CN110756868A - 铣削加工系统及方法 - Google Patents

铣削加工系统及方法 Download PDF

Info

Publication number
CN110756868A
CN110756868A CN201911126815.3A CN201911126815A CN110756868A CN 110756868 A CN110756868 A CN 110756868A CN 201911126815 A CN201911126815 A CN 201911126815A CN 110756868 A CN110756868 A CN 110756868A
Authority
CN
China
Prior art keywords
milling
signal processing
processing system
sensor
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911126815.3A
Other languages
English (en)
Inventor
张晓林
杨泽明
何林
陈文�
王斌
邱巧
伍剑波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC CHENGFEI COMMERCIAL AIRCRAFT Co Ltd
Original Assignee
AVIC CHENGFEI COMMERCIAL AIRCRAFT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC CHENGFEI COMMERCIAL AIRCRAFT Co Ltd filed Critical AVIC CHENGFEI COMMERCIAL AIRCRAFT Co Ltd
Priority to CN201911126815.3A priority Critical patent/CN110756868A/zh
Publication of CN110756868A publication Critical patent/CN110756868A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了一种铣削加工系统及方法,属于机加工技术领域,提供一种可提高铣削加工精度的铣削加工系统及方法,所述铣削加工系统包括铣床,所述铣床包括铣床控制模块、铣头和铣刀,还包括电涡流测厚传感器、距离检测传感器和信号处理系统,所述电涡流测厚传感器和距离检测传感器均安装于铣头上且位于铣刀在吃刀方向的正前方固定距离位置处,所述信号处理系统与铣床控制模块相连。本发明在铣削过程中可有效的消除因铣削产品的底面无法做到与工作台的表面完全贴合而导致的铣削加工精度差的问题,进而可提高最终铣削加工后的产品的精度。

Description

铣削加工系统及方法
技术领域
本发明涉及机加工技术领域,尤其涉及一种铣削加工系统及方法。
背景技术
由于蒙皮是飞机的外表零件,所以蒙皮零件外形精确度要求比较高。在采取无余量装配方案情况下,蒙皮边缘须直接加工至设计尺寸、交付时不留余量,因此蒙皮边缘切割也要求比较精确,同时,蒙皮减薄口框的位置、形状以及厚度要求都比较高。在采取装配孔装配的情况下,装配孔是零件的定位基准,所以蒙皮上的装配孔位置精度要求比较高。而蒙皮本来就很薄,在蒙皮上再进行局部减薄加工,其减薄部位厚度公差控制要求亦比较严;因此,能够对于蒙皮的厚度进行精确铣削是亟需的。另外,蒙皮部件通常面积较大,因此在放置到铣床上时,蒙皮的底面往往无法做到与工作台的表面完全贴合,而且铣床加工过程中通常对铣刀铣削深度的控制又以工作台的表面为基准面,这样一来就会导致铣削加工后的蒙皮的厚度与目标厚度产生偏差,影响加工精度,导致蒙皮不合格、装配尺寸无法满足要求等问题。因此,急需一种可提高针对如蒙皮类产品对铣削加工精度要求较高的铣削加工系统以及铣削加工方法。
发明内容
本发明解决的技术问题是提供一种可提高铣削加工精度的铣削加工系统。
本发明解决其技术问题所采用的技术方案是:铣削加工系统,包括铣床,所述铣床包括铣床控制模块、铣头和铣刀,还包括电涡流测厚传感器、距离检测传感器和信号处理系统,所述电涡流测厚传感器和距离检测传感器均安装于铣头上且位于铣刀在吃刀方向的正前方固定距离位置处,所述电涡流测厚传感器与信号处理系统相连并用于检测被铣削产品对应位置处的材料厚度值D,所述距离检测传感器与信号处理系统相连并用于检测对应位置处的被铣削产品表面距参考基准面之间的距离值L,所述信号处理系统与铣床控制模块相连。
进一步的是:所述信号处理系统包括信号放大器、高通滤波器、A/D转换模块、测量电路和微控制器,所述距离检测传感器通过测量电路与微控制器相连,所述电涡流测厚传感器依次通过信号放大器、高通滤波器、A/D转换模块与微控制器相连,所述微控制器与铣床控制模块相连。
进一步的是:所述距离检测传感器包括压电传感器和弹簧,所述弹簧的一端与铣头连接,弹簧的另一端连接压电传感器,所述压电传感器与电涡流测厚传感器固定连接。
进一步的是:所述参考基准面为铣头的底部端面。
另外,本发明还提供一种铣削加工方法,采用上述本发明所述的铣削加工系统进行铣削加工,在铣削过程中,通过电涡流测厚传感器实时检测对应位置处的材料厚度值D,并将检测数据信号输送给信号处理系统;通过距离检测传感器实时检测对应位置处的材料表面距参考基准面之间的距离值L,并将检测数据信号输送给信号处理系统;由信号处理系统根据对应位置处所检测的材料厚度值D与被铣削产品铣削后的目标厚度值D0进行比较以得到需铣削加工的厚度差值ΔD;由信号处理系统根据对应位置处的距离值L和厚度差值ΔD计算得到铣刀在对应位置处相对于参考基准面的铣削深度,信号处理系统将所述铣削深度数据输送给铣床控制模块,用以控制铣刀在铣削加工至对应位置处时的铣削深度位置。
本发明的有益效果是:
1、本发明在铣削过程中可通过电涡流测厚传感器检测被铣削产品的厚度以及通过距离检测传感器检测被铣削产品表面至参考基准面的距离,通过将上述检测的尺寸参数与铣削目标厚度值D0结合起来即可控制铣刀的铣削深度,实现铣刀的铣削深度的精确调整,可有效的消除因被铣削产品的底面无法做到与工作台的表面完全贴合而导致的铣削加工精度差的问题,进而可提高最终铣削加工后的产的精度。尤其适用于如飞机蒙皮这类对于铣削加工精度要求较高的产品的铣削加工。
2、本发明通过采用电涡流测厚传感器测量产品厚度,不需要任何耦合剂可以直接与产品表面接触进行厚度测量,操作简便。
3、本发明通过进一步将距离检测传感器采用压电传感器和弹簧,且采用距离检测传感器与电涡流测厚传感器一体化安装方式,确保材料厚度值D与距离值L的检测结果的统一性。
附图说明
图1为本发明所述的铣削加工系统的立体示意图以及电路连接关系示意图;
图2为本发明所述的铣削加工系统的主视图;
图中标记为:已铣削部1a、未铣削部1b、铣刀2、铣夹头3、铣头4、弹簧5、压电传感器6、信号连接端7、电涡流测厚传感器8、激励端8a、检测端8b、信号放大器9、高通滤波器10、A/D转换模块11、测量电路12、微控制器13、铣床控制模块14、铣削产品表面15、参考基准面16、工作台17。
具体实施方式
下面结合附图和具体实施方式对本发明进一步说明。
如图1至图2中所示,本发明所述的铣削加工系统,包括铣床,所述铣床包括铣床控制模块14、铣头4和铣刀2,铣刀2可通过相应的铣夹头3安装于铣头4上,还包括电涡流测厚传感器8、距离检测传感器和信号处理系统,所述电涡流测厚传感器8和距离检测传感器均安装于铣头4上且位于铣刀2在吃刀方向的正前方固定距离位置处,所述电涡流测厚传感器8与信号处理系统相连并用于检测被铣削产品对应位置处的材料厚度值D,所述距离检测传感器与信号处理系统相连并用于检测对应位置处的被铣削产品表面15距参考基准面16之间的距离值L,所述信号处理系统与铣床控制模块14相连。
其中,电涡流测厚传感器8为用于检测被铣削产品对应位置处的材料厚度值D,以作为计算在对应位置处需要被铣削的厚度差值ΔD,即通过所检测的材料厚度值D与对应的被铣削后的目标厚度值D0的差值计算得到厚度差值ΔD。在获得厚度差值ΔD后,后续加工过程中只需要控制铣刀2在加工至对应位置处时铣削掉对应的厚度差值ΔD所对应的材料后即可获得目的厚度值D0。
电涡流测厚传感器8的具体检测原理如下:其通常具有激励端8a和检测端8b;由配套设置的外部脉冲信号源产生具有一定占空比的方波,并加到电涡流测厚传感器8的激励端8a上,此时在激励端8a内激励线圈中就会产生周期性的脉冲电流。激励端8a的激励线圈中的电流便会感生出一个快速衰减的脉冲磁场,变化着的磁场在被测材料中感应出瞬时涡流,向被测材料内部传播,并感应出一个快速衰减的涡流磁场。随着涡流磁场的在导体内的变化,设置于检测端8b内的检测线圈则会感应出随时间变化的电压。由于脉冲涡流在被测材料内部的传播过程是逐渐衰减的,对于不同厚度的导体试件,得到的瞬态感应电压信号不同。所以,通过对检测到的电压信号进行分析,通过感应电压与被测导体试件厚度的相应规律,即可实现对导体材料的厚度检测。归纳而言即为:电涡流测厚传感器8是基于感应涡流随被检测件厚度的变化而产生变化的响应电压信号的原理对被检件的壁厚进行测量。
而距离检测传感器则为用于检测对应位置处的被铣削产品表面15距参考基准面16之间的距离值L;其中,参考基准面16为便于统一参考计算所选定的参考平面,根据传感器不同、安装位置不同等均可合理设定不同的参考基准面16;例如参照附图2中所示,可取铣头4底部端面为参考基准面16,此时则通过距离检测传感器可以实现检测被铣削产品表面15距铣头4底部端面之间的距离作为检测的距离值L。结合附图2中所示的各尺寸关系图可看出,由于被铣削产品的底面与工作台17的表面之间存在配合间隙,因此由铣床控制模块14控制铣刀2的铣削深度时应当考虑上述配合间隙的尺寸;由于之前已经检测并计算后得到了相应的距离值L以及厚度差值ΔD,此时则只需要通过合理地将距离值L与厚度差值ΔD进行计算即可得到铣刀2在对应位置处相对于参考基准面16的铣削深度;例如附图2中所示的位置关系时,铣削深度为距离值L与厚度差值ΔD之和;而该铣削深度则表示铣刀2的铣削平面到参考基准面16也就是铣头4底部端面之间的距离;这样一来,当铣刀2铣削加工至对应位置处时,即可由铣床控制模块14控制铣刀2的升降以使其升降至对应的铣削深度位置。不失一般性,当铣床控制模块14控制铣刀2所采用的参考系与上述参考基准面16不统一时,铣削深度对应的数据还应当进行相应的参考系转换,以便于铣床控制模块14采用。
更具体的,本发明中的信号处理系统通常包括常规的一些模块结构,如信号放大器9、高通滤波器10、A/D转换模块11、测量电路12和微控制器13,所述距离检测传感器通过测量电路12与微控制器13相连,所述电涡流测厚传感器8依次通过信号放大器9、高通滤波器10、A/D转换模块11与微控制器13相连,所述微控制器13与铣床控制模块14相连。其中微控制器13为实现对数据的处理传输控制,并且通过微控制器13将最终控制铣刀2升降移动的相应数据参数传输给铣床控制模块14以最终通过铣床控制模块14实现对铣刀2的升降控制。
另外,本发明中的距离检测传感器具体可包括压电传感器6和弹簧5,所述弹簧5的一端与铣头4连接,弹簧5的另一端连接压电传感器6,所述压电传感器6与电涡流测厚传感器8固定连接。这样设置的好处是可实现距离检测传感器与电涡流测厚传感器8一体化安装方式,确保材料厚度值D与距离值L的检测结果的统一性。
其中,上述结构的距离检测传感器的工作原理如下:弹簧5在电涡流测厚传感器8的底面与被铣削产品表面15接触并移动的过程中发生长度伸缩变化,弹簧5伸缩变化产生的力传递给压电传感器6,压电传感器6根据弹力的大小转变成电压信号,接着传递给测量电路12,并最终传递给微控制器13,通过对电压信号的大小及变化对应情况获得相应的距离值L。
本发明所述的铣削加工方法,即为采用上述本发明所述的铣削加工系统进行铣削加工,在铣削过程中,通过电涡流测厚传感器8实时检测对应位置处的材料厚度值D,并将检测数据信号输送给信号处理系统;通过距离检测传感器实时检测对应位置处的材料表面15距参考基准面16之间的距离值L,并将检测数据信号输送给信号处理系统;由信号处理系统根据对应位置处所检测的材料厚度值D与被铣削产品铣削后的目标厚度值D0进行比较以得到需铣削加工的厚度差值ΔD;由信号处理系统根据对应位置处的距离值L和厚度差值ΔD计算得到铣刀2在对应位置处相对于参考基准面16的铣削深度,信号处理系统将所述铣削深度数据输送给铣床控制模块14,用以控制铣刀2在铣削加工至对应位置处时的铣削深度位置。
在铣削过程中,分别通过电涡流测厚传感器8以及距离检测传感器检测对应位置处相应的尺寸参数,并最终传输给微控制器13,由微控制器13进行数据的处理并最终计算出在对应位置处对应的铣刀2的铣削深度以控制铣刀2在加工至该位置处时需要进行的升降高度控制,并将对铣刀2的控制数据传输给铣床控制模块14,最终由铣床控制模块14实现对铣刀2在运行至对应位置处时的升降控制,以此实现精确铣削的目的。
在实际铣削过程中,铣刀2的移动方向分为吃刀方向和铣削方向,具体可参照附图2中所示的箭头方向;其中,吃刀方向为铣刀2铣削过程中每次进刀的方向,而铣削方向则为铣刀2相对于被铣削产品往往复移动铣削的方向。本发明中的电涡流测厚传感器8和距离检测传感器均安装于铣头4上且位于铣刀2在吃刀方向的正前方固定距离位置处,因此由电涡流测厚传感器8和距离检测传感器实时检测的被铣削产品的对应位置处的相关数据实际为超前检测,所检测的数据应当为用于控制后续铣削过程中当铣刀2加工至对应位置处时的升降调节。

Claims (5)

1.铣削加工系统,包括铣床,所述铣床包括铣床控制模块(14)、铣头(4)和铣刀(2),其特征在于:还包括电涡流测厚传感器(8)、距离检测传感器和信号处理系统,所述电涡流测厚传感器(8)和距离检测传感器均安装于铣头(4)上且位于铣刀(2)在吃刀方向的正前方固定距离位置处,所述电涡流测厚传感器(8)与信号处理系统相连并用于检测被铣削产品对应位置处的材料厚度值D,所述距离检测传感器与信号处理系统相连并用于检测对应位置处的被铣削产品表面(15)距参考基准面(16)之间的距离值L,所述信号处理系统与铣床控制模块(14)相连。
2.如权利要求1所述的铣削加工系统,其特征在于:所述信号处理系统包括信号放大器(9)、高通滤波器(10)、A/D转换模块(11)、测量电路(12)和微控制器(13),所述距离检测传感器通过测量电路(12)与微控制器(13)相连,所述电涡流测厚传感器(8)依次通过信号放大器(9)、高通滤波器(10)、A/D转换模块(11)与微控制器(13)相连,所述微控制器(13)与铣床控制模块(14)相连。
3.如权利要求1所述的铣削加工系统,其特征在于:所述距离检测传感器包括压电传感器(6)和弹簧(5),所述弹簧(5)的一端与铣头(4)连接,弹簧(5)的另一端连接压电传感器(6),所述压电传感器(6)与电涡流测厚传感器(8)固定连接。
4.如权利要求1至3中任意一项所述的铣削加工系统,其特征在于:所述参考基准面(6)为铣头(4)的底部端面。
5.铣削加工方法,采用上述权利要求1至4中任意一项所述的铣削加工系统进行铣削加工,其特征在于:在铣削过程中,通过电涡流测厚传感器(8)实时检测对应位置处的材料厚度值D,并将检测数据信号输送给信号处理系统;通过距离检测传感器实时检测对应位置处的材料表面(15)距参考基准面(16)之间的距离值L,并将检测数据信号输送给信号处理系统;由信号处理系统根据对应位置处所检测的材料厚度值D与被铣削产品铣削后的目标厚度值D0进行比较以得到需铣削加工的厚度差值ΔD;由信号处理系统根据对应位置处的距离值L和厚度差值ΔD计算得到铣刀(2)在对应位置处相对于参考基准面(16)的铣削深度,信号处理系统将所述铣削深度数据输送给铣床控制模块(14),用以控制铣刀(2)在铣削加工至对应位置处时的铣削深度位置。
CN201911126815.3A 2019-11-18 2019-11-18 铣削加工系统及方法 Pending CN110756868A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911126815.3A CN110756868A (zh) 2019-11-18 2019-11-18 铣削加工系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911126815.3A CN110756868A (zh) 2019-11-18 2019-11-18 铣削加工系统及方法

Publications (1)

Publication Number Publication Date
CN110756868A true CN110756868A (zh) 2020-02-07

Family

ID=69338158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911126815.3A Pending CN110756868A (zh) 2019-11-18 2019-11-18 铣削加工系统及方法

Country Status (1)

Country Link
CN (1) CN110756868A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889764A (zh) * 2020-06-17 2020-11-06 成都飞机工业(集团)有限责任公司 一种基于超声波测量铣削零件余量的方法及装置
CN113878675A (zh) * 2021-10-21 2022-01-04 张牧春 一种小提琴琴箱背弧加工装置
EP4075215A1 (de) * 2021-04-16 2022-10-19 Fooke GmbH Verfahren zur oberflächenbearbeitung eines werkstücks, sowie hybride mess- und bearbeitungsmaschine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1824460A (zh) * 2005-02-24 2006-08-30 Lpkf激光和电子股份公司 用于确定铣削工具的位置的方法和规定用于实施此方法的加工头
CN104400086A (zh) * 2014-10-10 2015-03-11 南京航空航天大学 飞机蒙皮镜像铣削方法及装备
CN104476321A (zh) * 2014-11-12 2015-04-01 南京航空航天大学 基于多传感器的蒙皮实时自适应镜像铣削方法与检测装置
CN106180843A (zh) * 2016-06-29 2016-12-07 深圳崇达多层线路板有限公司 印刷线路板的控深铣方法
CN107741730A (zh) * 2017-08-24 2018-02-27 上海拓璞数控科技股份有限公司 薄壁件实时测量系统及方法
CN108907618A (zh) * 2018-07-06 2018-11-30 江西洪都航空工业集团有限责任公司 一种飞机蒙皮镜像铣削后置处理方法
CN109079583A (zh) * 2018-07-28 2018-12-25 玉环利仁数控机床制造有限公司 基于人工智能的铣床运行监测方法及系统
CN110130165A (zh) * 2018-02-09 2019-08-16 中国铁建高新装备股份有限公司 一种适用于钢轨在线铣磨作业的定位装置
CN110434678A (zh) * 2019-07-25 2019-11-12 上海拓璞数控科技股份有限公司 金属薄壁件厚度实时检测系统和方法
CN211276674U (zh) * 2019-11-18 2020-08-18 中航成飞民用飞机有限责任公司 铣削加工系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1824460A (zh) * 2005-02-24 2006-08-30 Lpkf激光和电子股份公司 用于确定铣削工具的位置的方法和规定用于实施此方法的加工头
CN104400086A (zh) * 2014-10-10 2015-03-11 南京航空航天大学 飞机蒙皮镜像铣削方法及装备
CN104476321A (zh) * 2014-11-12 2015-04-01 南京航空航天大学 基于多传感器的蒙皮实时自适应镜像铣削方法与检测装置
CN106180843A (zh) * 2016-06-29 2016-12-07 深圳崇达多层线路板有限公司 印刷线路板的控深铣方法
CN107741730A (zh) * 2017-08-24 2018-02-27 上海拓璞数控科技股份有限公司 薄壁件实时测量系统及方法
CN110130165A (zh) * 2018-02-09 2019-08-16 中国铁建高新装备股份有限公司 一种适用于钢轨在线铣磨作业的定位装置
CN108907618A (zh) * 2018-07-06 2018-11-30 江西洪都航空工业集团有限责任公司 一种飞机蒙皮镜像铣削后置处理方法
CN109079583A (zh) * 2018-07-28 2018-12-25 玉环利仁数控机床制造有限公司 基于人工智能的铣床运行监测方法及系统
CN110434678A (zh) * 2019-07-25 2019-11-12 上海拓璞数控科技股份有限公司 金属薄壁件厚度实时检测系统和方法
CN211276674U (zh) * 2019-11-18 2020-08-18 中航成飞民用飞机有限责任公司 铣削加工系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889764A (zh) * 2020-06-17 2020-11-06 成都飞机工业(集团)有限责任公司 一种基于超声波测量铣削零件余量的方法及装置
EP4075215A1 (de) * 2021-04-16 2022-10-19 Fooke GmbH Verfahren zur oberflächenbearbeitung eines werkstücks, sowie hybride mess- und bearbeitungsmaschine
CN113878675A (zh) * 2021-10-21 2022-01-04 张牧春 一种小提琴琴箱背弧加工装置
CN113878675B (zh) * 2021-10-21 2022-07-22 张牧春 一种小提琴琴箱背弧加工装置

Similar Documents

Publication Publication Date Title
CN110756868A (zh) 铣削加工系统及方法
CN211276674U (zh) 铣削加工系统
US6927560B2 (en) Control system and method for a magnetic indexer for high accuracy hole drilling
US9199351B2 (en) Drilling machine having hole measurement capability
EP3260812B1 (en) Method for operating a coordinate measuring machine
CN103547386B (zh) 用于测定轧件的厚度的方法以及设备
CN102538660A (zh) 一种工件用平面度测量装置
CN105264368B (zh) 具有用于探测在冶金铸造产品中的表面缺陷的探测装置的连续铸造装置和方法
CN109990734B (zh) 深度信息摄像模组精度自动检测系统及其精度检测方法
WO2021070052A1 (en) Sheet metal processing machine and related processing method
CN109839075A (zh) 一种机器人自动测量系统及测量方法
CN205184413U (zh) 一种自动制孔锪窝深度检测装置
CN105527978B (zh) 提离值控制装置及控制方法
CN105081884B (zh) 一种旋转扫描3d成型的法向测量装置
CN107247089B (zh) 一种用于超声测量接触状态的自适应调整方法
CN205506590U (zh) 建筑检测用综合硬度测量仪器
CN203792104U (zh) 一种机床及其工件检测装置
CN101413921B (zh) 电涡流识别复合材料材质及其界面的设备
CN210255403U (zh) 一种完成产品铣削高度自动补偿的装置
CN103935859B (zh) 升降机标准节主弦杆检具
CN201009318Y (zh) 智能型门五金件位置加工机床
CN208575304U (zh) 一种能探测探测加工零件的双面铣
CN218168903U (zh) 一种制管机定尺切台
CN214516057U (zh) 一种硅片检测装置及硅片分选设备
JPS6317641Y2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination