CN110752589B - 功率流控制系统及传输线故障的检测、报告和响应方法 - Google Patents
功率流控制系统及传输线故障的检测、报告和响应方法 Download PDFInfo
- Publication number
- CN110752589B CN110752589B CN201910665905.3A CN201910665905A CN110752589B CN 110752589 B CN110752589 B CN 110752589B CN 201910665905 A CN201910665905 A CN 201910665905A CN 110752589 B CN110752589 B CN 110752589B
- Authority
- CN
- China
- Prior art keywords
- transmission line
- current
- power transmission
- fault
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0007—Details of emergency protective circuit arrangements concerning the detecting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/261—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
- H02H7/262—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of switching or blocking orders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/085—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3271—Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
- G01R31/3275—Fault detection or status indication
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/44—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the rate of change of electrical quantities
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/28—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for meshed systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1807—Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
- H02J3/1814—Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
- H02J3/1857—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0092—Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/16—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for capacitors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1807—Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Locating Faults (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
描述了具有传输线故障的早期检测和报告的模块化功率流控制系统。用于闭合旁路开关并报告故障的响应时间对于硬故障小于200微秒、对于软故障较长。不要求距离继电器的重新编程。使用故障检测传感器套件表征传输线故障,通常包括至少电流传感器(诸如电流变压器)和电流改变率传感器(诸如罗氏线圈),以及在一些实施例中包括温度传感器。公开了其它实施例。
Description
相关申请的交叉引用
本申请要求2018年7月23日提交的美国临时专利申请No.62/702,223的权益,其全部内容通过引用并入本文中。
技术领域
本公开涉及电力传输线中的故障的快速检测和报告。这创建了对于人员的改进的安全的潜能以及限制电力分配系统中的损坏的可能性。
背景技术
已经开发出无变压器功率流控制系统,其与包含隔离变压器的系统相比具有减小的大小和重量。
存在的故障检测系统已经包括了距离继电器。在分布式电力线网中,在网的每个分支的每一端处具有距离继电器的情况下,可以估计故障的位置,使得可以迅速地处理故障并且保护人的安全。例如,故障可以是从线到地或从线到线(相到相),具有可能故障的多个组合。
例如,当安装由无变压器静态同步串联转换器(TL-SSSC)组成的功率流控制系统时,重要的是安装不干扰存在的距离继电器的操作,以及此外,不要求这些继电器的任何重新编程。
因此,本领域中存在对故障检测系统的需要,其不干扰存在的距离继电器或要求存在的距离继电器的重新编程,并且提供比先存在保护系统可用的对故障的更快响应,使得电力分配系统可以采取迅速的校正动作,以限制损坏和保卫人员。
发明内容
本发明的一个方面,提供一种用于电力传输线的功率流控制系统,包括:至少一个阻抗注入模块,其耦合到所述电力传输线,每个阻抗注入模块包括电流变压器、罗氏线圈、微处理器和存储器;旁路开关,其耦合在所述至少一个阻抗注入模块周围;其中所述存储器包含由所述处理器可执行的指令,以处理来自所述电流变压器和来自所述罗氏线圈的输出来确定所述电力传输线中的电流和电流改变率;以及,以使用包括所述电力传输线中的电流和电流改变率的变量的数学方程来将计算值与预定阈值进行比较以表征可能已经发生的故障,并且如果故障已经发生,则闭合所述旁路开关,其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt),其中I为所述电力传输线电流,dI/dt为所述电力传输线电流改变率,以及A和B为常数。
本发明的另一个方面,提供一种用于传输线故障的早期检测和报告的方法,包括:提供至少一个阻抗注入模块;提供旁路开关;提供至少一个电流传感器;提供微处理器;提供包含由所述处理器可执行的指令的存储器,以处理来自所述至少一个电流传感器的输出来确定故障期间的所述传输线中的电流和电流改变率;应用包括变量所述传输线中的电流和电流改变率的数学方程,以通过将计算值与预定阈值进行比较来表征可能已经发生的故障;基于所述比较决定是否要闭合所述旁路开关;基于所述比较决定是否要报告所述故障;当决定这样做时闭合所述旁路开关;以及,当期望时将所述故障报告给支持系统,其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt),其中I为所述传输线电流,dI/dt为所述传输线电流改变率,以及A和B为常数。
本发明的又一个方面,提供一种用于检测和响应于电力传输线的相中的故障电流的方法,包括:提供故障检测传感器套件,其具有多个故障检测仪器,所述故障检测仪器至少包括电流变压器、罗氏线圈和温度传感器;由所述电流变压器感测的所述电力传输线中的电流和由所述罗氏线圈感测的所述电力传输线中的电流改变率;使用包括所述电力传输线中的电流和电流改变率的变量的数学方程来将计算值与预定阈值进行比较;当所述计算值超过所述预定阈值时,闭合旁路开关,其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt),其中I为所述电力传输线电流,dI/dt为所述电力传输线电流改变率,以及A和B为常数。
本发明的又一个方面,提供一种用于检测和报告电力传输线的相中的故障的方法,包括:提供故障检测传感器套件,其具有多个故障检测仪器,所述多个故障检测仪器至少包括检测所述电力传输线中的电流的电流变压器、检测所述电力传输线中的电流改变率的罗氏线圈和温度传感器;根据数学方程组合由所述多个故障检测仪器检测的参数;将由所述多个故障检测仪器检测的组合参数的结果与预定阈值进行比较;当由所述多个故障检测仪器检测的组合参数的所述结果超过所述预定阈值时,提供旁路开关闭合信号,所述旁路开关闭合信号将使得旁路开关闭合,并引起电力传输线的所述相中的故障的所述检测的所述报告,其中所述数学方程具有形式A(I)+B(dI/dt),其中I为所述电力传输线电流,dI/dt为所述电力传输线电流改变率,以及A和B为常数。
本发明的又一个方面,提供一种用于附接到电力传输线的功率流控制系统,包括:至少一个阻抗注入模块,其用于连接到所述电力传输线;旁路开关,其用于在所述旁路开关闭合时连接到所述电力传输线以旁通所述至少一个阻抗注入模块;电流变压器,其用于感测所述电力传输线中的电流;罗氏线圈,其用于感测所述电力传输线中的电流改变率;微处理器;存储器;其中所述存储器包含由所述处理器可执行的指令,以按照预定方式组合来自所述电流变压器和来自所述罗氏线圈的输出,并且以将所述组合与预定阈值进行比较来表征可能已经发生的故障,并且以在所述比较指示故障电流的情况下闭合所述旁路开关,其中所述指令根据具有形式A(I)+B(dI/dt)的数学方程组合来自所述电流变压器和来自所述罗氏线圈的输出,其中I是所述电力传输线中的所述电流,dI/dt是所述电力传输线中的所述电流改变率,以及A和B是常数。
本发明的又一个方面,提供一种用于检测和响应于电力传输线中的故障电流的方法,包括:在所述电力传输线周围提供罗氏线圈,以用于感测所述电力传输线中电流和电流改变率两者;使用包括罗氏线圈感测到的电流和电流改变率的变量的数学方程来将计算值与预定阈值进行比较;当所述计算值超过所述预定阈值时,闭合旁路开关,其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt),其中I为所述电力传输线电流,dI/dt为所述电力传输线电流改变率,以及A和B为常数。
附图说明
图1是包括传输线网的电力分配系统的示意图,所述传输线网中的网的每个分支包括三个相,并且每个相具有在每个分支的每一端处提供的距离继电器。
图2是示出功率流控制系统的示意图,所述功率流控制系统包括安装到电力分配系统的相上的阻抗注入模块矩阵(TL-SSSC),其中存在从相到地的故障。
图3是相电流与时间的关系曲线的图,其示出了额定负载电流、过载电流和故障电流。
图4是本公开的阻抗注入模块的框图,其包括故障检测传感器套件。
图5是本公开的故障检测传感器套件的框图,其包括微处理器接口。
图6是电流变压器的示意性图。
图7是罗氏线圈(Rogowski coil)的示意性图。
具体实施方式
图1示出了横跨在一对变电站11a和11b之间的电力分配系统10。系统10包括传输线的网状网络,每个分支具有三个相12a、12b、12c。每个单相13在每一端具有距离继电器14。距离继电器代表许多电力分配系统中的主要保护系统。它们测量阻抗。当发生故障时,测量阻抗的改变用于近似预测故障的位置,因此故障可由支持人员进行维修。为了可能在故障附近的人类的安全,并以可能的程度限制对传输线和相关联装备的损坏,重要的是尽可能快地识别和表征故障,包括在适当的情况下将故障报告给一个或多个支持系统。
图2示出了安装在电力传输线的单相13中的功率流控制系统20的细节。示出了串联阻抗注入模块22的支线21a,其承载负载电流IL,23a。还示出了类似地包括串联阻抗注入模块22的并联支线21b,其承载类似的负载电流IL,23b。因此,功率流控制系统20包括阻抗注入模块的m×n矩阵,其中m是支线中的串联阻抗注入模块的数量,并且n是并联支线的数量。在图2中,m=4且n=2。优选地,阻抗注入模块22相对于它们的硬件是标准化的;这使得能够方便地混合和匹配以形成具有不同要求的替换安装,其中在软件中执行任何要求的自定义。示出了旁路开关24。取决于故障的表征,在检测到故障之后可以闭合旁路开关24,以进一步描述。从相13到地示出了故障电流IF 25。可能发生许多其它类型的故障,诸如从相到相或从相到地,包括相到相和相到地故障两者的组合。尽管在本公开的优选实施例中描述了从相到地的故障,但是本领域普通技术人员将理解的是,类似的策略可以被采用以用于其它类型的故障。
图3示出了相电流31与时间的关系曲线的图,包括正常负载电流IL 23、过载电流IOL 32和故障电流峰值IF 34。如果电流的增加不大于在正常负载电流23以上的预定阈值,则可以优选的是尽管有过载电流32,但相13保持在使用中。典型的预定阈值将包括10%的增加。区33描绘了当前范围,在该范围内,故障电流的智能表征或评估是最有价值的,以便做出关于如何响应于故障的良好决定,包括关于闭合或不闭合旁路开关24的决定以及关于闭合或不闭合各种断路器(未示出)的在中央支持设施处做出的决定。故障电流25可由其峰值34、由其上升时间35、由其下降时间36以及由其它因素(诸如温度传感器的测量温度)表征。可以使用的一种类型的温度传感器是电阻温度检测器,RTD,如本领域中已知的那样。
具有突然上升时间的故障电流(诸如图3中所示出的35)可以表征为硬故障。例如,可能由在两个相之间短路的树的倒下的分支引起硬故障。具有较小突然上升时间的故障电流可以表征为软故障并且可能需要较多时间来表征。例如,可能由设置在两个相之间的绝缘体的初期失效引起软故障。
图4是在本公开的实施例中的阻抗注入模块22的框图。阻抗注入模块22与外部支持系统42无线通信41。支持系统42可以具有对图1的电力分配系统10的监督控制。阻抗注入模块22包括通信和控制子系统43,其包括天线44、收发器45、微处理器46和存储器47。存储器47包含由微处理器46可执行的指令,以用于配置、控制阻抗注入模块22和报告到阻抗注入模块22之外。在操作期间,微处理器46命令将阻抗注入模块22连接到相线13中的功率切换组件48,如图2中所示出,以实现诸如图2的20的功率流控制系统。微处理器46还与故障检测传感器套件49通信,将进一步描述。在一个实施例中,功率切换组件48可以包括四个高电流切换设备,以用于连接和操作与相线13串联的阻抗注入模块22,如图2中所描绘,以实现诸如图2的20之类的功率流控制系统。
图5示出了微处理器46和故障检测传感器套件49之间的接口。故障检测传感器套件49示出为包括电流变压器51、线圈52(例如,罗氏线圈)和温度传感器53。
图6是电流变压器51的示意图,其示出了承载负载电流IL 60的中央传输线。IL 60是AC电流。中央传输线可以被视为具有单匝的初级变压器绕组。磁芯61绕有包括N匝的次级绕组62。如所示出,在磁芯61中感应出变化的磁通量B63。AC电流计64示出为承载电流1/N×IL。因此,由AC电流计64测量的电流可以乘以N以确定IL 60。当IL 60具有大的值(诸如在故障状态期间)时,该电流测量设备需要校准以计及芯61的磁饱和。
图7是在如本公开的实施例中使用的罗氏线圈52的示意图。示出罗氏线圈52,其中螺旋绕组71围绕承载负载电流IL 73的中央电流导体72(例如,相线)。螺旋绕组71的返回如所示出的那样通过其中心传递回来。螺旋绕组71的输出是负载电流IL,dIL/dt,74的时间导数。螺旋绕组71的输出也可以连接到积分器电路75,从而产生与IL 73成比例的VOUT 76。由于对于中央导体(诸如72)的给定电流标定值,线圈52具有比图6的电流变压器51更低的电感,它对电流瞬态(诸如图3的上升时间35)具有更快的响应。当线圈52的输出74直接用作dIL/dt的量度、以及该直接输出适当地与电流传感器输出(后续地将描述)组合、以及该组合直接用于与故障电流限制IFL,37进行比较以控制图2的旁路开关24时,功率流控制系统20将对故障电流(诸如图2的故障电流25)的起动具有快速响应。这种高速响应本质上不在数字域中,而是不取决于任何电路起动、计时或任何其它强加延迟的模拟响应,并且可以在任何断路器重新闭合发生时对其以最小响应时间起作用以查看故障是否保持,如当实际上故障确实保持时典型地需要的那样。注意的是,因为如所示出的罗氏线圈可以提供传输线电流改变率以及传输线电流本身的输出,所以罗氏线圈可以用作传输线电流传感器(电流变压器)和传输线电流传感器的改变率两者。
注意的是,图3中所示出的故障电流波形在尾端处没有被切断,如断路器断开线的情况下会发生的那样。典型地,在断路器断开线之前容许故障电流达数秒,因此本发明必须至少在故障电流的开始与由断路器断开线(或者将故障电流衰减到可接受的水平,按首先发生的为准)之间的时段期间保护阻抗注入模块。优选地,系统将被编程,使得旁路开关24(一旦闭合)将在断路器断开之前将允许故障电流持续的最大时段期间保持闭合,并且由于保护系统靠从线或支线收获的能量操作,所以当断路器重新闭合时,保护系统必须是从充分断电状态充分操作的。
两个电流测量设备(图7的线圈52和图6的电流变压器51)的使用可以导致较快速和较准确的故障电流(诸如图2的IF 25)的表征。线圈52可以典型地响应于例如100纳秒内的故障电流,从而使得能够做出关于闭合旁路开关(诸如图2的24)的第一决定,并且还使得能够做出关于将故障报告给外部支持系统(诸如图4的42)的第二决定,这些决定将在故障电流瞬变的前沿(诸如由图3的上升时间35所描绘的硬故障)之后的10-50微秒内做出并执行。这是典型地可以例如利用距离继电器实现的较快速的响应。此外,通过采用两个独立的电流测量设备提供的冗余导致故障检测传感器套件49的较高可靠性,如用于故障检测和表征的那样。
电流变压器和罗氏线圈中的任何一个或两者可用于在传输线(相)或支线中测量和表征电流(I)和电流改变率dI/dt,也标明为dIL/dt。轻负载电流变压器将直接感测dI/dt,或者dI/dt可以根据用于感测I的电流变压器的输出确定,尽管罗氏线圈由于其速度和对dI/dt的直接感测而是优选的。
在本公开的实施例中,使用数学方程,其具有作为变量的电流和电流改变率。该等式可以具有形式IFL,37=A(I)+B(dI/dt),其中IFL,37是在任何情况下在其处旁路开关将被闭合的预定相或支线电流的值,I是该相或支线中的电流,以及dI/dt是该电流的改变率,A是常数以及B是具有时间单位的常数。将IFL,37(或与其成比例的电压V)与预定值或阈值进行比较,以作为表征中的关键因素。dI/dt分量的使用导致前瞻(look-ahead)特性,在于旁路开关24的闭合不仅仅基于表观负载电流IL,23的当前值,而且还基于该电流由于其当前的改变率而看起来向其方向行进的位置。在该方面,某人可能使用渐进或层级故障电流确定方案,诸如首先检测作为第一、最快速且最容易来检测的参数的相或支线电流的异常改变率超过异常发生的预定限制;并且如果这不是确定性的,则考虑相或支线电流和相或支线电流改变率的组合;并且如果这也不是确定性的,则还考虑任何其它故障传感器及其变量的输出。在任何情况下在其处旁路开关将被闭合的预定相或支线电流和/或其改变率可以是固定的,可以由从支持系统42(图4)发送的消息无线地动态更新或可编程,和/或通过包括其它变量而变化。
可以调用可以由故障检测传感器套件中的其它传感器提供的其它变量以改进故障电流的表征。一个示例是温度,其中由诸如图4的微处理器46的处理器执行的指令用于解释要达到测量温度(T)的温度传感器读数。诸如IFL,37=A(I)+B(dI/dt)+C(T)的扩展的数学方程例如可用于表征故障,其中C是具有单位为安培/度的常数,温度分量对于已经热阻抗注入模块减小故障电流限制IFL,37。如期望的那样,A、B和C(以及IFL,37)可以是无线可编程的或固定的。可以使用扩展方程的附加形式来通过调用其它变量来改进故障表征,如由故障检测传感器套件49中的其它传感器检测的那样,每个传感器读数由包含在诸如47的存储器中的指令解释,由诸如微处理器46的处理器执行。
本领域技术人员将清楚的是,本发明的实施例可以包括用于响应于故障电流的许多替换策略;这些包括使用诸如本文中针对IFL和IFL2定义的数学方程,并且还包括由单个传感器测量结果触发的保护策略。例如,检测到非常高的电流改变率dI/dt可伴随诸如雷击的猛烈事件。因此,不管由故障检测传感器套件49中的其它传感器提供的任何信息,采取立即动作可能是谨慎的。
诸如图2的IF 25的高故障电流可以在本公开的阻抗注入模块22的部件中生成大量的热量,其在某些情况下足以熔化大电流承载部件。为了减轻这种极端热应力的发生,可以通过在故障检测套件49中提供温度传感器53来实现附加的安全系数,以监测每个阻抗注入模块22中的一个或多个至关重要的部件的温度。
机器学习可以应用于使用本公开的故障检测传感器套件或类似的传感器套件进行的大量故障电流测量,以进一步改善故障电流的表征和报告。经由机器学习获得的系统智能可以在本公开的实施例中进一步利用来在传输线故障发生之前预测传输线故障,其具有维护花费和系统停机时间的花费的伴随的节省。例如,在预测故障的报告之后,可以通过诸如图4的支持系统42的外部支持系统来评价预防性维护策略,并且调用适当的维护策略以避免预测的故障。
因此,本公开具有许多方面,这些方面可以如期望的那样单独实践或以各种组合或子组合实践。尽管为了说明的目的而不是为了限制的目的,本文中已经公开和描述了本公开的某些优选实施例,但是本领域技术人员将理解的是,可以在其中做出形式和细节上的各种改变而不脱离本公开的精神和范围。
Claims (17)
1.一种用于电力传输线的功率流控制系统,包括:
一个阻抗注入模块,其耦合到所述电力传输线的单相传输线上,或者两个或多于两个阻抗注入模块,其串联排列在所述电力传输线的单相传输线上和/或排列在所述电力传输线的单相传输线的并联的多个支线上;
旁路开关,其耦合在所述一个阻抗注入模块两端以对所述一个阻抗注入模块进行旁路,或者耦合在所述两个或多于两个阻抗注入模块两端以对所述两个或多于两个阻抗注入模块进行旁路;以及
温度传感器;
其中,所述阻抗注入模块包括:
电流变压器,其用于感测所述电力传输线的单相传输线中的电流,或者感测所述电力传输线的单相传输线的多个支线中的各支线中的电流;
罗氏线圈,其用于感测所述电力传输线的单相传输线中的电流改变率,或者感测所述电力传输线的单相传输线的多个支线中的各支线中的电流改变率;
微处理器;以及
存储器,其包含由所述微处理器执行的指令,以处理来自所述电流变压器和来自所述罗氏线圈的输出来确定所述电力传输线的单相传输线中或者所述电力传输线的单相传输线的多个支线中的各支线中的电流和电流改变率,其中将所述罗氏线圈的输出直接用作电流改变率的量度,以对故障电流的起动进行模拟响应;以及,
以使用包括所述电力传输线的单相传输线中或者所述电力传输线的单相传输线的多个支线中的各支线中的电流、电流改变率以及所述温度传感器的输出的变量的数学方程来将计算值与预定阈值进行比较以表征可能已经发生的故障,并且如果故障已经发生,则闭合所述旁路开关,
其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt)+C(T),其中I为所述电力传输线的单相传输线的电流或者所述电力传输线的单相传输线的多个支线中的各支线的电流,dI/dt为所述电力传输线的单相传输线的电流改变率或者所述电力传输线的单相传输线的多个支线中的各支线的电流改变率,T为所述温度传感器的输出,以及A、B和C为常数。
2.根据权利要求1所述的功率流控制系统,其中所述数学方程中的电流和电流改变率的值包括电流和电流改变率的加权值。
3.根据权利要求1所述的功率流控制系统,其中,所述温度传感器为电阻温度传感器。
4.根据权利要求1所述的功率流控制系统,其中是否要闭合所述旁路开关的决定在所述故障发生的50微秒内做出。
5.根据权利要求1所述的功率流控制系统,其中当故障已经发生时,在50微秒内将所述故障报告给支持系统。
6.根据权利要求1所述的功率流控制系统,其被配置为以免干扰部署在所述传输线中的距离继电器的正常操作。
7.根据权利要求6所述的功率流控制系统,其中不干扰正常操作包括不要求所述距离继电器的任何重新编程以补偿所述功率流控制系统安装。
8.一种用于传输线故障的早期检测和报告的方法,包括:
提供一个阻抗注入模块,其耦合到所述传输线的单相传输线上,或者两个或多于两个阻抗注入模块,其串联排列在所述传输线的单相传输线上和/或排列在所述传输线的单相传输线的并联的多个支线上;
提供旁路开关,其耦合在所述一个阻抗注入模块两端以对所述一个阻抗注入模块进行旁路,或者耦合在所述两个或多于两个阻抗注入模块两端以对所述两个或多于两个阻抗注入模块进行旁路;
其中,所述阻抗注入模块包括:
电流变压器,其用于感测所述传输线的单相传输线中的电流,或者感测所述传输线的单相传输线的多个支线中的各支线中的电流;
罗氏线圈,其用于感测所述传输线的单相传输线中的电流改变率,或者感测所述传输线的单相传输线的多个支线中的各支线中的电流改变率;
温度传感器;
微处理器;以及
存储器,其包含由所述微处理器执行的指令的存储器,以处理来自所述电流变压器和来自所述罗氏线圈的输出来确定故障期间的所述传输线的单相传输线中或者所述传输线的单相传输线的多个支线中的各支线中的电流和电流改变率,其中将所述罗氏线圈的输出直接用作电流改变率的量度,以对故障电流的起动进行模拟响应;
应用包括变量所述传输线的单相传输线中或者所述传输线的单相传输线的多个支线中的各支线中的电流和电流改变率的数学方程,以通过将计算值与预定阈值进行比较来表征可能已经发生的故障;
基于所述比较决定是否要闭合所述旁路开关;
基于所述比较决定是否要报告所述故障;
当决定这样做时闭合所述旁路开关;以及,
当期望时将所述故障报告给支持系统,
其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt)+C(T),其中I为所述传输线的单相传输线的电流或者所述传输线的单相传输线的多个支线中的各支线的电流,dI/dt为所述传输线的单相传输线的电流改变率或者所述传输线的单相传输线的多个支线中的各支线的电流改变率,T为所述温度传感器的输出,以及A、B和C为常数。
9.根据权利要求8所述的方法,还包括:提供包括收发器和天线的通信和控制子系统;以及,
经由由支持系统无线发送的消息动态地更新所述预定阈值。
10.根据权利要求8所述的方法,还包括:在每个阻抗注入模块中提供包括收发器和天线的通信和控制子系统,以用于将所述故障报告给支持系统。
11.根据权利要求8所述的方法,其中所述电流和电流改变率根据使用罗氏线圈或结合作为所述电流传感器的电流变压器的测量结果导出。
12.根据权利要求9所述的方法,其中所述数学方程还包括温度作为变量,所述温度通过处理来自温度传感器的所述微处理器输入来确定。
13.根据权利要求8所述的方法,其中在所述故障发生的50微秒内实现所述旁路开关的所述闭合。
14.根据权利要求9所述的方法,其中在所述故障发生的50微秒内可实现所述故障的所述报告。
15.一种用于检测和响应于电力传输线的相中的故障电流的方法,包括:
提供一个阻抗注入模块,其耦合到所述电力传输线的单相传输线上,或者两个或多于两个阻抗注入模块,其串联排列在所述电力传输线的单相传输线上和/或排列在所述电力传输线的单相传输线的并联的多个支线上;
提供旁路开关,其耦合在所述一个阻抗注入模块两端以对所述一个阻抗注入模块进行旁路,或者耦合在所述两个或多于两个阻抗注入模块两端以对所述两个或多于两个阻抗注入模块进行旁路;
其中,所述阻抗注入模块包括故障检测传感器套件,所述故障检测传感器套件具有多个检测仪器,所述检测仪器至少包括电流变压器、罗氏线圈和温度传感器;
由所述电流变压器感测的所述电力传输线的单相传输线中的电流,或者感测所述电力传输线的单相传输线的多个支线中的各支线中的电流;以及由所述罗氏线圈感测的所述电力传输线的单相传输线中的电流改变率,或者感测所述电力传输线的单相传输线的多个支线中的各支线中的电流改变率,其中将所述罗氏线圈的输出直接用作电流改变率的量度,以对故障电流的起动进行模拟响应;
使用包括所述电力传输线的单相传输线中或者所述电力传输线的单相传输线的多个支线中的各支线中的电流和电流改变率的变量的数学方程来将计算值与预定阈值进行比较;
当所述计算值超过所述预定阈值时,闭合旁路开关,
其中针对所述计算值的所述数学方程具有形式A(I)+B(dI/dt)+C(T),其中I为所述电力传输线的单相传输线的电流或者所述电力传输线的单相传输线的多个支线中的各支线的电流,dI/dt为所述电力传输线的单相传输线的电流改变率或者所述电力传输线的单相传输线的多个支线中的各支线的电流改变率,T为所述温度传感器的输出,以及A、B和C为常数。
16.根据权利要求15所述的方法,其中当所述旁路开关闭合时,将所述故障电流的发生无线地报告给支持系统。
17.一种用于检测和报告电力传输线的相中的故障的方法,包括:
提供一个阻抗注入模块,其耦合到所述电力传输线的单相传输线上,或者两个或多于两个阻抗注入模块,其串联排列在所述电力传输线的单相传输线上和/或排列在所述电力传输线的单相传输线的并联的多个支线上;
提供旁路开关,其耦合在所述一个阻抗注入模块两端以对所述一个阻抗注入模块进行旁路,或者耦合在所述两个或多于两个阻抗注入模块两端以对所述两个或多于两个阻抗注入模块进行旁路;
其中,所述阻抗注入模块包括故障检测传感器套件,所述故障检测传感器套件具有多个故障检测仪器,所述多个故障检测仪器至少包括检测所述电力传输线的单相传输线中的电流,或者感测所述电力传输线的单相传输线的多个支线中的各支线中的电流的电流变压器、检测所述电力传输线的单相传输线中的电流改变率,或者感测所述电力传输线的单相传输线的多个支线中的各支线中的电流改变率的罗氏线圈,以及温度传感器,其中将所述罗氏线圈的输出直接用作电流改变率的量度,以对故障电流的起动进行模拟响应;
根据数学方程组合由所述多个故障检测仪器检测的参数;
将由所述多个故障检测仪器检测的组合参数的结果与预定阈值进行比较;
当由所述多个故障检测仪器检测的组合参数的所述结果超过所述预定阈值时,提供旁路开关闭合信号,所述旁路开关闭合信号将使得旁路开关闭合,并引起电力传输线的所述相中的故障的所述检测的所述报告,
其中所述数学方程具有形式A(I)+B(dI/dt)+C(T),其中I为所述电力传输线的单相传输线的电流或者所述电力传输线的单相传输线的多个支线中的各支线的电流,dI/dt为所述电力传输线的所述单相传输线的电流改变率或者所述电力传输线的单相传输线的多个支线中的各支线的电流改变率,T为所述温度传感器的输出,以及A、B和C为常数。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862702223P | 2018-07-23 | 2018-07-23 | |
US62/702223 | 2018-07-23 | ||
US16/118219 | 2018-08-30 | ||
US16/118,219 US10938314B2 (en) | 2018-07-23 | 2018-08-30 | Early detection of faults in power transmission lines |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110752589A CN110752589A (zh) | 2020-02-04 |
CN110752589B true CN110752589B (zh) | 2023-08-22 |
Family
ID=67438543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910665905.3A Active CN110752589B (zh) | 2018-07-23 | 2019-07-23 | 功率流控制系统及传输线故障的检测、报告和响应方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10938314B2 (zh) |
EP (1) | EP3599691B1 (zh) |
CN (1) | CN110752589B (zh) |
AU (1) | AU2019206099B2 (zh) |
BR (1) | BR102019015053A2 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10396533B1 (en) * | 2018-02-22 | 2019-08-27 | Smart Wires Inc. | Containerized power flow control systems |
US12027844B2 (en) * | 2020-10-09 | 2024-07-02 | Smart Wires Inc. | Control of parallel paths during recovery of a power flow control system from a transmission line fault |
CN112883551B (zh) * | 2021-01-19 | 2023-05-16 | 贵州电网有限责任公司 | 一种基于点云数据的输电线路连续档安全系数反算方法 |
FR3120484B1 (fr) * | 2021-03-03 | 2024-03-08 | Airbus Operations Sas | Dispositif de détection et de protection d’une installation électrique d’un aéronef contre des arcs électriques |
CN115308530B (zh) * | 2022-08-16 | 2024-10-15 | 国网北京市电力公司 | 故障确定方法、装置、电子设备及计算机可读存储介质 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201243191Y (zh) * | 2008-08-08 | 2009-05-20 | 安徽赛普电气有限公司 | 大容量高速限流开关装置 |
CN101680927A (zh) * | 2007-05-15 | 2010-03-24 | 雅达电子国际有限公司 | 具有用于故障预测和/或检测的变化速率监控的功率转换器 |
WO2014035881A1 (en) * | 2012-08-28 | 2014-03-06 | Smart Wire Grid, Inc. | Power line reactance module and applications |
CN103825261A (zh) * | 2012-11-17 | 2014-05-28 | 安徽蓝德集团股份有限公司 | 一种抑制电路短路故障的电流控制系统 |
CN104953568A (zh) * | 2015-07-17 | 2015-09-30 | 河南行知专利服务有限公司 | 一种柔性直流输电系统的故障保护方法 |
CN105098726A (zh) * | 2015-09-15 | 2015-11-25 | 李梦菲 | 一种电力系统串联电容器过电压快速保护电路及方法 |
CN105896564A (zh) * | 2016-06-03 | 2016-08-24 | 国网冀北节能服务有限公司 | 串联补偿装置及串联补偿装置的安全保护方法 |
CN106610461A (zh) * | 2015-10-27 | 2017-05-03 | 国网智能电网研究院 | 一种高压直流装备用快速故障检测方法及检测系统 |
CN106664033A (zh) * | 2015-06-22 | 2017-05-10 | 株式会社日立制作所 | 电力转换装置、电力转换装置的诊断系统以及诊断方法 |
CN107037302A (zh) * | 2015-10-14 | 2017-08-11 | 太阳能安吉科技有限公司 | 故障检测系统和电路 |
EP3306766A1 (en) * | 2015-05-29 | 2018-04-11 | Kabushiki Kaisha Toshiba, Inc. | Direct current power transmission system, central server of same, and method for restoring direct current power transmission pathway after failure |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020396A (en) | 1975-02-07 | 1977-04-26 | Westinghouse Electric Corporation | Time division multiplex system for a segregated phase comparison relay system |
JPS51107707A (en) | 1975-03-18 | 1976-09-24 | Nippon Electric Co | Pcm chukeishogaitansakuhoshiki oyobi fugohatsuseisochi |
GB1526412A (en) | 1975-07-22 | 1978-09-27 | Gen Electric Co Ltd | Directional relays |
US4141006A (en) | 1976-07-14 | 1979-02-20 | Braxton Kenneth J | Security system for centralized monitoring and selective reporting of remote alarm conditions |
US4161027A (en) | 1976-10-04 | 1979-07-10 | Electric Power Research Institute, Inc. | Digital protection system for transmission lines and associated power equipment |
US4177507A (en) | 1978-03-22 | 1979-12-04 | General Electric Company | Method and control for maintaining optimum performance of HVDC power transmission systems at rectifier end during A. C. system fault |
JPS55127829A (en) | 1979-03-27 | 1980-10-03 | Tokyo Shibaura Electric Co | Digital distance relay unit |
US4296450A (en) | 1979-10-05 | 1981-10-20 | The United States Of America As Represented By The Secretary Of The Interior | Discriminating circuit breaker protection system direct current power distribution systems |
US4468665A (en) | 1981-01-30 | 1984-08-28 | Tele-Drill, Inc. | Downhole digital power amplifier for a measurements-while-drilling telemetry system |
JPS5817246A (ja) | 1981-07-23 | 1983-02-01 | Nippon Denso Co Ltd | 自動変速制御装置 |
US4455589A (en) | 1982-07-06 | 1984-06-19 | Kidde, Inc. | Fuel valve latch out system |
JPS61254022A (ja) | 1983-11-07 | 1986-11-11 | プロフロ− コ−ポレ−シヨン | 電源ラインフイルタ |
US4825327A (en) | 1987-11-12 | 1989-04-25 | General Electric Company | Negative and zero sequence directional overcurrent unit for AC power transmission line protection |
US5202812A (en) | 1988-09-21 | 1993-04-13 | Ngk Insulators, Ltd. | Apparatus for detecting faults on power transmission lines |
JP2834808B2 (ja) | 1989-12-08 | 1998-12-14 | 三菱電機株式会社 | 自動車用制御装置 |
JP3002912B2 (ja) | 1991-07-16 | 2000-01-24 | セイコーインスツルメンツ株式会社 | 熱分析装置 |
US5434509A (en) * | 1992-07-30 | 1995-07-18 | Blades; Frederick K. | Method and apparatus for detecting arcing in alternating-current power systems by monitoring high-frequency noise |
US5422808A (en) | 1993-04-20 | 1995-06-06 | Anthony T. Catanese, Jr. | Method and apparatus for fail-safe control of at least one electro-mechanical or electro-hydraulic component |
US5745322A (en) * | 1995-11-28 | 1998-04-28 | Raychem Corporation | Circuit protection arrangements using ground fault interrupter for overcurrent and overvoltage protection |
SE515108C2 (sv) | 1996-05-29 | 2001-06-11 | Abb Ab | Anläggning för kraftöverföring med hjälp av högspänd likström |
US6397156B1 (en) | 1998-11-17 | 2002-05-28 | Abb Inc. | Impedance measurement system for power system transmission lines |
US6259372B1 (en) | 1999-01-22 | 2001-07-10 | Eaton Corporation | Self-powered wireless transducer |
US6957047B1 (en) | 1999-02-18 | 2005-10-18 | Ydi Wireless, Inc. | Bi-directional switched RF amplifier, waterproof housing, electrostatic overvoltage protection device, and mounting bracket therefor |
US6292340B1 (en) | 1999-04-09 | 2001-09-18 | Electrical Materials Company | Apparatus for isolation of high impedance faults |
US6584417B1 (en) | 1999-10-22 | 2003-06-24 | Abb Inc. | Method and directional element for fault direction determination in a capacitance-compensated line |
JP2001208110A (ja) | 2000-01-28 | 2001-08-03 | Mitsubishi Electric Corp | 歯車式自動変速装置及びその制御方法 |
US6625553B1 (en) | 2000-03-23 | 2003-09-23 | Udt Sensors, Inc. | Vehicle safety and security system |
US6374913B1 (en) | 2000-05-18 | 2002-04-23 | Halliburton Energy Services, Inc. | Sensor array suitable for long term placement inside wellbore casing |
US6518767B1 (en) | 2000-10-19 | 2003-02-11 | Schweitzer Engineering Laboratories, Inc. | Line differential protection system for a power transmission line |
US6629050B2 (en) | 2001-02-13 | 2003-09-30 | Udt Sensors, Inc. | Vehicle safety and security system |
US6771079B2 (en) | 2002-08-23 | 2004-08-03 | Poweramper Electronic Industry Corp. | Automobile multi-purpose DC source protection monitor |
DE10255490A1 (de) | 2002-11-27 | 2004-07-15 | Siemens Ag | Haltevorrichtung und Gerät für Haltevorrichtung |
US6858953B2 (en) | 2002-12-20 | 2005-02-22 | Hawaiian Electric Company, Inc. | Power control interface between a wind farm and a power transmission system |
US7061251B2 (en) | 2004-01-15 | 2006-06-13 | Bae Systems Information And Electronic Systems Integration Inc. | Method and apparatus for transmission line and waveguide testing |
US7269940B2 (en) | 2004-10-07 | 2007-09-18 | L-3 Communications Electron Technologies, Inc. | Ion engine grid arcing protection circuit |
US7193872B2 (en) | 2005-01-28 | 2007-03-20 | Kasemsan Siri | Solar array inverter with maximum power tracking |
US7274974B2 (en) | 2005-02-22 | 2007-09-25 | Square D Company | Independent automatic shedding branch circuit breaker |
US7660088B2 (en) | 2005-09-07 | 2010-02-09 | Schweitzer Engineering Laboratories, Inc. | System, apparatus and method for compensating the sensitivity of a sequence element in a line current differential relay in a power system |
US7568402B2 (en) | 2006-08-04 | 2009-08-04 | Gm Global Technology Operations, Inc. | Method and apparatus for fault-tolerant transmission gear selector lever position determination |
US8022708B2 (en) | 2006-12-07 | 2011-09-20 | University Of Florida Research Foundation, Inc. | Fiber optic fault detection system and method for underground power lines |
US7496459B2 (en) | 2007-04-03 | 2009-02-24 | International Business Machines Corporation | Intelligent, self-propelled automatic grid crawler high impedance fault detector and high impedance fault detecting system |
EP2160809A1 (de) | 2007-06-27 | 2010-03-10 | Siemens Aktiengesellschaft | Verfahren zum erhöhen der empfindlichkeit eines differentialschutzsystems |
US8289665B2 (en) * | 2009-07-17 | 2012-10-16 | The Invention Science Fund I Llc | Systems and methods for grounding power line sections to clear faults |
KR101077768B1 (ko) | 2010-04-30 | 2011-10-27 | 엘에스산전 주식회사 | 전력계통의 이상 전류 감시 장치 |
TWI429165B (zh) | 2011-02-01 | 2014-03-01 | Fu Da Tong Technology Co Ltd | Method of data transmission in high power induction power supply |
US8700109B2 (en) | 2011-06-09 | 2014-04-15 | Varian Semiconductor Equipment Associates, Inc. | Techniques for improving reliability of a fault current limiting system |
KR101233048B1 (ko) | 2011-07-22 | 2013-02-13 | 엘에스산전 주식회사 | 한류기 |
JP5913892B2 (ja) | 2011-10-04 | 2016-04-27 | 三菱自動車工業株式会社 | ハイブリッド車両及び内燃機関の排気還流装置故障診断方法 |
US8878563B2 (en) * | 2011-10-13 | 2014-11-04 | Steven Andrew Robbins | System and apparatus for arc detection and location in solar arrays |
US9362736B2 (en) | 2012-04-26 | 2016-06-07 | Hamilton Sundstrand Corporation | Method for improving power distribution protection |
CN102721465B (zh) | 2012-06-13 | 2014-02-05 | 江苏省电力公司南京供电公司 | 电力变压器铁芯松动故障诊断与故障初步定位系统及方法 |
US9331473B2 (en) * | 2012-11-16 | 2016-05-03 | Shakira Limited | Fault detecting device for an electricity supply |
US9866012B2 (en) | 2014-05-02 | 2018-01-09 | Maple Microsystems Inc. | Method and system for reporting faults and control in an electrical power grid |
US9581624B2 (en) | 2014-08-19 | 2017-02-28 | Southern States, Llc | Corona avoidance electric power line monitoring, communication and response system |
US9577421B2 (en) | 2015-06-18 | 2017-02-21 | General Electric Company | System and method for isolating ground faults in a wind turbine |
GB2556540B (en) * | 2015-08-14 | 2021-07-28 | Univ Michigan State | Method for independent real and reactive power flow control using locally available parameters |
US10333290B2 (en) * | 2016-12-08 | 2019-06-25 | Schneider Electric USA, Inc. | Multi-winding ground fault sensor |
-
2018
- 2018-08-30 US US16/118,219 patent/US10938314B2/en active Active
-
2019
- 2019-07-18 AU AU2019206099A patent/AU2019206099B2/en active Active
- 2019-07-22 BR BR102019015053A patent/BR102019015053A2/pt active Search and Examination
- 2019-07-23 CN CN201910665905.3A patent/CN110752589B/zh active Active
- 2019-07-23 EP EP19187824.8A patent/EP3599691B1/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101680927A (zh) * | 2007-05-15 | 2010-03-24 | 雅达电子国际有限公司 | 具有用于故障预测和/或检测的变化速率监控的功率转换器 |
CN201243191Y (zh) * | 2008-08-08 | 2009-05-20 | 安徽赛普电气有限公司 | 大容量高速限流开关装置 |
WO2014035881A1 (en) * | 2012-08-28 | 2014-03-06 | Smart Wire Grid, Inc. | Power line reactance module and applications |
CN104756346A (zh) * | 2012-08-28 | 2015-07-01 | 智能网股份有限公司 | 电力线电抗模块及应用 |
CN103825261A (zh) * | 2012-11-17 | 2014-05-28 | 安徽蓝德集团股份有限公司 | 一种抑制电路短路故障的电流控制系统 |
EP3306766A1 (en) * | 2015-05-29 | 2018-04-11 | Kabushiki Kaisha Toshiba, Inc. | Direct current power transmission system, central server of same, and method for restoring direct current power transmission pathway after failure |
CN106664033A (zh) * | 2015-06-22 | 2017-05-10 | 株式会社日立制作所 | 电力转换装置、电力转换装置的诊断系统以及诊断方法 |
CN104953568A (zh) * | 2015-07-17 | 2015-09-30 | 河南行知专利服务有限公司 | 一种柔性直流输电系统的故障保护方法 |
CN105098726A (zh) * | 2015-09-15 | 2015-11-25 | 李梦菲 | 一种电力系统串联电容器过电压快速保护电路及方法 |
CN107037302A (zh) * | 2015-10-14 | 2017-08-11 | 太阳能安吉科技有限公司 | 故障检测系统和电路 |
CN106610461A (zh) * | 2015-10-27 | 2017-05-03 | 国网智能电网研究院 | 一种高压直流装备用快速故障检测方法及检测系统 |
CN105896564A (zh) * | 2016-06-03 | 2016-08-24 | 国网冀北节能服务有限公司 | 串联补偿装置及串联补偿装置的安全保护方法 |
Non-Patent Citations (1)
Title |
---|
曹阳.电力内外线.西南交通大学出版社,2015,第182-184页. * |
Also Published As
Publication number | Publication date |
---|---|
AU2019206099A1 (en) | 2020-02-06 |
CN110752589A (zh) | 2020-02-04 |
EP3599691B1 (en) | 2023-06-07 |
AU2019206099B2 (en) | 2024-06-20 |
US10938314B2 (en) | 2021-03-02 |
BR102019015053A2 (pt) | 2020-02-04 |
US20200028442A1 (en) | 2020-01-23 |
EP3599691A1 (en) | 2020-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110752589B (zh) | 功率流控制系统及传输线故障的检测、报告和响应方法 | |
US7519438B2 (en) | Method and a tool for calculating and displaying fault response tolerances for a power switching device | |
US9379534B2 (en) | Recloser device and method of operation | |
US8817438B2 (en) | Recloser device and method of operation | |
US11081878B2 (en) | Method for coordinating switches in multiple reclosers in a distribution feeder line in response to detection of a fault | |
US8861154B2 (en) | Recloser device and method of operation | |
KR20190105394A (ko) | 저압직류 배전계통 보호 방법 및 장치 | |
Nikander | Development and testing of new equipment for faulty phase earthing by applying RTDS | |
US12107410B2 (en) | Transformer overcurrent protection | |
EP2408078A2 (en) | Centrally controlled protection system having reduced energy let-through mode | |
Awaad et al. | Over-current protection in transmission systems using analog and digital relays-case study and comparison | |
Gajić et al. | Modern design principles for numerical busbar differential protection | |
US11923129B2 (en) | Control system for transformer protection system | |
Toledo et al. | Evaluating Single-Phase Reclosing on Distribution Grid Voltage | |
US11852692B1 (en) | Electric distribution line ground fault prevention systems using dual parameter monitoring with high sensitivity relay devices | |
US20230238796A1 (en) | System and method for eliminating nuisance fuse operation associated with medium voltage distribution transformers | |
US20240195163A1 (en) | Electric Distribution Line Ground Fault Prevention Systems Using Dual Parameter High Sensitivity Relay Device Monitoring With Blown Fuse Protection In A Single Phase Tap Line | |
Verney et al. | Assessment of transformer relay algorithms and settings in laboratory using transient simulation data | |
Slabbert et al. | Medium Voltage Phase Overcurrent Feeder Protection | |
Atiyah | Analysis of case study run by differential relay of power transformer computer simulation | |
Rebizant et al. | Abnormal States in Power Systems and Criteria for Their Recognition | |
Pedersen | General reflections on the design of a power transmission and distribution network | |
Slabbert | Evaluating the Effectiveness of Phase Overcurrent Protection on Overhead Medium-Voltage Feeders | |
Qasmi | Power transformer protection–an outline | |
GRID | Power transformer protection–an outline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |