知结果,终端可对用户在终端上的后续行为进行预测,从而提供智能化的定制化个性服务,例如在用户的下班时间自动为用户显示回家路线和路况等。
需要说明的是,上述的各种个体标签仅作为举例。在具体实现方式中,第一画像计算模块203中维护中的具体个体标签可以随业务的需求进行扩展,可以增加新的类型的标签,也可以对已有的标签进行更细化的分类,第一画像计算模块203为用户生成的个体标签可反映出该用户的个性化特征。
进一步地,第一画像计算模块203生成用户的个体标签后,一方面可以将该个体标签像保存至终端10的终端的数据库(例如,SQLite)中缓存一定时间(例如7天),另一方面,可由第一画像管理模块201将该个体标签中不涉及用户隐私的标签发送给画像服务器30。
另外,终端10可使用预设的加密算法,例如,高级加密标准(Advanced EncryptionStandard,AES)对上述个体标签加密,并将加密后的个体标签存储在SQLite中,以提高个体标签在终端10内的安全性。
第一画像管理模块201
第一画像管理模块201与上述数据采集模块202、第一画像计算模块203、画像优化模块204以及画像查询模块205均耦合。
具体的,第一画像管理模块201是终端10中提供用户画像服务的控制中心,可用于提供用户画像服务的各项管理功能及运行脚本,例如,启动建立用户画像的服务、从数据采集模块202中获取用户的行为数据、指示第一画像计算模块203计算用户的个体标签、指示画像优化模块204对生成包括用户的个体标签和全体标签的完整用户画像、指示画像查询模块205对用户身份进行鉴权或者向APP提供用户画像、更新算法库、清理过期数据、与画像服务器30同步数据等。
示例性的,第一画像管理模块201获取到第一画像计算模块203为用户生成的个体标签后,可将该个体标签中不涉及用户隐私的一个或多个同步至画像服务器30。例如,终端10可基于网络协议(hypertext transfer protocol over secure socket layer,HTTPS)协议中的post/get请求方法,将生成的个体标签发送给画像服务器30。
这样,终端10向画像服务器30发送的个体标签中不会泄露用户的个人隐私,后续画像服务器30可根据接收到的个体标签为用户确定其所属的群体标签,从而得到完整、准确的用户画像。
画像优化模块204
第一画像管理模块201可以将第一画像计算模块203生成的个体标签,以及画像服务器30发来的用户的群体标签输入给画像优化模块204。
这样,画像优化模块204可将上述群体标签作为新增的行为数据,结合原始采集到的行为数据生成完整的用户画像,由于生成该用户画像时综合考虑了用户的个体行为特征以及用户所属群体的群体行为特征,因此画像优化模块204得到的用户画像中既包括用户的个体标签,又包括用户的群体标签,从而可以提高用户画像的完整性和准确度。
进一步地,画像服务器30还可以进一步计算用户的群体标签与个体标签之间的关联度。例如,用户的个体标签为“网购”和“游戏”,画像服务器30为用户生成的群体标签为“宅”,此时,画像服务器30还可以进一步计算“宅”这一群体标签分别与“网购”和“游戏”之间的关联度。那么,后续画像优化模块204还可以根据上述关联度对“网购”和“游戏”这两个个体标签的特征值进行校正,从而提高最终生成的用户画像的准确度。
画像查询模块205
画像查询模块205用于响应应用层中任意应用查询用户画像的请求。示例性的,画像查询模块205可提供安卓统一标准的Provider接口,应用可通过调用该Provider接口请求第一画像管理模块201向其提供用户画像。
另外,画像查询模块205向应用提供用户画像时,还可通过数字签名等方式对请求提供用户画像的用户身份进行鉴权,以降低用户隐私泄露的风险。
画像服务器30可以包括第二画像管理模块301和第二画像计算模块302。
第二画像管理模块301
与上述终端10中的第一画像管理模块201类似的,第二画像管理模块301是画像服务器30中提供用户画像服务的控制中心,第二画像管理模块301与第二画像计算模块302相连。
具体的,第二画像管理模块301可用于接收终端10发送的用户的个体标签,并指示第二画像计算模块302根据不同终端10发送的不同用户的个体标签,计算每个用户的群体标签。当然,第二画像管理模块301还可将生成的不同用户的群体标签发送给终端10,或保存在画像服务器30的数据库(例如HBase等分布式数据库)中。
第二画像计算模块302
与终端10的第一画像计算模块203类似的,第二画像计算模块302中也可包括一系列用于生成群体标签的算法或模型。
第二画像计算模块302可以将具有共性的多个个体标签抽象为一个群体标签。第二画像计算模块302可以根据多个用户的个体标签,按照上述算法或模型,通过聚类、组合以及特征转换等方法将某一方面具有共性的多个用户划分为一个群体,该群体的群体标签可以作为群体内用户的群体标签。
进一步地,以用户A为例,第一画像计算模块203为用户A生成用户A的群体标签之后,还可以通过机器学习或大数据挖掘等方法进一步确定用户A的群体标签与个体标签之间的关联度,以便后续终端10可以根据该关联度校正用户A的个体标签的特征值。
画像服务器30接收终端1为用户A确定出的3个个体标签(P1-P3)、终端2为用户B确定出的3个个体标签(Q1-Q3)、终端3为用户C确定出的3个个体标签(W1-W3)。那么,第二画像计算模块302通过对这些个体标签进行聚类,可确定用户A属于“90后”这一群体标签的群体,同时,通过对这些个体标签进行特征组合后再进行聚类,可确定用户A属于“美剧”这一群体标签的群体,并且,通过对这些个体标签进行特征转换后再进行聚类,可确定用户A属于“游戏”这一群体标签的群体。
那么,第二画像计算模块302得到用户A的三个群体标签为“90后”(S1)、“美剧”(S2)以及“游戏”(S3)。此时,第二画像计算模块302可继续对用户A的群体标签进行大数据统计或数据挖掘,计算用户A的每一个群体标签与每一个个体标签之间的关联度。例如,群体标签“90后”(S1)与个体标签“吃货”(P1)之间的关联度为90分(以满分100分为例),说明当用户A为“90后”时,其具有“吃货”这一特征的几率为90%左右,那么,后续终端10可根据该关联度校正终端原本生成的个体标签“吃货”(P1)的特征值。
可以看出,第二画像计算模块302可基于多个用户的个体标签确定出每个用户的群体标签,即用户的群体属性,这样,终端10既可以生成用户的个体标签,又可以获取到用户的群体标签,从而生成更加完整、准确的用户画像。
另外,第二画像计算模块302还可以计算出用户的群体标签与个体标签之间的关联度,使得终端10后续可以对已生成的个体标签的特征值进行校准,进一步提高最终生成的用户画像的准确度,从而提高终端10提供智慧化服务时的准确度和智能度。
该方法应用于上述终端10和画像服务器30组成的画像系统中。该方法包括:
S1001、终端采集目标用户使用终端时产生的行为数据。
具体的,参见对上述终端内数据采集模块202的相关描述,可由数据采集模块202通过系统监听、读取特定数据接口、调用系统服务、打点采集等方式中的一种或多种,采集目标用户(例如用户A)使用该终端时产生的行为数据,例如,该行为数据具体可以包括应用层级数据、系统层级数据以及传感器层级数据。
具体的,对于不同类型的行为数据终端可以设置不同的采集周期。示例性的,对于涉及频繁用户操作的应用或功能,终端可以设置较小的采集周期采集用户的行为数据。例如,终端可每隔5分钟采集终端的位置信息、蓝牙的工作状态等。而对于涉及用户操作不太频繁的应用或功能,终端可以设置较大的采集周期采集用户的行为数据。例如,终端可每隔24小时钟采集终端内安装的应用的名称和数量。
进一步地,数据采集模块202可以将采集到的行为数据存储在终端的数据库(例如SQLite)中,例如,以列表的形式将采集时间以及与采集时间对应行为数据之间的对应关系存储在终端的数据库中。另外,在存储该行为数据时,终端还可以使用加密算法(例如AES256)对采集到的行为数据进行加密处理。
、终端根据上述行为数据为目标用户生成个体标签,该个体标签反映了目标用户的个体行为特征。
在步骤S1002中,在采集到用户的行为数据后,终端内的第一画像管理模块201可将一定时间内采集到的行为数据输入至第一画像计算模块203,由第一画像计算模块203按照预先存储的算法或模型,通过机器学习或统计分析等方法基于采集到的行为数据确定出能够反映用户A行为特征的个体标签。
例如,第一画像管理模块201向第一画像计算模块203发送的行为数据为:最近24小时内采集到的拍照数量。那么,当该拍照数量大于第一预设值(例如15张)时,第一画像计算模块203可以将“爱摄影”确定为用户的用户标签之一,此时对应的特征值为60分(以满分为100举例);当该拍照数量大于第二预设值(例如25张,第二预设值大于第一预设值)时,第一画像计算模块203可以将“爱摄影”确定为用户的用户标签之一,此时对应的特征值为80分。
当然,第一画像管理模块201还可以使用其他算法或模型生成目标用户的个体标签,例如,排序、加权以及平均、逻辑回归算法、Adaboost算法、朴素贝叶斯算法以及神经网络算法等,本申请实施例对此不做任何限制。另外,第一画像计算模块203为目标用户确定出的个人标签可以包括一个或多个,本申请实施例对此不做任何限制。
、终端将上述个体标签中敏感度小于阈值的个体标签发送至画像服务器。
在步骤S1003中,终端可对步骤S1002生成的涉及目标用户隐私的个体标签(例如用户A的住址、电话等)进行脱敏处理,使得生成的个体标签中尽可能少的存在涉及用户隐私的个体标签。
经脱敏处理后,终端可分别确定每个个体标签与用户隐私之间的相关程度,例如,通过计算个体标签与用户隐私之间的置信度或相关系数等方法,得到该个体标签的敏感度。
当个体标签与用户隐私之间的相关程度越大,则该个体标签的敏感度越大,相应的,当个体标签与用户隐私之间的相关程度越小,则该个体标签的敏感度越小。那么,当个体标签的敏感度小于阈值时,说明该个体标签所反映的用户隐私较少,因此,终端可将敏感度小于上述阈值的一个或多个目标用户的个体标签发送至画像服务器,降低终端与画像服务器交互时泄露用户隐私的风险。
、画像服务器获取N个用户中每个用户的个体标签,N>1。
其中,上述N个用户中包括步骤S1001-S1003中所述的目标用户。
由于每个用户使用终端时,其终端均可通过执行上述步骤S1001-S1003向画像服务器发送为各个用户生成的个体标签,因此,画像服务器每接收到一个终端向其发送的个体标签时,均可将其存储在画像服务器的数据库中,从而得到N个用户中每个用户的个体标签。
、画像服务器根据N个用户中每个用户的个体标签,生成目标用户的群体标签,该群体标签反映了目标用户所属的群体的行为特征。
画像服务器的第二画像管理模块301可向第二画像计算模块302输入上述N个用户的个体标签,由第二画像计算模块302按照预设的算法或模型,通过聚类、特征组合以及特征转换等方法确定出N个用户中每个用户的群体标签。
其中,聚类是指将个体标签相似的用户聚合为一类群体。例如,画像服务器预先设置了“90后”这一群体标签与群体1之间的对应关系,该群体1是指包含“爱摄影”和“网购”等个体标签的用户。那么,当第二画像管理模块301检测到用户A与用户B均具有“爱摄影”和“网购”的个体标签时,可将用户A与用户B作为群体1中的两位成员。由于群体1的群体标签为“90后”,因此,属于群体1的用户A和用户B的群体标签也包括“90后”。
特征组合是指将数量较多的个体标签按照一定规则组合后转换为数量较少的特征标签。后续,画像服务器可使用这些特征标签进一步通过上述聚类算法将相似的用户聚合为一类群体。例如,用户A的个体标签一共有50个,那么,第二画像管理模块301可以按照衣、食、住、行这4种类型将这50个个体标签组合为4个特征标签。后续,第二画像管理模块301可以将用户A、用户B以及用户C等用户分别在衣、食、住、行这4种类型的4个特征标签进行聚类,从而得到每个用户的群体标签。
特征转换是指将用户的多个个体标签分别转换为对应的转换标签,例如,用户A的个体标签为“QQ长时间在线”、“转账频率高”以及“机票”,那么,可将“QQ长时间在线”转换为“网聊”,将“转账频率高”转换为“高收入”,将“机票”转换为“出行”。进而,第二画像管理模块301可使用“网聊”、“高收入”以及“出行”这三个转换标签与其他用户特征转换后的转换标签进行聚类,从而得到每个用户的群体标签。
当然,画像服务器具体可以使用逻辑回归算法、Adaboost算法、规约映射算法、回归分析算法、Web数据挖掘算法、随机森林(Random Forests)算法以及K-最近邻法(K-nearest neighbors)等算法将多个用户归属在不同特征的群体中,并从而赋予不同用户相应的群体标签,本申请实施例对此不做任何限制。
也就是说,画像服务器可基于多个用户的个体标签,综合分析出目标用户所属的群体,从而得到目标用户的群体标签,该群体标签可反映出用户所属群体的行为特征,这样,终端后续结合目标用户的个体标签和群体标签,可以得到更加完整准确的用户画像。
需要说明的是,第二画像管理模块301为目标用户确定出的群体标签可以包括一个或多个,本申请实施例对此不做任何限制。
另外,步骤1005中画像服务器根据N个用户中每个用户的个体标签,生成目标用户的群体标签可以是一个不断循环的过程。例如,当画像服务器接收到新用户发来的个体标签后,可以将该新用户的个人标签作为新的输入,用户A-用户C的个体标签重新确定每个用户所属的群体以及每个用户的群体标签。也就是说,画像服务器为用户A确定的群体标签可以是一个不断更新的过程,并且,画像服务器可以将每次更新后的用户A的群体标签发送给用户A的终端。
可选的)、画像服务器确定目标用户的群体标签与个体标签之间的关联度。
可选的,在步骤S1006中,画像服务器得到目标用户的群体标签后,可进一步对该群体标签进行大数据下的关联规则(Association Rule)挖掘,以确定目标用户的群体标签与目标用户的个体标签之间的关联度。
例如,群体标签“90后”与个体标签“熬夜”之间的关联度为90(以满分100举例),即说明当目标用户具有“90后”这一群体标签时,有90%左右的概率会出现“熬夜”这一个体标签。那么,后续终端可根据画像服务器确定出的关联度优化步骤S1002中生成的个体标签及个体标签的特征值,从而提高最终生成的用户画像的准确率。
、画像服务器将目标用户的群体标签发送给终端。
需要说明的是,当画像服务器执行上述步骤S1006得到目标用户的群体标签与个体标签之间的关联度后,还可以在步骤S1007中同时将上述关联度发送给终端。
、终端根据目标用户的群体标签以及上述关联度,对步骤S1002生成的个体标签进行校正,得到目标用户的用户画像。
在步骤S1007-S1008中,画像服务器将步骤S1005和S1006中得到的目标用户的群体标签以及上述关联度发送给终端,使得终端可以根据该群体标签和关联度对步骤S1002中基于行为数据生成的个体标签进行校正,为目标用户生成最终的用户画像。
示例性的,终端在执行步骤S1002时为用户生成的个体标签包括两部分,一部分是与用户隐私关联度较高的个体标签,这些个体标签没有发送给画像服务器;另一部分是与用户隐私关联度较低的个体标签,这些个体标签发送给画像服务器后,由画像服务器为目标用户生成了群体标签。
,对于画像服务器发送的目标用户的群体标签,由于终端在步骤S1002中生成目标用户的个体标签时没有考虑目标用户的群体特征,因此,终端可将目标用户的群体标签以及原本生成的个体标签的全集作为目标用户的用户画像。
又或者,终端还可以将目标用户的群体标签作为新的行为数据输入画像优化模块204,由画像优化模块204结合目标用户的行为数据和群体标签重新计算目标用户的个体标签。这样生成的个体标签综合考虑了目标用户的个体行为特征和目标用户所属的群体行为特征,使得优化后的个体标签更加完整和准确。
对于画像服务器发送的群体标签与个体标签之间的关联度,画像优化模块204可以根据该关联度对步骤S1002中生成的个体标签进行校正。
例如,画像服务器发送的群体标签“90后”与个体标签“网购”之间的关联度为75,说明当目标用户具有群体标签“90后”时,同时具有个体标签“网购”的几率大约为75%,而步骤S1002中生成的个体标签并不包括“网购”这一个体标签,则终端可在目标用户的个体标签中添加“网购”这一标签,并设置“网购”这一个体标签的特征值,该特征值可以为小于75分的任意值。
又例如,画像服务器发送的群体标签“90后”与个体标签“熬夜”之间的关联度为95,说明当目标用户具有群体标签“90后”时,同时具有个体标签“熬夜”的几率大约为95%,而步骤S1002中终端为个体标签“熬夜”的特征值为65分,说明终端判断出的“熬夜”这一特征的特征值可能有偏差。因此,终端可在原始特征值65分的基础上根据上述关联度(95)校正对“熬夜”这一个体标签的特征值。
例如,校正后的特征值=原始特征值+关联度*校正因子。
其中,校正因子可以为-1到1之间的任意数值,校正因子的大小可以反映出关联度对个体标签特征值的影响程度。以校正因子为0.1举例,对于“熬夜”这一个体标签,其校正后的特征值=原始特征值(65)+关联度(95)*校正因子(0.1)=74.5。
这样,终端可以将校正后得到的个体标签以及个体标签的特征值作为目标用户的用户画像,此时得到的用户画像不仅综合考虑了用户个体行为特征和群体行为特征的影响,还对用户画像中个体标签的特征值进行了校正,使得终端最终生成的目标用户的用户画像的完整性和准确率得到提高。
、当终端接收到第一应用获取用户画像的请求时,终端向第一应用提供上述用户画像。
在步骤S1009中,终端为目标用户生成准确度更高、完整性更强的用户画像后,如果检测到终端上运行的应用(例如第一应用)需要向用户提供智慧化业务时,第一应用可通过调用画像查询模块205中的Provider等特定接口,请求第一画像管理模块201向第一应用提供用户画像,此时,第一画像管理模块201可将步骤S1008中生成的用户画像作为请求结果反馈给第一应用。
由于上述用户画像是终端与画像服务器协同交互后生成的完整性和准确率较高的用户画像,因此,第一应用使用该用户画像可为用户提供更加智能、便捷的智慧化业务。
其中,上述步骤S1001-S1003以及S1008-S1009中涉及终端的执行步骤,可以由图1所示的终端的处理器执行其存储器中存储的程序指令来实现。类似的,上述步骤S1004-S1007中涉及画像服务器的执行步骤,可以由画像服务器的处理器执行其存储器中存储的程序指令来实现。
可以理解的是,上述终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,包括:第一画像管理模块201、数据采集模块202、第一画像计算模块203、第一画像查询模块205以及画像优化模块204。
在采用对应各个功能划分各个功能模块的情况下,包括:第二画像管理模块301和第二画像计算模块302。
在采用集成的单元的情况下,上述实施例中所涉及的终端的一种可能的结构示意图,包括处理模块2101、通信模块2102、输入/输出模块2103以及存储模块2104。
其中,处理模块2101用于对终端的动作进行控制管理。通信模块2102用于支持终端与其他网络实体的通信。输入/输出模块2103用于接收由用户输入的信息或输出提供给用户的信息以及终端的各种菜单。存储模块2104用于保存终端的程序代码和数据。
在采用集成的单元的情况下,包括处理模块2201、通信模块2202以及存储模块2203。
其中,处理模块2201用于对画像服务器的动作进行控制管理。通信模块2202用于支持画像服务器与其他服务器或终端的通信。存储模块2203用于保存画像服务器的程序代码和数据。
具体的,上述处理模块2101/2201可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),GPU,通用处理器,数字信号处理器(Digital SignalProcessor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
上述通信模块2102/2202可以是收发器、收发电路、或通信接口等。例如,通信模块1303具体可以是蓝牙装置、Wi-Fi装置、外设接口等等。
上述输入/输出模块2103可以是触摸屏、显示器、麦克风等接收用户输入的信息或输出向用户提供的信息的设备。以显示器为例,具体可以采用液晶显示器、有机发光二极管等形式来配置显示器。另外,显示器上还可以集成触控板,用于采集在其上或附近的触摸事件,并将采集到的触摸信息发送给其他器件(例如处理器等)。
上述存储模块2104/2203可以是存储器,该存储器可以包括高速随机存取存储器(RAM),还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他易失性固态存储器件等。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (2)
1.一种基于用户画像的业务推荐方法,其特征在于,所述方法包括以下步骤:
终端将为用户生成的至少一个个体标签发送至画像服务器,该个体标签反映了该用户的个人行为特征;终端接收画像服务器为该用户生成的至少一个群体标签,该群体标签是画像服务器至少基于该至少一个个体标签生成的;这样,终端可以使用该群体标签更新用户的用户画像,从而向第一应用提供更新后的该用户画像中的至少一部分;
其中,终端将为用户生成的至少一个个体标签发送至画像服务器步骤包括:终端将该至少一个个体标签中敏感度小于阈值的个体标签发送至画像服务器,该敏感度用于指示该个体标签与用户隐私之间的相关程度;
其中,终端使用该群体标签更新该用户的用户画像步骤包括:终端将该群体标签添加至该用户的用户画像中,得到更新后的用户画像,该更新后的用户画像中包括该群体标签和终端生成的至少一个个体标签;
其中,在终端接收画像服务器为该用户生成的至少一个群体标签之后,还包括:终端接收画像服务器为该用户生成的第一群体标签与第一个体标签之间的关联度,第一群体标签为该至少一个群体标签中的一个,第一个体标签为该至少一个个体标签中的一个;终端根据该关联度校正第一个体标签的特征值,从而进一步提高后续终端生成的用户画像的准确度;
其中,在终端将为用户生成的至少一个个体标签发送至画像服务器之前,还包括:终端采集该用户使用终端时产生的行为数据;终端根据该行为数据为该用户生成至少一个个体标签,每个个体标签中包括该个体标签的类型和该个体标签的特征值;
其中,所述终端包括画像管理模块,以及与该画像管理模块均相连的数据采集模块、画像计算模块、画像优化模块以及画像查询模块;其中,该画像管理模块用于将为用户生成的至少一个个体标签发送至画像服务器,该个体标签反映了该用户的个人行为特征;接收画像服务器为该用户生成的至少一个群体标签,该群体标签是画像服务器至少基于该至少一个个体标签生成的,该群体标签反映了该用户所属群体的行为特征;该画像优化模块用于使用该群体标签更新该用户的用户画像;该画像查询模块,用于向第一应用提供更新后的该用户画像中的至少一部分。
2.根据权利要求1所述的业务推荐方法,其特征在于,终端使用该群体标签更新该用户的用户画像步骤还包括:终端根据该行为数据和该群体标签更新终端生成的至少一个个体标签,得到更新后的用户画像,该更新后的用户画像中包括该更新后的个体标签。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911027743.7A CN110782289B (zh) | 2019-10-28 | 2019-10-28 | 一种基于用户画像的业务推荐方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911027743.7A CN110782289B (zh) | 2019-10-28 | 2019-10-28 | 一种基于用户画像的业务推荐方法和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110782289A CN110782289A (zh) | 2020-02-11 |
CN110782289B true CN110782289B (zh) | 2020-11-10 |
Family
ID=69386923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911027743.7A Active CN110782289B (zh) | 2019-10-28 | 2019-10-28 | 一种基于用户画像的业务推荐方法和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110782289B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114902212A (zh) * | 2020-01-16 | 2022-08-12 | 深圳市欢太科技有限公司 | 画像生成方法、装置、服务器及存储介质 |
CN112465565B (zh) * | 2020-12-11 | 2023-09-26 | 加和(北京)信息科技有限公司 | 一种基于机器学习的用户画像预测的方法及装置 |
CN114662595A (zh) * | 2022-03-25 | 2022-06-24 | 王登辉 | 大数据融合处理方法及系统 |
CN118037373A (zh) * | 2022-11-01 | 2024-05-14 | 华为技术有限公司 | 一种推荐方法以及相关设备 |
CN116450952A (zh) * | 2023-06-16 | 2023-07-18 | 天津星耀九洲科技有限公司 | 一种基于深度学习技术的互联网用户画像生成方法和系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104636504A (zh) * | 2015-03-10 | 2015-05-20 | 飞狐信息技术(天津)有限公司 | 一种识别用户性别的方法及系统 |
CN105354293A (zh) * | 2015-11-02 | 2016-02-24 | 海信集团有限公司 | 一种移动终端上进行播放对象推送的辅助实现方法及装置 |
CN108280685A (zh) * | 2018-01-19 | 2018-07-13 | 百度在线网络技术(北京)有限公司 | 信息获取方法和装置 |
CN110009401A (zh) * | 2019-03-18 | 2019-07-12 | 康美药业股份有限公司 | 基于用户画像的广告投放方法、装置和存储介质 |
CN110020546A (zh) * | 2019-01-07 | 2019-07-16 | 南京邮电大学 | 一种隐私数据分级保护方法 |
CN110275980A (zh) * | 2019-06-26 | 2019-09-24 | 徐州工业职业技术学院 | 一种基于群透视音乐推荐方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8935634B2 (en) * | 2005-12-21 | 2015-01-13 | International Business Machines Corporation | Displaying dynamic graphical content in graphical user interface (GUI) controls |
CN108108451A (zh) * | 2017-12-27 | 2018-06-01 | 合肥美的智能科技有限公司 | 群体的群体用户画像获取方法和装置 |
CN110267086B (zh) * | 2018-05-16 | 2022-02-25 | 腾讯数码(天津)有限公司 | 主播标签建立方法和装置、直播网络界面引擎接口和介质 |
CN109978630A (zh) * | 2019-04-02 | 2019-07-05 | 安徽筋斗云机器人科技股份有限公司 | 一种基于大数据建立用户画像的精准营销方法和系统 |
CN110197402B (zh) * | 2019-06-05 | 2022-07-15 | 中国联合网络通信集团有限公司 | 基于用户群的用户标签分析方法、装置、设备和存储介质 |
-
2019
- 2019-10-28 CN CN201911027743.7A patent/CN110782289B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104636504A (zh) * | 2015-03-10 | 2015-05-20 | 飞狐信息技术(天津)有限公司 | 一种识别用户性别的方法及系统 |
CN105354293A (zh) * | 2015-11-02 | 2016-02-24 | 海信集团有限公司 | 一种移动终端上进行播放对象推送的辅助实现方法及装置 |
CN108280685A (zh) * | 2018-01-19 | 2018-07-13 | 百度在线网络技术(北京)有限公司 | 信息获取方法和装置 |
CN110020546A (zh) * | 2019-01-07 | 2019-07-16 | 南京邮电大学 | 一种隐私数据分级保护方法 |
CN110009401A (zh) * | 2019-03-18 | 2019-07-12 | 康美药业股份有限公司 | 基于用户画像的广告投放方法、装置和存储介质 |
CN110275980A (zh) * | 2019-06-26 | 2019-09-24 | 徐州工业职业技术学院 | 一种基于群透视音乐推荐方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110782289A (zh) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110431585B (zh) | 一种用户画像的生成方法及装置 | |
CN110782289B (zh) | 一种基于用户画像的业务推荐方法和系统 | |
CN110710190B (zh) | 一种生成用户画像的方法、终端、电子设备以及计算机可读存储介质 | |
US20200107152A1 (en) | Inferring user availability for a communication | |
KR101591993B1 (ko) | 모바일 장치 사용자의 장래 상태 예측에 관한 방법 | |
CN106557330B (zh) | 移动终端系统通知栏通知信息处理方法、装置和移动终端 | |
US20190340521A1 (en) | Intelligent Recommendation Method and Terminal | |
WO2019140702A1 (zh) | 一种用户画像的生成方法及装置 | |
EP2733969B1 (en) | Predicted-location notification | |
US20210337010A1 (en) | Computerized system and method for automatically providing networked devices non-native functionality | |
CN105009024A (zh) | 节省电池和数据使用 | |
CN111247782B (zh) | 用于自动创建即时ad-hoc日历事件的方法和系统 | |
CN110278329B (zh) | 一种通知消息的管理方法及移动终端 | |
US20170041373A1 (en) | Rules Engine for Connected Devices | |
KR20140061210A (ko) | 타겟 클라이언트를 검색하기 위한 방법, 디바이스 및 기록 매체 | |
US20160150375A1 (en) | Devices and Methods for Locating Missing Items with a Wireless Signaling Device | |
CN111143608A (zh) | 一种信息推送方法、装置、电子设备及存储介质 | |
US11206223B2 (en) | Signal upload optimization | |
CN107368998A (zh) | 日程管理方法及相关产品 | |
Al-Turjman et al. | Ubiquitous cloud-based monitoring via a mobile app in smartphones: An overview | |
KR102252084B1 (ko) | 블랙보드 기반의 사용자 모델링을 위한 방법, 장치 및 컴퓨터 판독가능 저장 매체 | |
CN111368211B (zh) | 关系链确定方法、装置及存储介质 | |
CN116661840A (zh) | 一种离线数据的处理方法、装置以及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20201016 Address after: 610000 building 52, No.16 Shengtong street, Chengdu hi tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu, Sichuan Province Applicant after: Sichuan lvtou Digital Information Industry Development Co., Ltd Address before: 518000 Room 405, unit 3, building 9, Wenxing garden, Chunfeng Road, Luohu District, Shenzhen City, Guangdong Province Applicant before: Fang Wenzhu |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |