CN110764092A - A method and system for azimuth tracking of underwater acoustic targets based on azimuth history map - Google Patents

A method and system for azimuth tracking of underwater acoustic targets based on azimuth history map Download PDF

Info

Publication number
CN110764092A
CN110764092A CN201911016360.XA CN201911016360A CN110764092A CN 110764092 A CN110764092 A CN 110764092A CN 201911016360 A CN201911016360 A CN 201911016360A CN 110764092 A CN110764092 A CN 110764092A
Authority
CN
China
Prior art keywords
azimuth
target
time
history map
matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911016360.XA
Other languages
Chinese (zh)
Other versions
CN110764092B (en
Inventor
李超
林一超
王海斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN201911016360.XA priority Critical patent/CN110764092B/en
Publication of CN110764092A publication Critical patent/CN110764092A/en
Application granted granted Critical
Publication of CN110764092B publication Critical patent/CN110764092B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/66Sonar tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/006Theoretical aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/537Counter-measures or counter-counter-measures, e.g. jamming, anti-jamming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The invention discloses an underwater sound target position tracking method and system based on a position history chart, wherein the method comprises the following steps: step 1) establishing an underwater sound target azimuth course map; step 2) a previous time Tn‑1The target azimuth angle is used as a search center, and the current time T is establishednThe matching template of (2); step 3) based on Tn‑1The matching template of the time is used for searching the current time T within a certain azimuth angle searching rangenThe azimuth history chart is subjected to two-dimensional matching search, and the azimuth corresponding to the position with the highest matching degree is taken as TnThe orientation of the time; and 4) adding 1 to n, and turning to the step 2) until the target disappears. The method can effectively inhibit multi-target interference and realize stable and continuous tracking of the weak target direction.

Description

一种基于方位历程图的水声目标方位跟踪方法及系统A method and system for azimuth tracking of underwater acoustic targets based on azimuth history map

技术领域technical field

本发明涉及被动声纳信号与信息处理技术领域,更具体地涉及一种基于方位历程图的水声目标方位跟踪方法及系统。The invention relates to the technical field of passive sonar signal and information processing, and more particularly to a method and system for azimuth tracking of an underwater acoustic target based on an azimuth history map.

背景技术Background technique

水声目标的辐射噪声,如发动机噪声、水声探测脉冲、水声通信脉冲等可以被被动探测声纳阵列利用进行目标定向跟踪。The radiated noise of underwater acoustic targets, such as engine noise, underwater acoustic detection pulses, and underwater acoustic communication pulses, can be used by passive detection sonar arrays for target orientation tracking.

借助于水声目标方位历程图对目标进行发现与自动跟踪是目前常用的一种水声目标发现与方位跟踪的方法。如果当前方位角方向上存在水声声源时,时间补偿后的各个阵元信号的振幅在融合过程中会同向叠加,否则会完全或者部分抵消。因此,在目标方位上的合成波束的能量会高于其他方位的合成波束。如果噪声源持续存在,在水声目标方位历程图上会呈现出一条稳定的明亮轨迹,该轨迹会随着目标声源方位角的变化产生相应的倾斜或弯曲变化。It is a common method for underwater acoustic target discovery and azimuth tracking to find and automatically track the target with the aid of the underwater acoustic target azimuth history map. If there is an underwater sound source in the current azimuth direction, the amplitudes of each element signal after time compensation will be superimposed in the same direction during the fusion process, otherwise it will be completely or partially canceled. Therefore, the energy of the composite beam in the target azimuth will be higher than that of the other azimuths. If the noise source persists, a stable bright trajectory will appear on the underwater acoustic target azimuth histogram, and the trajectory will have a corresponding slope or curvature change with the change of the target sound source azimuth.

在实际应用中,如果用户在水声目标方位历程图上发现明亮轨迹,则可认为对应方位存在目标。对该轨迹进行跟踪,即可实现对目标的方位跟踪。为了减轻用户在执行值守任务中的工作负担,可以采用自动跟踪的方式对目标方位进行跟踪。现有的自动水声目标方位跟踪的具体步骤为:In practical applications, if the user finds a bright track on the underwater acoustic target azimuth histogram, it can be considered that there is a target in the corresponding azimuth. By tracking the trajectory, the azimuth tracking of the target can be realized. In order to reduce the workload of the user in performing the duty task, the target orientation can be tracked by means of automatic tracking. The specific steps of the existing automatic underwater acoustic target azimuth tracking are:

1、用户在Tn时刻发现目标后,手工初始化目标方位角;1. After the user finds the target at time T n , the target azimuth is manually initialized;

2、在下一时刻Tn+1,自动跟踪系统以Tn时刻的目标方位角为中心,在限定的方位角范围内搜索能量最大的合成波束,将其对应的方位角作为Tn+1时刻的目标方位角;2. At the next time T n+1 , the automatic tracking system takes the target azimuth at time T n as the center, searches for the synthetic beam with the largest energy within the limited range of azimuth angles, and takes its corresponding azimuth angle as time T n+1 the target azimuth;

3、以Tn+1时刻测得的目标方位角作为接下来的Tn+2时刻的目标方位角的搜索中心,在限定的方位角范围内搜索能量最大的合成波束,将其对应的方位角作为Tn+2时刻的目标方位角;3. Take the target azimuth angle measured at time T n+1 as the search center of the target azimuth angle at the next time T n+2 , search for the synthetic beam with the largest energy within the limited azimuth angle range, and set its corresponding azimuth angle angle as the target azimuth at time T n+2 ;

实际应用中水声方位历程图轨迹跟踪面临多目标交叉干扰问题。体现为当兴趣目标方位附近出现其他干扰目标时,在方位历程图上会出现交叉轨迹,引发跟踪偏离。特别是当兴趣目标噪声强度弱于干扰目标噪声强度时,采用传统的跟踪方法必然引发跟踪偏离。In practical applications, the trajectory tracking of underwater acoustic azimuth histories faces the problem of multi-target cross-interference. It is manifested that when other interfering targets appear near the azimuth of the target of interest, a cross trajectory will appear on the azimuth history map, causing tracking deviation. Especially when the noise intensity of the target of interest is weaker than that of the interference target, the traditional tracking method will inevitably lead to tracking deviation.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服上述技术缺陷,提出了一种基于方位历程图的水声目标方位跟踪方法,所述方法包括:The purpose of the present invention is to overcome the above-mentioned technical defects, and proposes a method for azimuth tracking of an underwater acoustic target based on an azimuth history map, the method comprising:

步骤1)建立水声目标方位历程图;Step 1) Establish an underwater acoustic target azimuth history map;

步骤2)以前一时刻Tn-1的目标方位角为搜索中心,建立当前时刻Tn的匹配模板;Step 2) The target azimuth of the previous moment T n-1 is the search center, and the matching template of the current moment T n is established;

步骤3)基于当前时刻Tn的匹配模板,在一定的方位角搜索范围内对当前时刻Tn的方位历程图进行二维匹配搜索,并将匹配度最高的位置对应的方位角作为当前时刻Tn的方位角;Step 3) Based on the matching template of the current time Tn , perform a two - dimensional matching search on the azimuth history map of the current time Tn within a certain azimuth angle search range, and take the azimuth angle corresponding to the position with the highest matching degree as the current time T azimuth of n ;

步骤4)令n加1,转入步骤2),直至目标消失。Step 4) Increase n by 1, and go to step 2) until the target disappears.

作为上述方法的一种改进,所述步骤2)具体包括:As an improvement of the above method, the step 2) specifically includes:

步骤201)在方位历程图上对兴趣目标进行运动轨迹分析,得到其前ΔT时间段内的方位变化态势;Step 201) on the azimuth history map, analyze the motion trajectory of the target of interest, and obtain the azimuth change situation in the previous ΔT time period;

目标方位历程图上的明亮轨迹描述为t=kα+b,t表示时间,α表示t时刻目标的方位角,k和b为待估参数;The bright trajectory on the target azimuth history map is described as t=kα+b, t represents time, α represents the azimuth angle of the target at time t, and k and b are parameters to be estimated;

采用基于最小方差的方式估计参数k和b,则有:By estimating the parameters k and b based on the minimum variance, we have:

Figure BDA0002245838380000021
Figure BDA0002245838380000021

Figure BDA0002245838380000022
Figure BDA0002245838380000022

其中,αn-1-i表示Tn-1-i时刻的目标方位角;1≤i≤m;m是用于进行运动分析的快拍数量;初始时刻,通过手动发现目标,获取目标的方位角;Among them, α n-1-i represents the azimuth angle of the target at the time T n-1-i ; 1≤i≤m; m is the number of snapshots used for motion analysis; at the initial moment, manually find the target and obtain the target's azimuth. Azimuth;

步骤202)根据步骤201)中的运动轨迹分析结果,建立目标方位历程图上当前时刻Tn的匹配模板;Step 202) according to the motion trajectory analysis result in step 201), establish the matching template of the current time T n on the target orientation history map;

建立一个匹配模板的矩阵G,G的每一行对应一个快拍时间点,每一列对应一个观测角度,则G的每一个元素的值的计算方式为:Establish a matrix G that matches the template, each row of G corresponds to a snapshot time point, and each column corresponds to an observation angle, then the value of each element of G is calculated as:

Figure BDA0002245838380000023
Figure BDA0002245838380000023

其中in

x1=x cosθ+y sinθx 1 =x cosθ+y sinθ

y1=-x sinθ+y cosθy 1 =-x sinθ+y cosθ

其中,

Figure BDA0002245838380000031
γ为条纹的空间纵横比,δ为高斯因子标准差,λ为条纹宽度的调整参数。in,
Figure BDA0002245838380000031
γ is the spatial aspect ratio of the stripes, δ is the standard deviation of the Gaussian factor, and λ is the adjustment parameter of the stripe width.

作为上述方法的一种改进,所述步骤3)具体包括:As an improvement of the above method, the step 3) specifically includes:

在当前时刻Tn,以前一时刻Tn-1的目标方位角为中心,在限定的方位角范围内以匹配模板的矩阵G为标准沿横坐标进行滑动匹配;At the current time T n , the target azimuth angle of the previous time T n-1 is the center, and the sliding matching is performed along the abscissa with the matrix G of the matching template as the standard within the limited azimuth angle range;

计算滑动过程中的相关性参数Corr:Calculate the correlation parameter Corr in the sliding process:

Figure BDA0002245838380000032
Figure BDA0002245838380000032

其中,[-β,β]为矩阵G对应的方位角取值范围,

Figure BDA0002245838380000033
为方位历程图
Figure BDA0002245838380000034
结点处对应的能量值;
Figure BDA0002245838380000035
为方位角,取值范围[αn-1-β,αn-1+β];τ为时间,取值范围[Tn-ΔT,Tn];αn-1为Tn-1时刻的目标方位角;Among them, [-β, β] is the value range of the azimuth angle corresponding to the matrix G,
Figure BDA0002245838380000033
azimuth history map
Figure BDA0002245838380000034
The corresponding energy value at the node;
Figure BDA0002245838380000035
is the azimuth, the value range [α n-1 -β, α n-1 +β]; τ is the time, the value range [T n -ΔT, T n ]; α n-1 is the time T n-1 the target azimuth;

当相关性参数Corr最大时,其对应的方位角

Figure BDA0002245838380000038
为目标在当前时刻Tn的方位角。When the correlation parameter Corr is the largest, its corresponding azimuth
Figure BDA0002245838380000038
is the azimuth of the target at the current time Tn.

本发明还提出了一种基于方位历程图的水声目标方位跟踪系统,所述系统包括:The present invention also proposes an underwater acoustic target azimuth tracking system based on the azimuth history map, the system comprising:

方位历程图建立模块,用于建立水声目标方位历程图;The azimuth history map establishment module is used to establish the azimuth history map of the underwater acoustic target;

匹配模板建立模块,用于以当前一时刻Tn-1的目标方位角为搜索中心,建立当前时刻Tn的匹配模板;A matching template establishment module is used to take the target azimuth of the current moment T n-1 as the search center to establish the matching template of the current moment T n ;

搜索模块,用于基于当前时刻Tn的匹配模板,在一定的方位角搜索范围内对当前时刻Tn的方位历程图进行二维匹配搜索,并将匹配度最高的位置对应的方位角作为当前时刻Tn的方位角。The search module is used to perform a two - dimensional matching search on the azimuth history map of the current time Tn within a certain azimuth angle search range based on the matching template of the current time Tn, and use the azimuth angle corresponding to the position with the highest matching degree as the current Azimuth at time Tn.

作为上述系统的一种改进,所述匹配模板建立模块的具体实现过程为:As a kind of improvement of the above-mentioned system, the concrete realization process of described matching template establishment module is:

在方位历程图上对兴趣目标进行运动轨迹分析,得到其前ΔT时间段内的方位变化态势;The movement trajectory of the target of interest is analyzed on the azimuth history map, and the azimuth change trend in the previous ΔT time period is obtained;

目标方位历程图上的明亮轨迹描述为t=kα+b,t表示时间,α表示t时刻目标的方位角,k和b为待估参数;The bright trajectory on the target azimuth history map is described as t=kα+b, t represents time, α represents the azimuth angle of the target at time t, and k and b are parameters to be estimated;

采用基于最小方差的方式估计参数k和b,则有:By estimating the parameters k and b based on the minimum variance, we have:

其中,αn-1-i表示Tn-1-i时刻的目标方位角;1≤i≤m;m是用于进行运动分析的快拍数量;初始时刻,通过手动发现目标,获取目标的方位角;Among them, α n-1-i represents the azimuth angle of the target at the time T n-1-i ; 1≤i≤m; m is the number of snapshots used for motion analysis; at the initial moment, manually find the target and obtain the target's azimuth. Azimuth;

根据运动轨迹分析结果,建立目标方位历程图上当前时刻Tn的匹配模板;According to the analysis result of the motion trajectory, establish the matching template of the current time Tn on the target orientation history map;

建立一个匹配模板的矩阵G,G的每一行对应一个快拍时间点,每一列对应一个观测角度,则G的每一个元素的值的计算方式为:Establish a matrix G that matches the template, each row of G corresponds to a snapshot time point, and each column corresponds to an observation angle, then the value of each element of G is calculated as:

Figure BDA0002245838380000041
Figure BDA0002245838380000041

其中in

x1=x cosθ+y sinθx 1 =x cosθ+y sinθ

y1=-x sinθ+y cosθy 1 =-x sinθ+y cosθ

其中,

Figure BDA0002245838380000042
γ为条纹的空间纵横比,δ为高斯因子标准差,λ为条纹宽度的调整参数。in,
Figure BDA0002245838380000042
γ is the spatial aspect ratio of the stripes, δ is the standard deviation of the Gaussian factor, and λ is the adjustment parameter of the stripe width.

作为上述系统的一种改进,所述搜索模块的具体实现过程为:As an improvement of the above system, the specific implementation process of the search module is:

在当前时刻Tn,以前一时刻Tn-1的目标方位角为中心,在限定的方位角范围内以匹配模板的矩阵G为标准沿横坐标进行滑动匹配;At the current time T n , the target azimuth at the previous time T n-1 is the center, and the sliding matching is performed along the abscissa with the matrix G of the matching template as the standard within the limited azimuth range;

计算滑动过程中的相关性参数Corr:Calculate the correlation parameter Corr in the sliding process:

Figure BDA0002245838380000043
Figure BDA0002245838380000043

其中,[-β,β]为矩阵G对应的方位角取值范围,

Figure BDA0002245838380000044
为方位历程图
Figure BDA0002245838380000045
结点处对应的能量值;
Figure BDA0002245838380000046
为方位角,取值范围[αn-1-β,αn-1+β];τ为时间,取值范围[Tn-ΔT,Tn];αn-1为Tn-1时刻的目标方位角;Among them, [-β, β] is the value range of the azimuth angle corresponding to the matrix G,
Figure BDA0002245838380000044
azimuth history map
Figure BDA0002245838380000045
The corresponding energy value at the node;
Figure BDA0002245838380000046
is the azimuth, the value range [α n-1 -β, α n-1 +β]; τ is the time, the value range [T n -ΔT, T n ]; α n-1 is the time T n-1 the target azimuth;

当相关性参数Corr最大时,其对应的方位角

Figure BDA0002245838380000047
为目标在当前时刻Tn的方位角。When the correlation parameter Corr is the largest, its corresponding azimuth
Figure BDA0002245838380000047
is the azimuth of the target at the current time Tn.

本发明的优势在于:The advantages of the present invention are:

本发明的方法可以有效抑制多目标干扰,实现对弱目标方位的稳定持续跟踪。The method of the invention can effectively suppress multi-target interference and realize stable and continuous tracking of weak target azimuth.

附图说明Description of drawings

图1为测试用目标方位图原始图;Figure 1 is the original image of the target orientation map for testing;

图2为传统跟踪方法跟踪结果;Fig. 2 is the tracking result of the traditional tracking method;

图3为本发明基于方位历程图的水声目标测向方法的结果示意图。3 is a schematic diagram of the results of the underwater acoustic target direction finding method based on the azimuth history diagram of the present invention.

具体实施方式Detailed ways

下面对本发明的方法进行详细的说明。The method of the present invention will be described in detail below.

本发明提出了一种基于方位历程图的水声目标方位跟踪方法,具体包括:The present invention proposes an azimuth tracking method for an underwater acoustic target based on an azimuth history map, which specifically includes:

步骤1)建立水声目标方位历程图,具体包括:Step 1) Establish a azimuth history map of the underwater acoustic target, which specifically includes:

1、按照一定的时间间隔,截取固定长度的声纳阵列接收信号;1. According to a certain time interval, intercept the received signal of a fixed-length sonar array;

2、以声纳阵列的某一个阵元为基准,按照一定的方位角间隔,计算对应方位角下各个阵元接收到的目标噪声的时间差;2. Based on a certain array element of the sonar array, according to a certain azimuth angle interval, calculate the time difference of the target noise received by each array element under the corresponding azimuth angle;

3、根据各个阵元接收到的目标噪声的时间差,对各个阵元的接收信号进行时间补偿(将信号延时间轴进行平移,使得各阵元的接收目标噪声的初始相位一致);3. According to the time difference of the target noise received by each array element, perform time compensation on the received signal of each array element (translate the signal along the time axis, so that the initial phase of the received target noise of each array element is consistent);

4、将时间补偿后的接收信号进行加权或者等权融合,得到对应方位角下的合成波束;4. Perform weighting or equal-weight fusion on the time-compensated received signals to obtain a synthetic beam at the corresponding azimuth angle;

5、计算对应方位角下的合成波束的总能量值,得到以方位角为横坐标、能量幅值为纵坐标的波束能量谱,称为合成波束的方位能量谱;5. Calculate the total energy value of the synthesized beam at the corresponding azimuth angle, and obtain the beam energy spectrum with the azimuth angle as the abscissa and the energy amplitude as the ordinate, which is called the azimuth energy spectrum of the synthesized beam;

6、建立时间-方位角空间坐标系,以灰度值表示对应<时间 方位>下的波束能量幅值,即可得到水声目标方位历程图。6. Establish a time-azimuth space coordinate system, and use gray value to represent the beam energy amplitude corresponding to <time azimuth>, and then the azimuth history map of the underwater acoustic target can be obtained.

步骤2)以前一时刻Tn-1的目标方位角为搜索中心,建立匹配模板;Step 2) take the target azimuth of the previous moment T n-1 as the search center, and establish a matching template;

步骤201)在方位历程图上对兴趣目标进行运动轨迹分析,得到其近ΔT时间段内的方位变化态势;Step 201) on the azimuth history map, analyze the motion trajectory of the target of interest, and obtain its azimuth change situation in the near ΔT time period;

设目标在时刻t对应的方位为α,考虑到水声目标方位一般变化较慢,在一定短的时间段ΔT内可以近似为线性变化,则目标方位历程图上的明亮轨迹可以描述为t=kα+b,其中,t表示时间,α表示t时刻目标的方位角;k和b为待估参数;采用基于最小方差的方式估计参数k和b,则有:Assume that the azimuth corresponding to the target at time t is α. Considering that the azimuth of the underwater acoustic target generally changes slowly, it can be approximated as a linear change within a certain short period of time ΔT, and the bright trajectory on the target azimuth history map can be described as t = kα+b, where t represents time, and α represents the azimuth of the target at time t; k and b are parameters to be estimated; parameters k and b are estimated by the method based on the minimum variance, as follows:

采用基于最小方差的方式估计参数k和b,则有:By estimating the parameters k and b based on the minimum variance, we have:

Figure BDA0002245838380000051
Figure BDA0002245838380000051

其中,αn-1-i表示Tn-1-i时刻的目标方位角;1≤i≤m;m是用于进行运动分析的快拍数量;初始时刻,通过手动发现目标,获取目标的方位角;Among them, α n-1-i represents the azimuth angle of the target at the time T n-1-i ; 1≤i≤m; m is the number of snapshots used for motion analysis; at the initial moment, manually find the target and obtain the target's azimuth. Azimuth;

步骤202)假设目标当前时刻Tn的运动态势与前ΔT时间段内呈现的运动态势相同,则可根据步骤201)中的运动轨迹分析结果,以图像仿真的方法得到目标方位历程图上Tn时刻的匹配模板;Step 202) Assuming that the movement situation of the target at the current moment Tn is the same as the movement situation presented in the previous ΔT time period, then according to the movement trajectory analysis result in step 201), the image simulation method can be used to obtain Tn on the target orientation history map. The matching template of the moment;

建立一个匹配模板的矩阵G,G的每一行对应一个快拍时间点,每一列对应一个观测角度,则G的每一个结点的值的计算方式为:Establish a matrix G that matches the template, each row of G corresponds to a snapshot time point, and each column corresponds to an observation angle, then the value of each node of G is calculated as:

Figure BDA0002245838380000061
Figure BDA0002245838380000061

其中in

x1=x cosθ+y sinθx 1 =x cosθ+y sinθ

y1=-x sinθ+y cosθy 1 =-x sinθ+y cosθ

上式中

Figure BDA0002245838380000062
γ为条纹的空间纵横比,δ为高斯因子标准差,λ为条纹宽度的调整参数。In the above formula
Figure BDA0002245838380000062
γ is the spatial aspect ratio of the stripes, δ is the standard deviation of the Gaussian factor, and λ is the adjustment parameter of the stripe width.

步骤3)基于Tn时刻的匹配模板,在一定的方位角搜索范围内对当前Tn时刻的方位历程图进行二维匹配搜索,并将匹配度最高的位置对应的方位作为Tn时刻的最新方位,即可实现对目标的跟踪;Step 3) Based on the matching template at time T n , perform a two-dimensional matching search on the current azimuth history map at time T n within a certain azimuth angle search range, and use the azimuth corresponding to the position with the highest matching degree as the latest update at time T n . azimuth, the tracking of the target can be realized;

在当前时刻Tn,以前一时刻Tn-1的目标方位角为中心,在限定的方位角范围内以匹配模板的矩阵G为标准沿横坐标进行滑动匹配;At the current time T n , the target azimuth angle of the previous time T n-1 is the center, and the sliding matching is performed along the abscissa with the matrix G of the matching template as the standard within the limited azimuth angle range;

计算滑动过程中的相关性参数Corr:Calculate the correlation parameter Corr in the sliding process:

Figure BDA0002245838380000063
Figure BDA0002245838380000063

其中,[-β,β]为矩阵G对应的方位角取值范围,

Figure BDA0002245838380000064
为方位历程图
Figure BDA0002245838380000065
结点处对应的能量值;
Figure BDA0002245838380000066
为方位角,取值范围[αn-1-β,αn-1+β];τ为时间,取值范围[Tn-ΔT,Tn];αn-1为Tn-1时刻的目标方位角;Among them, [-β, β] is the value range of the azimuth angle corresponding to the matrix G,
Figure BDA0002245838380000064
azimuth history map
Figure BDA0002245838380000065
The corresponding energy value at the node;
Figure BDA0002245838380000066
is the azimuth, the value range [α n-1 -β, α n-1 +β]; τ is the time, the value range [T n -ΔT, T n ]; α n-1 is the time T n-1 the target azimuth;

当相关性参数Corr最大时,其对应的方位角

Figure BDA0002245838380000067
为目标在Tn时刻的方位角。When the correlation parameter Corr is the largest, its corresponding azimuth
Figure BDA0002245838380000067
is the azimuth of the target at time T n .

步骤4)令n加1,转入步骤2),直至目标消失。Step 4) Increase n by 1, and go to step 2) until the target disappears.

本发明还提出了一种基于方位历程图的水声目标方位跟踪系统,所述系统包括:The present invention also proposes an underwater acoustic target azimuth tracking system based on the azimuth history map, the system comprising:

方位历程图建立模块,用于建立水声目标方位历程图;The azimuth history map establishment module is used to establish the azimuth history map of the underwater acoustic target;

匹配模板建立模块,用于以当前一时刻Tn-1的目标方位角为搜索中心,建立当前时刻Tn的匹配模板;A matching template establishment module is used to take the target azimuth of the current moment T n-1 as the search center to establish the matching template of the current moment T n ;

搜索模块,用于基于当前时刻Tn的匹配模板,在一定的方位角搜索范围内对当前时刻Tn的方位历程图进行二维匹配搜索,并将匹配度最高的位置对应的方位角作为当前时刻Tn的方位角。The search module is used to perform a two - dimensional matching search on the azimuth history map of the current time Tn within a certain azimuth angle search range based on the matching template of the current time Tn, and use the azimuth angle corresponding to the position with the highest matching degree as the current Azimuth at time Tn.

实例验证:Example verification:

图1给出了测试用的方位目标历程图的原始图像。图1中的轨迹越亮则表示目标强度越强。图1底部自左至右有3个目标,其中最左侧的目标为感兴趣的弱目标,其余两个目标为强干扰目标。兴趣弱目标与两个强干扰目标同时形成交叉。Figure 1 shows the original image of the azimuth target histogram used for testing. The brighter the trace in Figure 1 is, the stronger the target intensity is. There are 3 targets from left to right at the bottom of Figure 1, of which the leftmost target is a weak target of interest, and the other two targets are strong interference targets. The target with weak interest and two targets with strong interference form an intersection at the same time.

图2给出了基于能量最大值的传统跟踪方法的跟踪结果,在方位历程图中用绿色叉表示。明显看到在第一个强目标干扰处引发跟踪偏离,导致跟踪失败。Figure 2 shows the tracking results of the traditional tracking method based on the energy maximum, which is indicated by a green cross in the azimuth histogram. It is clearly seen that tracking deviation is induced at the first strong target disturbance, resulting in tracking failure.

图3给出了本发明方法的跟踪结果。其中先验信息为90个快拍的数据,匹配模板G的宽度为20个观测方位间隔,G的高度为30个快拍间隔,条纹的空间纵横比γ为0.05,高斯因子标准差δ为2.4,条纹宽度λ为30。可以看到本发明的方法在多目标交叉点处有效避开了强目标的干扰,对兴趣目标的弱轨迹进行了成功的方位跟踪。Figure 3 shows the tracking results of the method of the present invention. The prior information is the data of 90 snapshots, the width of the matching template G is 20 observation azimuth intervals, the height of G is 30 snapshot intervals, the spatial aspect ratio γ of the stripes is 0.05, and the Gaussian factor standard deviation δ is 2.4 , the stripe width λ is 30. It can be seen that the method of the present invention effectively avoids the interference of strong targets at the intersection of multiple targets, and successfully performs azimuth tracking on the weak trajectory of the target of interest.

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the embodiments, those of ordinary skill in the art should understand that any modification or equivalent replacement of the technical solutions of the present invention will not depart from the spirit and scope of the technical solutions of the present invention, and should be included in the present invention. within the scope of the claims.

Claims (6)

1.一种基于方位历程图的水声目标方位跟踪方法,所述方法包括:1. A method for azimuth tracking of an underwater acoustic target based on an azimuth history map, the method comprising: 步骤1)建立水声目标方位历程图;Step 1) Establish an underwater acoustic target azimuth history map; 步骤2)以前一时刻Tn-1的目标方位角为搜索中心,建立当前时刻Tn的匹配模板;Step 2) The target azimuth of the previous moment T n-1 is the search center, and the matching template of the current moment T n is established; 步骤3)基于当前时刻Tn的匹配模板,在一定的方位角搜索范围内对当前时刻Tn的方位历程图进行二维匹配搜索,并将匹配度最高的位置对应的方位角作为当前时刻Tn的方位角;Step 3) Based on the matching template of the current time Tn , perform a two - dimensional matching search on the azimuth history map of the current time Tn within a certain azimuth angle search range, and take the azimuth angle corresponding to the position with the highest matching degree as the current time T azimuth of n ; 步骤4)令n加1,转入步骤2),直至目标消失。Step 4) Increase n by 1, and go to step 2) until the target disappears. 2.根据权利要求1所述的方法,其特征在于,所述步骤2)具体包括:2. The method according to claim 1, wherein the step 2) specifically comprises: 步骤201)在方位历程图上对兴趣目标进行运动轨迹分析,得到其前ΔT时间段内的方位变化态势;Step 201) on the azimuth history map, analyze the motion trajectory of the target of interest, and obtain the azimuth change situation in the previous ΔT time period; 目标方位历程图上的明亮轨迹描述为t=kα+b,t表示时间,α表示t时刻目标的方位角,k和b为待估参数;The bright trajectory on the target azimuth history map is described as t=kα+b, t represents time, α represents the azimuth angle of the target at time t, and k and b are parameters to be estimated; 采用基于最小方差的方式估计参数k和b,则有:By estimating the parameters k and b based on the minimum variance, we have:
Figure FDA0002245838370000011
Figure FDA0002245838370000011
Figure FDA0002245838370000012
Figure FDA0002245838370000012
其中,αn-1-i表示Tn-1-i时刻的目标方位角;1≤i≤m;m是用于进行运动分析的快拍数量;初始时刻,通过手动发现目标,获取目标的方位角;Among them, α n-1-i represents the azimuth angle of the target at the time T n-1-i ; 1≤i≤m; m is the number of snapshots used for motion analysis; at the initial moment, manually find the target and obtain the target's azimuth. Azimuth; 步骤202)根据步骤201)中的运动轨迹分析结果,建立目标方位历程图上当前时刻Tn的匹配模板;Step 202) according to the motion trajectory analysis result in step 201), establish the matching template of the current time T n on the target orientation history map; 建立一个匹配模板的矩阵G,G的每一行对应一个快拍时间点,每一列对应一个观测角度,则G的每一个元素的值的计算方式为:Establish a matrix G that matches the template, each row of G corresponds to a snapshot time point, and each column corresponds to an observation angle, then the value of each element of G is calculated as: 其中in x1=x cosθ+y sinθx 1 =x cosθ+y sinθ y1=-x sinθ+y cosθy 1 =-x sinθ+y cosθ 其中,
Figure FDA0002245838370000014
γ为条纹的空间纵横比,δ为高斯因子标准差,λ为条纹宽度的调整变量。
in,
Figure FDA0002245838370000014
γ is the spatial aspect ratio of the stripes, δ is the standard deviation of the Gaussian factor, and λ is the adjustment variable of the stripe width.
3.根据权利要求2所述的方法,其特征在于,所述步骤3)具体包括:3. The method according to claim 2, wherein the step 3) specifically comprises: 在当前时刻Tn,以前一时刻Tn-1的目标方位角为中心,在限定的方位角范围内以匹配模板的矩阵G为标准沿横坐标进行滑动匹配;At the current time T n , the target azimuth angle of the previous time T n-1 is the center, and the sliding matching is performed along the abscissa with the matrix G of the matching template as the standard within the limited azimuth angle range; 计算滑动过程中的相关性参数Corr:Calculate the correlation parameter Corr in the sliding process:
Figure FDA0002245838370000021
Figure FDA0002245838370000021
其中,[-β,β]为矩阵G对应的方位角取值范围,
Figure FDA0002245838370000024
为方位历程图
Figure FDA0002245838370000025
结点处对应的能量值;
Figure FDA0002245838370000026
为方位角,取值范围[αn-1-β,αn-1+β];τ为时间,取值范围[Tn-ΔT,Tn];αn-1为Tn-1时刻的目标方位角;
Among them, [-β, β] is the value range of the azimuth angle corresponding to the matrix G,
Figure FDA0002245838370000024
azimuth history map
Figure FDA0002245838370000025
The corresponding energy value at the node;
Figure FDA0002245838370000026
is the azimuth, the value range [α n-1 -β, α n-1 +β]; τ is the time, the value range [T n -ΔT, T n ]; α n-1 is the time T n-1 the target azimuth;
当相关性参数Corr最大时,其对应的方位角
Figure FDA0002245838370000027
为目标在当前时刻Tn的方位角。
When the correlation parameter Corr is the largest, its corresponding azimuth
Figure FDA0002245838370000027
is the azimuth of the target at the current time Tn.
4.一种基于方位历程图的水声目标方位跟踪系统,其特征在于,所述系统包括:4. An underwater acoustic target azimuth tracking system based on azimuth history map, characterized in that the system comprises: 方位历程图建立模块,用于建立水声目标方位历程图;The azimuth history map establishment module is used to establish the azimuth history map of the underwater acoustic target; 匹配模板建立模块,用于以当前一时刻Tn-1的目标方位角为搜索中心,建立当前时刻Tn的匹配模板;A matching template establishment module is used to take the target azimuth of the current moment T n-1 as the search center to establish the matching template of the current moment T n ; 搜索模块,用于基于当前时刻Tn的匹配模板,在一定的方位角搜索范围内对当前时刻Tn的方位历程图进行二维匹配搜索,并将匹配度最高的位置对应的方位角作为当前时刻Tn的方位角。The search module is used to perform a two - dimensional matching search on the azimuth history map of the current time Tn within a certain azimuth angle search range based on the matching template of the current time Tn, and use the azimuth angle corresponding to the position with the highest matching degree as the current Azimuth at time Tn. 5.根据权利要求4所述的系统,其特征在于,所述匹配模板建立模块的具体实现过程为:5. system according to claim 4, is characterized in that, the concrete realization process of described matching template establishment module is: 在方位历程图上对兴趣目标进行运动轨迹分析,得到其前ΔT时间段内的方位变化态势;The movement trajectory of the target of interest is analyzed on the azimuth history map, and the azimuth change trend in the previous ΔT time period is obtained; 目标方位历程图上的明亮轨迹描述为t=kα+b,t表示时间,α表示t时刻目标的方位角,k和b为待估参数;The bright trajectory on the target azimuth history map is described as t=kα+b, t represents time, α represents the azimuth angle of the target at time t, and k and b are parameters to be estimated; 采用基于最小方差的方式估计参数k和b,则有:By estimating the parameters k and b based on the minimum variance, we have:
Figure FDA0002245838370000023
Figure FDA0002245838370000023
其中,αn-1-i表示Tn-1-i时刻的目标方位角;1≤i≤m;m是用于进行运动分析的快拍数量;初始时刻,通过手动发现目标,获取目标的方位角;Among them, α n-1-i represents the azimuth angle of the target at the time T n-1-i ; 1≤i≤m; m is the number of snapshots used for motion analysis; at the initial moment, manually find the target and obtain the target's azimuth. Azimuth; 根据运动轨迹分析结果,建立目标方位历程图上当前时刻Tn的匹配模板;According to the analysis result of the motion trajectory, establish the matching template of the current time Tn on the target orientation history map; 建立一个匹配模板的矩阵G,G的每一行对应一个快拍时间点,每一列对应一个观测角度,则G的每一个元素的值的计算方式为:Establish a matrix G that matches the template, each row of G corresponds to a snapshot time point, and each column corresponds to an observation angle, then the value of each element of G is calculated as:
Figure FDA0002245838370000031
Figure FDA0002245838370000031
其中in x1=x cosθ+y sinθx 1 =x cosθ+y sinθ y1=-x sinθ+y cosθy 1 =-x sinθ+y cosθ 其中,
Figure FDA0002245838370000032
γ为条纹的空间纵横比,δ为高斯因子标准差,λ为条纹宽度的调整参数。
in,
Figure FDA0002245838370000032
γ is the spatial aspect ratio of the stripes, δ is the standard deviation of the Gaussian factor, and λ is the adjustment parameter of the stripe width.
6.根据权利要求5所述的系统,其特征在于,所述搜索模块的具体实现过程为:6. system according to claim 5, is characterized in that, the concrete realization process of described search module is: 在当前时刻Tn,以前一时刻Tn-1的目标方位角为中心,在限定的方位角范围内以匹配模板的矩阵G为标准沿横坐标进行滑动匹配;At the current time T n , the target azimuth angle of the previous time T n-1 is the center, and the sliding matching is performed along the abscissa with the matrix G of the matching template as the standard within the limited azimuth angle range; 计算滑动过程中的相关性参数Corr:Calculate the correlation parameter Corr in the sliding process:
Figure FDA0002245838370000033
Figure FDA0002245838370000033
其中,[-β,β]为矩阵G对应的方位角取值范围,
Figure FDA0002245838370000034
为方位历程图
Figure FDA0002245838370000035
结点处对应的能量值;为方位角,取值范围[αn-1-β,αn-1+β];τ为时间,取值范围[Tn-ΔT,Tn];αn-1为Tn-1时刻的目标方位角;
Among them, [-β, β] is the value range of the azimuth angle corresponding to the matrix G,
Figure FDA0002245838370000034
azimuth history map
Figure FDA0002245838370000035
The corresponding energy value at the node; is the azimuth, the value range [α n-1 -β, α n-1 +β]; τ is the time, the value range [T n -ΔT, T n ]; α n-1 is the time T n-1 the target azimuth;
当相关性参数Corr最大时,其对应的方位角
Figure FDA0002245838370000037
为目标在当前时刻Tn的方位角。
When the correlation parameter Corr is the largest, its corresponding azimuth
Figure FDA0002245838370000037
is the azimuth of the target at the current time Tn.
CN201911016360.XA 2019-10-24 2019-10-24 Underwater sound target orientation tracking method and system based on orientation history map Active CN110764092B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911016360.XA CN110764092B (en) 2019-10-24 2019-10-24 Underwater sound target orientation tracking method and system based on orientation history map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911016360.XA CN110764092B (en) 2019-10-24 2019-10-24 Underwater sound target orientation tracking method and system based on orientation history map

Publications (2)

Publication Number Publication Date
CN110764092A true CN110764092A (en) 2020-02-07
CN110764092B CN110764092B (en) 2022-01-25

Family

ID=69333515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911016360.XA Active CN110764092B (en) 2019-10-24 2019-10-24 Underwater sound target orientation tracking method and system based on orientation history map

Country Status (1)

Country Link
CN (1) CN110764092B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505649A (en) * 2020-04-14 2020-08-07 西北工业大学 A low signal-to-noise ratio ship moving target detection method for towed passive array sonar

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932428A1 (en) * 1979-08-10 1981-02-12 Messerschmitt Boelkow Blohm Guidance system for projectiles - measures azimuth and distance ensuring high steering accuracy towards moving ground target
JP2001272458A (en) * 2000-03-28 2001-10-05 Oki Electric Ind Co Ltd Data time-series merging method
JP2009300345A (en) * 2008-06-17 2009-12-24 Hitachi Ltd Target motion analysis program, target motion analysis device and target motion analysis method
CN103809201A (en) * 2012-11-09 2014-05-21 中国科学院声学研究所 Multi-output information fusion method and multi-output information fusion system based on azimuth course
CN104730528A (en) * 2013-12-19 2015-06-24 中国科学院声学研究所 Underwater sound multi-target autonomous detection and orientation tracking method
EP2919034A1 (en) * 2014-03-14 2015-09-16 Bradar Industria S.A. High precision radar to track aerial targets
CN105204026A (en) * 2014-06-13 2015-12-30 中国人民解放军92232部队 Single horizontal array passive speed measurement and distance measurement device based on sound field interference fringe and method
CN107515390A (en) * 2017-09-15 2017-12-26 哈尔滨工程大学 A method of air target localization based on single vector sensor
CN108594217A (en) * 2018-05-21 2018-09-28 北京理工大学 A kind of extraterrestrial target pitching and orientation two dimension angular closed loop tracking system
CN109188443A (en) * 2018-06-29 2019-01-11 中国船舶重工集团公司第七〇五研究所 A kind of passive target tracking method based on Interactive Multiple-Model
CN109669185A (en) * 2018-12-10 2019-04-23 禁核试北京国家数据中心 A kind of infrasonic sound platform net beam search correlating method
CN109782290A (en) * 2019-02-12 2019-05-21 中国科学院声学研究所 An automatic underwater acoustic target azimuth tracking method to prevent tracking deviation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932428A1 (en) * 1979-08-10 1981-02-12 Messerschmitt Boelkow Blohm Guidance system for projectiles - measures azimuth and distance ensuring high steering accuracy towards moving ground target
JP2001272458A (en) * 2000-03-28 2001-10-05 Oki Electric Ind Co Ltd Data time-series merging method
JP2009300345A (en) * 2008-06-17 2009-12-24 Hitachi Ltd Target motion analysis program, target motion analysis device and target motion analysis method
CN103809201A (en) * 2012-11-09 2014-05-21 中国科学院声学研究所 Multi-output information fusion method and multi-output information fusion system based on azimuth course
CN104730528A (en) * 2013-12-19 2015-06-24 中国科学院声学研究所 Underwater sound multi-target autonomous detection and orientation tracking method
EP2919034A1 (en) * 2014-03-14 2015-09-16 Bradar Industria S.A. High precision radar to track aerial targets
CN105204026A (en) * 2014-06-13 2015-12-30 中国人民解放军92232部队 Single horizontal array passive speed measurement and distance measurement device based on sound field interference fringe and method
CN107515390A (en) * 2017-09-15 2017-12-26 哈尔滨工程大学 A method of air target localization based on single vector sensor
CN108594217A (en) * 2018-05-21 2018-09-28 北京理工大学 A kind of extraterrestrial target pitching and orientation two dimension angular closed loop tracking system
CN109188443A (en) * 2018-06-29 2019-01-11 中国船舶重工集团公司第七〇五研究所 A kind of passive target tracking method based on Interactive Multiple-Model
CN109669185A (en) * 2018-12-10 2019-04-23 禁核试北京国家数据中心 A kind of infrasonic sound platform net beam search correlating method
CN109782290A (en) * 2019-02-12 2019-05-21 中国科学院声学研究所 An automatic underwater acoustic target azimuth tracking method to prevent tracking deviation

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
JUNHAI LUO 等: "Underwater Acoustic Target Tracking: A Review", 《SENSORS》 *
PENG LI 等: "An Improved Inverse Beamforming Method: Azimuth Resolution Analysis for Weak Target Detection", 《SENSORS》 *
XIUJUN SHU 等: "Hypothesis feedback equalization for M-ary parallel combinatory communication in deep water", 《2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP)》 *
徐璐霄: "基于被动阵列的水声弱目标检测前跟踪算法研究", 《中国优秀硕士学位论文全文数据库 工程科技辑》 *
方尔正 等: "基于矢量水听器的一种时间方位历程目标跟踪方法", 《应用声学》 *
李瑨瑶 等: "基于非线性滤波的目标运动跟踪方法", 《声学技术》 *
柳俊峰 等: "一种方位历程图中目标点迹的动提取方法", 《数据采集与处理》 *
金盛龙 等: "水下多目标方位的联合检测与跟踪", 《声学学报》 *
黄天凤: "浅海波导环境对垂直阵列信号处理影响研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505649A (en) * 2020-04-14 2020-08-07 西北工业大学 A low signal-to-noise ratio ship moving target detection method for towed passive array sonar
CN111505649B (en) * 2020-04-14 2022-08-23 西北工业大学 Towed passive array sonar low signal-to-noise ratio ship moving target detection method

Also Published As

Publication number Publication date
CN110764092B (en) 2022-01-25

Similar Documents

Publication Publication Date Title
CN111220954B (en) Radar angle error correction method based on self-correcting amplitude normalization
CN106249232A (en) Method for tracking target based on target travel situation information data association strategy
CN110542904B (en) Target automatic discovery method based on underwater sound target azimuth history map
CN106443671A (en) SAR radar moving target detecting and imaging method based on FM continuous wave
CN106680806A (en) Multi-radar plot fusion method
CN108168564A (en) A kind of Data Association based on LHD grey relational grades
CN109308713B (en) Improved nuclear correlation filtering underwater target tracking method based on forward-looking sonar
CN105738891B (en) A kind of method that airborne digital array radar is tracked to weak maneuvering target angle
CN114779205B (en) Radar-target-based multi-state parameter track matching processing method and system
CN114418953B (en) Sonar target detection method and system based on time history accumulated image
RU2608583C1 (en) Method of determining position and motion parameters of object as per measurements of angular coordinates
CN114019498A (en) Millimeter wave radar single-target tracking method based on fractional order Kalman filtering
CN109521420A (en) Based on the matched multi-object tracking method of multiple features
CN110764092B (en) Underwater sound target orientation tracking method and system based on orientation history map
CN105447867A (en) Spatial object attitude estimation method based on ISAR image
CN109001694B (en) Method and system for simulating scanning characteristics of dynamic self-adaptive antenna
CN112363108A (en) Signal subspace weighted super-resolution direction-of-arrival detection method and system
CN109782290B (en) Automatic underwater sound target position tracking method for preventing tracking deviation
CN108414992A (en) A kind of object detection method based on phase information clutter map
CN113625063B (en) Method for evaluating single pulse performance of antenna under complete machine condition
CN116299458A (en) SAR weak maneuvering target imaging method based on self-adaptive phase tracking
CN113805175B (en) A strip mode SAR imaging refocusing method
US6683820B1 (en) Method and apparatus for tracking sonar targets
CN108226929B (en) A detection method and detection system for front and side-looking SAR slow targets
CN112363106A (en) Signal subspace direction of arrival detection method and system based on quantum particle swarm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant