CN110751662B - Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means - Google Patents

Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means Download PDF

Info

Publication number
CN110751662B
CN110751662B CN201910998269.6A CN201910998269A CN110751662B CN 110751662 B CN110751662 B CN 110751662B CN 201910998269 A CN201910998269 A CN 201910998269A CN 110751662 B CN110751662 B CN 110751662B
Authority
CN
China
Prior art keywords
image
value
subset
particle
segmentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910998269.6A
Other languages
Chinese (zh)
Other versions
CN110751662A (en
Inventor
赵晶
王晓莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201910998269.6A priority Critical patent/CN110751662B/en
Publication of CN110751662A publication Critical patent/CN110751662A/en
Application granted granted Critical
Publication of CN110751662B publication Critical patent/CN110751662B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Processing (AREA)

Abstract

The invention discloses an image segmentation method and system for a fuzzy C mean value optimized by quantum-behaved particle swarm, comprising the following steps: an acquisition step: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image; an image preprocessing step: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result; and (3) information entropy calculation: calculating the element information entropy of the image set I for the result after image enhancement; an image segmentation step: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing step.

Description

Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means
Technical Field
The disclosure relates to the technical field of image segmentation, in particular to an image segmentation method and system for optimizing a fuzzy C-means by quantum-behaved particle swarm.
Background
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Images carry vivid and rich information and play an extremely important role in the age of multimedia information. The image may directly mimic or actually describe the objective presence of the thing. Image segmentation is an important pre-process for image recognition and computer vision. Without a correct segmentation, no correct recognition is possible. This is a key step from image processing to image analysis. Image segmentation has an increasing demand in military, remote sensing, meteorology, communications, traffic, and medical image applications.
In the course of implementing the present disclosure, the inventors found that the following technical problems exist in the prior art:
generally, image segmentation decomposes a complete image into several regions with the same or different features and extracts objects of interest and technical processes from these regions. Various difficulties are encountered when computers automatically process partitions. Segmentation errors often occur, for example, due to uneven lighting, the effects of noise, the presence of unclear portions in the image, and shadows. Therefore, image segmentation is a technique that needs further investigation.
Disclosure of Invention
In order to solve the defects of the prior art, the disclosure provides an image segmentation method and system for optimizing a fuzzy C mean value by using quantum behavior particle swarm;
in a first aspect, the present disclosure provides an image segmentation method for a fuzzy C-means by quantum-behaved particle swarm optimization;
the image segmentation method for the fuzzy C mean value by quantum-behaved particle swarm optimization comprises the following steps:
an acquisition step: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image;
an image preprocessing step: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result;
and (3) information entropy calculation: calculating the element information entropy of the image set I according to the result of image enhancement;
an image segmentation step: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing step.
In a second aspect, the disclosure further provides an image segmentation system for quantum-behaved particle swarm optimization fuzzy C-means;
the image segmentation system of the fuzzy C mean value of quantum behavior particle swarm optimization comprises:
an acquisition module configured to: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image;
an image pre-processing module configured to: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result;
an information entropy calculation module configured to: calculating the element information entropy of the image set I for the result after image enhancement;
an image segmentation module configured to: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing module.
In a third aspect, the present disclosure also provides an electronic device, including a memory and a processor, and computer instructions stored in the memory and executed on the processor, wherein when the computer instructions are executed by the processor, the steps of the method of the first aspect are completed.
In a fourth aspect, the present disclosure also provides a computer-readable storage medium for storing computer instructions which, when executed by a processor, perform the steps of the method of the first aspect.
Compared with the prior art, the beneficial effect of this disclosure is:
the invention provides a middle-intelligence image segmentation method based on a quantum-behavior particle swarm optimization fuzzy C-means algorithm. The fuzzy control algorithm is optimized through the simple effectiveness of the fuzzy control algorithm and the global optimization capability of the QPSO. The method is feasible and has good anti-noise capability through experimental verification, the overall segmentation effect of the method is better than that of FCM, the segmentation boundary is clearer, and the optimal result is selected without multiple experiments. The algorithm effectively solves the problems that the FCM has strong dependency on the initial value and is easy to fall into local optimization. The algorithm has strong global search capability and good image segmentation effect. Although good segmentation results can be accurately obtained, the single time of program operation is not obviously shortened.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate embodiments of the application and, together with the description, serve to explain the application and are not intended to limit the application.
FIG. 1 is a flow chart of a method according to a first embodiment of the present disclosure;
fig. 2 (a) is a images (240 × 320) of a vessel according to a first embodiment of the present disclosure;
fig. 2 (b) is an effect diagram of a mesology image with an alpha mean operation and an image enhancement operation according to a first embodiment of the disclosure;
fig. 2 (C) is a graph of the fuzzy C-means segmentation effect based on fig. 2 (b) according to the first embodiment of the present disclosure;
fig. 2 (d) is a graph of the effect of the improved particle swarm optimization fuzzy C-means segmentation based on fig. 2 (b) in the first embodiment of the disclosure.
Detailed Description
It should be noted that the following detailed description is exemplary and is intended to provide further explanation of the disclosure. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
It is noted that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of exemplary embodiments according to the present application. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, and it should be understood that when the terms "comprises" and/or "comprising" are used in this specification, they specify the presence of stated features, steps, operations, devices, components, and/or combinations thereof, unless the context clearly indicates otherwise.
The embodiment provides an image segmentation method for a fuzzy C mean value by quantum-behaved particle swarm optimization;
as shown in fig. 1, the image segmentation method for fuzzy C-means by quantum-behaved particle swarm optimization includes:
an acquisition step: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image;
an image preprocessing step: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result;
and (3) information entropy calculation: calculating the element information entropy of the image set I for the result after image enhancement;
an image segmentation step: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing step.
As one or more embodiments, the fuzzy C-means algorithm optimized by quantum-behaved particle swarm is used for segmenting the mesology image to obtain an image segmentation result; the method comprises the following specific steps:
s41: the method comprises the steps of firstly, obtaining an initial clustering class number C, an ambiguity parameter m, a particle swarm size N and a maximum iteration number MaxIt; the number of cluster centers is the dimension of each particle;
s42: carrying out initialization coding on the N cluster centers to form N first-generation particles; the number of the clustering centers is equivalent to the dimension of the particles; pbest for each particle is its current location, and gbest is the best location for all particles in the current population;
s43: calculating each clustering center C (k) and a center vector U (k) of the membership degree;
s44: calculating the fitness of each particle; and if the fitness of the particle is better than the fitness of the current optimal position of the particle, updating the optimal position of the single particle. If the fitness of the current global optimal position is better than the fitness of the optimal positions in all the particles, updating the global optimal position;
s45: updating the location of each particle to generate a new population of particles;
s46: stopping iteration if the current iteration times reach the maximum times set previously; the best solution is found in the last generation, otherwise S43 is repeated.
Further, the step S45, updating the position of each particle with equations (30) - (33) to generate a new particle group:
Figure BDA0002240441220000051
X i,j (t+1)=p i,j (t)±α·|C j (t)-X i,j (t)|·ln[1/u i,j (t)];u i,j (t)~U(0,1) (31)
the parameter C in equation (31), called the mean optimum position, can be denoted as mbest, is the center point of the individual optimum positions of all particles:
Figure BDA0002240441220000052
wherein p is i,j (t) is the potential well (local attraction point) of the jth dimension of the ith particle at the tth iteration, whose location is actually at the individual optimal location pbest j (t) and the population-optimal position gbest (t) are in the hyper-rectangle of vertices and vary with pbest and gbest. Phi is a unit of j (t) and u i,j (t) are all t iterations, j dimension is [0,1]Random numbers uniformly distributed, X i,j (t + 1) is the position of the ith particle in the jth dimension, C, at the tth iteration j (t) is a vector in C (t), α is the contraction-expansion coefficient of QPSO, and the value of α is determined by equation (33):
α=(α 12 )*(MaxIt-t)/MaxIt+α 2 (33)
wherein alpha is 1 And alpha 2 The initial value and the final value of the parameter α, respectively, t is the current iteration number, maxIt is the maximum number of iterations allowed, by varying the value of α, from 1.0 at the beginning of the search to 0.5 at the end of the search.
As one or more embodiments, the wisdom images include wisdom subset image T, wisdom subset image I, and wisdom subset image F:
the middle wisdom subset image T is expressed as the reality expression of the original image;
the image I of the Chinese wisdom set is expressed as uncertainty expression of the original image;
the wisdom subset image F is represented as a non-reality representation of the original image.
As one or more embodiments, the converting the image to be processed into a mesology image; the method comprises the following specific steps:
calculating the Zhongzhi subset image T according to the pixel value area mean value of the original image;
calculating the image I of the Zhongzhi subset according to the absolute value of the difference between the pixel value of the original image and the average value of the area pixels;
and calculating the wisdom subset image F according to the wisdom subset image T.
As one or more embodiments, the converting the image to be processed into a mesology image; the method comprises the following specific steps:
P NS ={T,I,F} (1)
Figure BDA0002240441220000061
Figure BDA0002240441220000071
Figure BDA0002240441220000072
Figure BDA0002240441220000073
F(i,j)=1-T(i,j) (6)
wherein, P NS Is a pixel point of the image in the NS domain;
t (i, j) is the value of the point (i, j) of the Zhongzhi subset image T;
i (I, j) is the value of the point (I, j) of the Zhongzhi subset image I;
f (i, j) is the value of the point (i, j) of the Zhongzhi subset image F;
Figure BDA0002240441220000074
is the mean of g (i, j) over the w × w region;
Figure BDA0002240441220000075
to represent
Figure BDA0002240441220000076
The minimum value of (a) is determined,
Figure BDA0002240441220000077
to represent
Figure BDA0002240441220000078
The maximum value of (a);
g (m, n) is the value of the point (m, n) of the Zhongzhi subset image T;
δ (i, j) is the mean value of pixel points g (i, j) and g (i, j) in the region w × w
Figure BDA0002240441220000079
The absolute value of the difference.
As one or more embodiments, the denoising processing is performed on the mesopic image; the method comprises the following specific steps:
Figure BDA00022404412200000710
Figure BDA00022404412200000711
Figure BDA00022404412200000712
Figure BDA00022404412200000713
Figure BDA00022404412200000714
Figure BDA00022404412200000715
Figure BDA0002240441220000081
wherein the content of the first and second substances,
Figure BDA0002240441220000082
the pixels of the image in the NS domain pass through a set of point alpha-means,
Figure BDA0002240441220000083
the alpha-means subset of the image T of the wisdom subset,
Figure BDA0002240441220000084
is an alpha-means subset of the image I of the wisdom subset,
Figure BDA0002240441220000085
is an alpha-mean value subset of the image F of the middle wisdom subset, T is a set of actual values of the original image,
Figure BDA0002240441220000086
for the alpha-mean set to be performed, I is the set of the uncertain values of the original image, alpha takes a value of 0.85, w W is the size of the limited region, (I, j) is the pixel point of the original image, (m, n) is the leading region pixel information point in the w W region, T (m, n) is the value of the point (m, n) of the image T of the Zhongzhi subset,
Figure BDA0002240441220000087
a gray-scale average intensity value of alpha-means is performed for the image T of the wisdom subset,
Figure BDA0002240441220000088
an alpha-mean set is needed, F (m, n) is the value of the point (m, n) of the image F of the Zhongzhi subset,
Figure BDA0002240441220000089
the alpha-mean gray-level mean intensity values are performed for the wisdom subset image F.
Figure BDA00022404412200000810
For the average intensity value of the image I of the wisdom subset,
Figure BDA00022404412200000811
is T after alpha mean operation is carried out on the pixel point (i, j) α (i, j) and
Figure BDA00022404412200000812
the absolute value of the difference between the two values,
Figure BDA00022404412200000813
and
Figure BDA00022404412200000814
is that
Figure BDA00022404412200000815
Minimum and maximum values of.
It should be understood that the purpose of the denoising step is to reduce noise points and high-uncertainty pixel points in the image, so that the distribution of image pixel information is more reasonable and beneficial to the subsequent processing of the image.
As one or more embodiments, the performing an image enhancement operation on the denoised result; the method comprises the following specific steps:
Figure BDA00022404412200000816
Figure BDA00022404412200000817
Figure BDA00022404412200000818
Figure BDA00022404412200000819
Figure BDA00022404412200000820
Figure BDA0002240441220000091
Figure BDA0002240441220000092
wherein:
Figure BDA0002240441220000093
for the set of realisms of the wisdom set subjected to the beta enhancement operation,
Figure BDA0002240441220000094
is as follows
Figure BDA0002240441220000095
The authenticity subset of the noon set after beta enhancement operation,
Figure BDA0002240441220000096
is a subset of uncertainty values representing the medium intelligence set, beta is a value of 0.85,
Figure BDA0002240441220000097
is composed of
Figure BDA0002240441220000098
The true value of the beta-enhancement operation is performed,
Figure BDA0002240441220000099
is the value of the set T after the mean operation,
Figure BDA00022404412200000910
for the non-authentic set of the wisdom set subjected to the beta enhancement operation,
Figure BDA00022404412200000911
is as follows
Figure BDA00022404412200000912
The non-reality subset of the noon set is subjected to beta enhancement operation,
Figure BDA00022404412200000913
is composed of
Figure BDA00022404412200000914
A non-true value of the beta boost operation is performed,
Figure BDA00022404412200000915
the pixel points are non-real pixel points after the mean value operation,
Figure BDA00022404412200000916
is that
Figure BDA00022404412200000917
δ' (i, j) is the value of the pixel (i, j) after image enhancement
Figure BDA00022404412200000918
And mean value
Figure BDA00022404412200000919
Absolute value of the difference, δ' min Value after image enhancement operation for pixel point (i, j)
Figure BDA00022404412200000920
And the mean value
Figure BDA00022404412200000921
Minimum value of absolute value of the difference, δ' max Value after image enhancement operation for pixel point (i, j)
Figure BDA00022404412200000922
And mean value
Figure BDA00022404412200000923
The maximum value of the absolute value of the difference,
Figure BDA00022404412200000924
as a subset
Figure BDA00022404412200000925
The average intensity in the region w x w,
Figure BDA00022404412200000926
as a subset
Figure BDA00022404412200000927
And (5) performing beta enhancement operation on the authenticity set in the w x w region. Delta' (i, j) is the pixel (i, j) after the image enhancement operation
Figure BDA00022404412200000928
And with
Figure BDA00022404412200000929
The absolute value of the difference.
It will be appreciated that the purpose of the enhancement processing step is to enhance the visual effect of the image to enlarge the feature differences between different objects in the image, such as objects and backgrounds, to improve the recognition of the image.
As one or more embodiments, calculating the element information entropy of the image set I as a result of the image enhancement; the method comprises the following specific steps:
Figure BDA00022404412200000930
wherein, en I Is the entropy of the Mega subset image I, p I (i) Is the probability of element I in the wisdom subset image I.
In order to overcome the limitation of a general image segmentation method and improve the expression and processing capacity of image uncertainty information, an extension fuzzy theory of an interval value fuzzy set, an intuitive fuzzy set and an interval value intuitive fuzzy set is provided. The fuzzy theory uses a membership function to describe the degree of the elements belonging to a certain class, so that the ambiguity and the uncertainty in the segmentation process can be well expressed and processed. The theory of central intelligence is a new extended fuzzy theory, which summarizes the classical fuzzy theory and the related extended fuzzy theory.
The relation between a real thing, theory, proposition, concept or entity 'A' and its opposite 'Anti-A', its negative 'Non-A' and 'Netu-A' (neither 'A' nor 'Anti-A') is studied in middle wisdom. The middle wisdom is the basis for the middle wisdom logic, the middle wisdom probability, the middle wisdom aggregate and the middle wisdom statistics.
The basic idea of neutronic physics is that any view has a true value of t%, an uncertainty of i%, and a false value of f%.
The fuzzy segmentation technology generated based on the fuzzy theory can effectively describe the fuzziness of the image, and is very suitable for processing the uncertainty problem of accurate segmentation in the medical image. With the continuous improvement of the fuzzy theory, the application of the fuzzy theory in image segmentation is increasingly active, and the fuzzy theory becomes a research hotspot.
The main basis of image segmentation is the similarity and discontinuity of the gray levels. Image segmentation algorithms can be divided into region-based segmentation algorithms and boundary-based segmentation algorithms and segmentation methods incorporating certain theoretical tools. Region-based image segmentation algorithms separate objects from the background in the image by selecting an appropriate threshold. The method is simple and intuitive, but only considers the gray information of the image, does not consider the spatial information of the image, and is very sensitive to noise and gray nonuniformity. Edge-based image segmentation algorithms complete the segmentation of regions by detecting edges between different homogeneous regions. The difficulty of the edge detection method is the contradiction between noise immunity and detection accuracy. At present, a few improved multi-scale edge detection methods have been proposed, but the effect is still not ideal. The segmentation method combined with a specific theoretical tool is to use a plurality of theoretical methods at present stage for image segmentation, such as an FCM method based on cluster analysis. The fuzzy C-means algorithm (FCM) based on the cluster analysis is more and more concerned by people due to the characteristics of simple design, wide solving range, easy realization of a computer and the like, and is widely applied in various fields. In addition, the conventional FCM algorithm does not consider spatial information during image segmentation, and is sensitive to noise and gray level non-uniformity.
The fuzzy C-means algorithm is widely applied due to simple realization; the fuzzy C-means algorithm is very sensitive to initial parameters and sometimes even to initial parameters. Manual intervention parameters are needed to approach the global optimal solution, and the segmentation speed is improved. But it is limited by the initial cluster center selection, is easy to fall into local optimum and is more sensitive to noise. The classical improvement of FCM has two main aspects: one is an improvement to the objective function in FCM; and the other is to introduce other intelligent algorithms in the iterative solution process. In recent years, many scholars have tried various methods to solve the problem that the fuzzy C-means algorithm falls into local extrema due to improper initial value selection. If the FCM is combined with the particle swarm optimization algorithm, the image segmentation quality is improved to a certain extent.
Particle Swarm Optimization (PSO) algorithms were proposed by Kennedy and Eberhar in 1995 in the United states. PSO calculation is simple and easy to realize, but the flight speed of the particles cannot be effectively controlled in the later evolution stage, so that the algorithm is easy to fly and jump the optimal solution, the convergence speed of the algorithm is further caused, and the accuracy is reduced. In view of the above disadvantages, sun Jun et al describe the motion state of particles by using the principle of Quantum inaccuracy measurement from the perspective of Quantum mechanics, and establish a new PSO algorithm model, namely a Quantum-behaved PSO (QPSO) algorithm model. The algorithm has the advantages of small number of parameters and better searching capability than the developed PSO algorithm.
In order to solve the problems of the FCM algorithm, a quantum-behaved particle swarm optimization (QPSO) algorithm is applied to fuzzy C-means clustering.
The FCM obtains the membership degree of each data sample point to all class centers by optimizing an objective function, so that the attribution of the sample points is determined to achieve the purpose of automatically classifying the data samples. Since the FCM algorithm essentially finds the optimal solution by the gradient descent method, there is a problem of falling into the local optimal solution. Aiming at the situations, the particle swarm algorithm capable of ensuring global convergence is introduced, namely the quantum behavior particle swarm algorithm forms a fuzzy clustering algorithm based on evolutionary computation.
(1) Image for middle intelligence
Due to the fact that the classical fuzzy segmentation algorithm is difficult to obtain good results when the problems of complexity and high uncertainty are processed. Therefore, the intelligent theory is introduced into the image to generate the intelligent image so as to enhance the expression capability of uncertain information in the image.
The image is expressed in the field of middle intelligence, and the basic method is to convert the original digital image and the relevant features of the image into a middle intelligence area by utilizing the middle intelligence theory so as to obtain the middle intelligence image. The intelligent image can better express and describe the fuzziness and uncertainty of the image, and not only can utilize gray information, but also can utilize edge and space information to solve the problem which cannot be solved by a fuzzy segmentation algorithm.
Definition 1 (mesopic images): given an image as P, assume the full domain of discourse is U, the full set of image pixels is W, and W is a non-empty subset of U. P NS The image has three membership sets T, I and F.
P NS ={T,I,F} (1)
The subset image T is expressed as an original image authenticity expression, the subset image I is expressed as an original image uncertainty expression, and the subset image F is expressed as an original image non-authenticity expression.
The characteristic information used by the intelligent image is the gray value of the image pixel point. A pixel P in the image is described as P (t, i, f), belonging to W for the element P (t, i, f) in the following way: t% true, I% uncertain, and F% false, where T ∈ T, I ∈ I, and F ∈ F. The pixel P (i, j) in the image domain is converted into an intellectual region.
In general, we represent the uncertainty of the data by standard deviation. Since the uncertainty of the target region and the background region is much smaller than the uncertainty of the edge, this section defines I according to the standard deviation and discontinuity of the image gray. The standard deviation represents the difference in the local area of the image and the discontinuity represents an abrupt change in the gray level. The standard deviation reflects the difference of the local area of the image. The background and target areas in the image are uniform, while the blurred edges are gradual from target to background, and then we describe T, I, F using the mean, standard deviation and range of pixel values areas.
In the process of image conversion, the pixel point (i, j) is limited in a small area, and the size of the area is w × w. The transformation process of the intelligent image is the acquisition process of the three sets T, I and F. The process is calculated by the following formula:
Figure BDA0002240441220000131
Figure BDA0002240441220000132
Figure BDA0002240441220000133
Figure BDA0002240441220000134
F(i,j)=1-T(i,j) (6)
wherein:
Figure BDA0002240441220000135
is the local average of the image, and δ (i, j) is the pixel g (i, j) and its local average
Figure BDA0002240441220000136
The absolute value of the difference.
(2) Information entropy of Zhongzhi image
The information entropy of the image describes the aggregation characteristics of the gray level distribution of the image pixel points. In the image of the middle intelligence, the information entropy of the image is used for describing the aggregation characteristics of the gray level distribution of image pixel points.
Definition 2 (entropy of information of mesopic image) the entropy of information of a mesopic image is defined as the sum of the entropies of three sets T, I and F, used to evaluate the distribution of elements in a mesopic area:
En NS =En T +En I +En F (7)
Figure BDA0002240441220000141
Figure BDA0002240441220000142
Figure BDA0002240441220000143
wherein: en T ,En I ,En F Entropy of sets T, I and F, respectively, and probability of element i in three sets T, I and F, respectively. And En T And En F Is used to describe the distribution of elements in the mesology collection; en I To describe the distribution of elemental uncertainty.
According to the concept of mesology, the variation of elements in sets T and F can affect the uncertain distribution of set I. The larger the entropy of the set T and the smaller the entropy of the set I, the more uniform the gray level distribution of the image is, and the more reasonable the distribution of the gray level values is. In order to increase the entropy of the set T and reduce the entropy of the set I, a new operation, namely alpha-mean value operation, is proposed in the image denoising of the mesology, and the operation utilizes the values of the pixel points in the uncertainty set to judge and update the current pixel value in the field of the mesology.
When noise exists in an image, the image segmentation is easily interfered by the noise, the segmentation effect is poor, and the image analysis and understanding are influenced. In order to solve the problem, the method of alpha average filtering is adopted in the disclosure to eliminate image noise, so that subsequent image segmentation is facilitated.
Definition 3 (α -means operation): to P NS Carrying out alpha-mean calculation,
Figure BDA0002240441220000144
Is defined as:
Figure BDA0002240441220000145
Figure BDA0002240441220000146
Figure BDA0002240441220000147
Figure BDA0002240441220000151
Figure BDA0002240441220000152
Figure BDA0002240441220000153
Figure BDA0002240441220000154
wherein:
Figure BDA0002240441220000155
and
Figure BDA0002240441220000156
the mean values of T (i, j) and F (i, j) in the region w x w, respectively; delta α (i, j) is T after alpha mean operation is carried out on the pixel point (i, j) α (i, j) and
Figure BDA0002240441220000157
the absolute value of the difference between them.
After the alpha-mean operation, the entropy of the uncertain subset I decreases, and the distribution of elements in I becomes more uneven, and the non-uniformity reduces the uncertainty of the intelligent set PNS. Noise points and high-uncertainty pixel points in the image are reduced, and the distribution of image pixel information is more reasonable and beneficial to the subsequent processing of the image.
(4) Image enhancement operations
In the image segmentation process of the mesology, the image is converted into the mesology image, and alpha mean value operation is carried out, so that the image contour is blurred, and therefore, the problem is solved by utilizing image enhancement in the processing process. The main purpose of image enhancement is to improve the contrast of the image and highlight the information of interest. Image enhancement may improve image blur and image quality. It can further enhance the edge information of the object and weaken the non-edge information, thereby reducing the blurring of the image. Centering an intelligent image P by using the principle of fuzzy set pair set element enhancement operation NS The T image in (1) is obtained by carrying out beta-enhancement operation
Figure BDA0002240441220000158
The blurred image contour becomes clearer, and the enhancement formula is
Figure BDA0002240441220000159
Figure BDA00022404412200001510
Figure BDA0002240441220000161
Figure BDA0002240441220000162
Figure BDA0002240441220000163
Figure BDA0002240441220000164
Figure BDA0002240441220000165
Wherein: delta' (i, j) is the pixel (i, j) after the image enhancement operation
Figure BDA0002240441220000166
And
Figure BDA0002240441220000167
the absolute value of the difference.
(5) Fuzzy C-means algorithm
The key of image segmentation based on the FCM clustering algorithm lies in how to unify the mathematical form of an image with that of the FCM clustering algorithm. For this purpose, the image may be regarded as a sample set, each pixel in the image may be regarded as a clustering sample, the feature of the pixel may be regarded as a feature vector of the sample, and the pixel may be clustered in the feature space. Dividing pixels with the same or similar characteristics into a class as much as possible; then, the class of each pixel is marked, so that the image segmentation is completed.
Aiming at the noon subset, a new clustering method and process are defined
Figure BDA0002240441220000168
Namely the alpha mean and the noon subset after the image enhancement operation.
Considering the influence of uncertainty, we combine the two sets T and I into a new cluster value.
Figure BDA0002240441220000169
Figure BDA00022404412200001610
An improved fuzzy c-means algorithm for the middle intelligent set is provided. The objective function is defined as:
Figure BDA0002240441220000171
Figure BDA0002240441220000172
Figure BDA0002240441220000173
the FCM algorithm obtains fuzzy classification of the sample set by performing iterative optimization on the target function.
The algorithm is sensitive to the initial value and depends largely on the choice of initial cluster center. When the initial cluster center deviates significantly from the global optimal cluster center, the FCM tends to fall into a local minimum. The disadvantage is more pronounced when the number of clusters is larger.
(6) Improved PSO-FCM
The FCM algorithm based on gradient descent is essentially a local search algorithm, is prone to fall into local minimum values, and is sensitive to initial values, i.e., different initial values may result in different clustering results. The QPSO algorithm has global searching capability and is not easy to sink into a local area, so the present disclosure provides a new intermediate intelligent image segmentation hybrid clustering algorithm (QPSO-FCM), which combines the QPSO algorithm and the FCM to be applied to the intermediate intelligent image for segmentation.
QPSO operates on the fitness of individuals (particles) using the concepts of "population" and "evolution". Assuming that m is the number of particles in a multi-target search space, the position of the first particle is represented as vector Xi = (Xi 1, xi2, … xiD), in each iteration, the particle updates itself by tracking the two best positions. One is the optimal solution found by the particle itself, called the single optimal position pi = (pi 1, pi2, … pid); the other is the optimal solution found by the whole particle swarm optimization at present, and is called as the global optimal position pg. After finding the two extreme values, the average optimal position (mbest) or C (t) is taken as the average of the optimal positions of all particles. Move to search for the best solution to the problem according to the following formula.
Figure BDA0002240441220000181
X i,j (t+1)=p i,j (t)±α·|C j (t)-X i,j (t)|·ln[1/u i,j (t)] u i,j (t)~U(0,1) (31)
Figure BDA0002240441220000182
p i,j (t) is the individual optimum position of the ith particle at the tth iteration (1)<=j<= D). α is the contraction-expansion coefficient of QPSO. It is an important parameter for QPSO convergence, and the value of α is determined by the following equation:
α=(α 12 )*(MaxIt-t)/MaxIt+α 2 (33)
in the formula, alpha 1 And alpha 2 The initial and final values of the parameter, respectively, t is the current iteration number, maxIt is the maximum number of iterations allowed, by varying value, from 1.0 at the beginning of the search to 0.5 at the end of the search.
In the application of the QPSO-FCM algorithm, the fitness function of each individual in the QPSO is defined as follows:
Figure BDA0002240441220000183
wherein, J m (U, C) is the fitness of the imageA function. k is the gray scale, k =0-C, and C is the maximum value of the gray scale.
The QPSO-based FCM algorithm randomly generates a next generation solution, and therefore, it is easy to search for a global optimum value. Moreover, each generation of solution has the dual advantages of self-promotion and learning to others; therefore, it has a fast convergence speed.
(7) Intelligent image segmentation based on QPSO-FCM algorithm
A new intermediate intelligent image segmentation algorithm-QPSO-FCM algorithm is provided, which comprises the following steps:
step 1: inputting an image;
step 2: transforming the image into the NS domain using equations (1) - (6);
and step 3: performing an alpha mean operation using equations (11) - (17);
and 4, step 4: performing an image enhancement operation using equations (18) - (24);
and 5: calculating the entropy of the indefinite subset I using equation (9);
and 6: if it is not
Figure BDA0002240441220000191
Entering step 7; otherwise, entering step 3;
and 7: applying the improved FCM algorithm to the set of nooses:
Figure BDA0002240441220000192
the initial clustering class number C, the ambiguity parameter m, the particle swarm size N and the maximum iteration number MaxIt. The number of cluster centers is the dimension of each particle.
Figure BDA0002240441220000193
And carrying out initialization coding on the N cluster centers to form N first-generation particles. The number of cluster centers corresponds to the dimension of the particle. Pbest for each particle is its current location, and gbest is the best location for all particles in the current population.
Figure BDA0002240441220000194
Calculating the center C (k) of each cluster and a center vector U (k) of the membership degree in k steps by using equations (28) to (29);
Figure BDA0002240441220000195
the fitness of each particle is calculated according to equation (34). If the fitness of the particle is better than the fitness of the current best position of the particle, the best position of the single particle is updated. If the fitness of the current global optimal position is better than the fitness of the optimal positions in all the particles, the global optimal position is updated.
Figure BDA0002240441220000196
The position of each particle is updated using equations (30) - (33) to generate a new particle population.
Figure BDA0002240441220000197
If the current number of iterations reaches the previously set maximum number, the iteration is stopped. Finding the best solution in the last generation, otherwise repeating step (3).
And 8: and obtaining an image segmentation result.
The QPSO-FCM segmentation algorithm is applied to the mesopic image subjected to denoising of various real images, and is compared with the mesopic denoising image segmentation method based on the fuzzy C mean value.
In the FCM image segmentation method and the QPSO-FCM image segmentation method, the clustering centers set by the invention are both 5, so that the clustering centers are compared with each other.
As can be seen from fig. 2 (a) -2 (d), the warship boundary is clearer in fig. 2 (d) compared with fig. 2 (c). Especially at the front of the ship, the boundaries of the section of fig. 2 (d) are more clear. Warship boundary ambiguity in fig. 2 (c).
From the experimental data of fig. 2 (a) -2 (d), it can be seen that the QPSO and FCM are applied to the mesology image more clearly than the FCM is applied to the mesology image.
The ultimate goal of image segmentation is to accurately acquire the target image in one run. Therefore, we need to constantly find new methods to test whether this method is good or bad. As can be seen from the data obtained in a large number of experiments, FCM is greatly affected by the initial value, so we can only test whether a global optimum can be found. In many experiments we can find the best performing image (the border is clearer). The QPSO-FCM method is applied to the intelligent image, the global optimum can be found through one-time operation, the segmentation boundary is clearer, the processing of the fuzzy area is greatly improved, and the global optimum is the same even if the experiment is repeated.
However, the running time of the program is not shortened significantly because the data of the method needs to be calculated repeatedly. According to the free lunch theorem, a good and accurate segmentation effect is obtained at the cost of spending more running time.
The second embodiment further provides an image segmentation system for quantum-behaved particle swarm optimization fuzzy C-means;
the image segmentation system of the fuzzy C mean value of quantum behavior particle swarm optimization comprises:
an acquisition module configured to: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image;
an image pre-processing module configured to: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result;
an information entropy calculation module configured to: calculating the element information entropy of the image set I for the result after image enhancement;
an image segmentation module configured to: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing module.
In a third embodiment, the present embodiment further provides an electronic device, which includes a memory, a processor, and computer instructions stored in the memory and executed on the processor, where the computer instructions, when executed by the processor, implement the steps of the method in the first embodiment.
In a fourth embodiment, the present invention further provides a computer-readable storage medium for storing computer instructions, and when the computer instructions are executed by a processor, the computer instructions perform the steps of the method according to the first embodiment.
The above description is only a preferred embodiment of the present application and is not intended to limit the present application, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present application shall be included in the protection scope of the present application.

Claims (4)

1. The image segmentation method for the fuzzy C mean value by quantum-behaved particle swarm optimization is characterized by comprising the following steps of:
an acquisition step: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image;
converting the image to be processed into a mesology image; the method comprises the following specific steps:
P NS ={T,I,F} (1)
Figure FDA0003840148860000011
Figure FDA0003840148860000012
Figure FDA0003840148860000013
Figure FDA0003840148860000014
F(i,j)=1-T(i,j) (6)
wherein, P NS Is a pixel point of the image in the NS domain;
t (i, j) is the value of the point (i, j) of the Zhongzhi subset image T;
i (I, j) is the value of the point (I, j) of the image I of the Zhongzhi subset;
f (i, j) is the value of the point (i, j) of the Zhongzhi subset image F;
Figure FDA0003840148860000015
is the mean of g (i, j) over the w × w region;
Figure FDA0003840148860000016
to represent
Figure FDA0003840148860000017
The minimum value of (a) is calculated,
Figure FDA0003840148860000018
to represent
Figure FDA0003840148860000019
The maximum value of (a);
g (m, n) is the value of the point (m, n) of the Zhongzhi subset image T;
δ (i, j) is the mean value of pixel points g (i, j) and g (i, j) in the region w × w
Figure FDA00038401488600000110
The absolute value of the difference;
an image preprocessing step: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result;
denoising the mesology image; the method comprises the following specific steps:
Figure FDA00038401488600000111
Figure FDA0003840148860000021
Figure FDA0003840148860000022
Figure FDA0003840148860000023
Figure FDA0003840148860000024
Figure FDA0003840148860000025
Figure FDA0003840148860000026
wherein, the first and the second end of the pipe are connected with each other,
Figure FDA0003840148860000027
the pixels of the image in the NS domain pass through a set of point alpha-means,
Figure FDA0003840148860000028
is the alpha-mean of the image T of the wisdom subset,
Figure FDA0003840148860000029
is an alpha-means subset of the image I of the wisdom subset,
Figure FDA00038401488600000210
for the noon-child set image FT is the set of real values of the original image,
Figure FDA00038401488600000211
for the alpha-mean set to be performed, I is the set of the uncertain values of the original image, alpha takes a value of 0.85, w W is the size of the limited region, (I, j) is the pixel point of the original image, (m, n) is the leading region pixel information point in the w W region, T (m, n) is the value of the point (m, n) of the image T of the Zhongzhi subset,
Figure FDA00038401488600000212
a gray-scale average intensity value of alpha-means is performed for the image T of the wisdom subset,
Figure FDA00038401488600000213
alpha-mean value set is needed, F (m, n) is the value of the point (m, n) of the image F of the mesogen-junction set,
Figure FDA00038401488600000214
carrying out alpha-mean gray level average intensity value on the Zhongzhi subset image F;
Figure FDA00038401488600000215
for the average intensity value of the image I of the wisdom subset,
Figure FDA00038401488600000216
is T after alpha mean operation of pixel point (i, j) α (i, j) and
Figure FDA00038401488600000217
the absolute value of the difference between the two values,
Figure FDA00038401488600000218
and
Figure FDA00038401488600000219
is that
Figure FDA00038401488600000220
Minimum and maximum values of;
performing image enhancement operation on the denoised result; the method comprises the following specific steps:
Figure FDA00038401488600000221
Figure FDA00038401488600000222
Figure FDA0003840148860000031
Figure FDA0003840148860000032
Figure FDA0003840148860000033
Figure FDA0003840148860000034
Figure FDA0003840148860000035
wherein:
Figure FDA0003840148860000036
for the set of realisms of the wisdom set subjected to the beta enhancement operation,
Figure FDA0003840148860000037
is that when
Figure FDA0003840148860000038
The authenticity subset of the noon set after beta enhancement operation,
Figure FDA0003840148860000039
is a subset of uncertainty values representing the medium intelligence set, beta is a value of 0.85,
Figure FDA00038401488600000310
is composed of
Figure FDA00038401488600000311
The true value of the beta-enhancement operation is performed,
Figure FDA00038401488600000312
is the value of the set T after the mean operation,
Figure FDA00038401488600000313
for the non-authentic set of the wisdom set subjected to the beta enhancement operation,
Figure FDA00038401488600000314
is as follows
Figure FDA00038401488600000315
The non-reality subset of the noon set is subjected to beta enhancement operation,
Figure FDA00038401488600000316
is composed of
Figure FDA00038401488600000317
A non-true value of the beta boost operation is performed,
Figure FDA00038401488600000318
the non-real pixel points after the mean value operation,
Figure FDA00038401488600000319
is that
Figure FDA00038401488600000320
Of uncertainty of pixel point subset, δ' min Value after image enhancement operation for pixel point (i, j)
Figure FDA00038401488600000321
And mean value
Figure FDA00038401488600000322
Minimum value of absolute value of the difference, δ' max Value of pixel point (i, j) after image enhancement operation
Figure FDA00038401488600000323
And mean value
Figure FDA00038401488600000324
The maximum value of the absolute value of the difference between,
Figure FDA00038401488600000325
as a subset
Figure FDA00038401488600000326
The average intensity in the region w x w,
Figure FDA00038401488600000327
as a subset
Figure FDA00038401488600000328
Performing beta enhancement operation on the authenticity set in the w x w region; delta' (i, j) is the pixel (i, j) after the image enhancement operation
Figure FDA00038401488600000329
And
Figure FDA00038401488600000330
the absolute value of the difference;
and (3) information entropy calculation: calculating the element information entropy of the image set I for the result after image enhancement;
calculating the element information entropy of the image set I for the result after image enhancement; the method comprises the following specific steps:
Figure FDA00038401488600000331
wherein, en I Is the entropy, p, of the image of the Zhongzhi subset I I (i) Is the probability of element I in the wisdom subset image I;
an image segmentation step: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing step;
the objective function is defined as:
Figure FDA0003840148860000041
Figure FDA0003840148860000042
Figure FDA0003840148860000043
the fuzzy C-means algorithm optimized by quantum-behaved particle swarm is used for segmenting the mesology image to obtain an image segmentation result; the method comprises the following specific steps:
s41: the method comprises the steps of firstly, obtaining an initial clustering class number C, an ambiguity parameter m, a particle swarm size N and a maximum iteration number MaxIt; the number of cluster centers is the dimension of each particle;
s42: carrying out initialization coding on the N cluster centers to form N first-generation particles; the number of the clustering centers is equivalent to the dimension of the particles; pbest for each particle is its current location, and gbest is the best location for all particles in the current population;
s43: calculating each clustering center C (k) and a center vector U (k) of the membership degree;
s44: calculating the fitness of each particle; if the fitness of the particle is better than the fitness of the current optimal position of the particle, updating the optimal position of a single particle; if the fitness of the current global optimal position is better than the fitness of the optimal positions in all the particles, updating the global optimal position;
s45: updating the location of each particle to generate a new population of particles;
the step S45, updating the position of each particle with equations (30) - (33) to generate a new particle population:
Figure FDA0003840148860000051
X i,j (t+1)=p i,j (t)±α·|C j (t)-X i,j (t)|·ln[1/u i,j (t)];u i,j (t)~U(0,1) (31)
Figure FDA0003840148860000052
wherein p is i,j (t) is the potential well in the jth dimension of the ith particle at the tth iteration, whose location is actually at the individual optimal location pbest j (t) and the group optimal position gbest (t) are in the hyper-rectangle of the vertex and vary with the variation of pbest and gbest; phi is a j (t) and u i,j (t) are all t iterations, j dimension is [0,1]Random numbers uniformly distributed, X i,j (t + 1) is the position of the ith particle in the jth dimension, C, at the tth iteration j (t) is a vector in C (t), α is the contraction-expansion coefficient of QPSO, and α has a value defined byEquation (33) determines:
α=(α 12 )*(MaxIt-t)/MaxIt+α 2 (33)
wherein alpha is 1 And alpha 2 Respectively an initial value and a final value of the parameter alpha, t is the current iteration time, maxIt is the maximum time allowed to iterate, and the value of alpha is changed from 1.0 at the beginning of searching to 0.5 at the end of searching;
the fitness function for each individual is defined as follows:
Figure FDA0003840148860000053
wherein, J m (U, C) is the fitness function of the image; k is the gray scale, k =0-C, C is the maximum value of the gray scale;
s46: stopping iteration if the current iteration times reach the maximum times set previously; the best solution is found in the last generation, otherwise S43 is repeated.
2. The image segmentation system of the fuzzy C-means with the quantum-behaved particle swarm optimization, which adopts the image segmentation method of the fuzzy C-means with the quantum-behaved particle swarm optimization as claimed in claim 1, is characterized by comprising:
an acquisition module configured to: acquiring an image to be processed, and converting the image to be processed into a Zhongzhi image;
an image pre-processing module configured to: denoising the intermediate intelligent image, and then performing image enhancement operation on a denoised result;
an information entropy calculation module configured to: calculating the element information entropy of the image set I for the result after image enhancement;
an image segmentation module configured to: if the ratio of the information entropies of the adjacent elements is smaller than a set threshold, carrying out segmentation on the mesology image by using a fuzzy C-means algorithm optimized by quantum-behaved particle swarm to obtain an image segmentation result; otherwise, returning to the image preprocessing module;
the fuzzy C-means algorithm optimized by quantum-behaved particle swarm is used for segmenting the mesology image to obtain an image segmentation result; the method comprises the following specific steps:
s41: the method comprises the steps of firstly, obtaining an initial clustering class number C, an ambiguity parameter m, a particle swarm size N and a maximum iteration number MaxIt; the number of cluster centers is the dimension of each particle;
s42: carrying out initialization coding on the N cluster centers to form N first-generation particles; the number of the clustering centers is equivalent to the dimension of the particles; pbest for each particle is its current location, and gbest is the best location for all particles in the current population;
s43: calculating each clustering center C (k) and a center vector U (k) of the membership degree;
s44: calculating the fitness of each particle; if the fitness of the particle is better than the fitness of the current optimal position of the particle, updating the optimal position of a single particle; if the fitness of the current global optimal position is better than the fitness of the optimal positions in all the particles, updating the global optimal position;
s45: updating the location of each particle to generate a new population of particles;
s46: stopping iteration if the current iteration times reach the maximum times set previously; the best solution is found in the last generation, otherwise S43 is repeated.
3. An electronic device comprising a memory and a processor and computer instructions stored on the memory and executed on the processor, wherein the computer instructions, when executed by the processor, perform the steps of the method of claim 1.
4. A computer-readable storage medium storing computer instructions which, when executed by a processor, perform the steps of the method of claim 1.
CN201910998269.6A 2019-10-17 2019-10-17 Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means Active CN110751662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910998269.6A CN110751662B (en) 2019-10-17 2019-10-17 Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910998269.6A CN110751662B (en) 2019-10-17 2019-10-17 Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means

Publications (2)

Publication Number Publication Date
CN110751662A CN110751662A (en) 2020-02-04
CN110751662B true CN110751662B (en) 2022-10-25

Family

ID=69278997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910998269.6A Active CN110751662B (en) 2019-10-17 2019-10-17 Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means

Country Status (1)

Country Link
CN (1) CN110751662B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114943701A (en) * 2022-05-20 2022-08-26 南通鼎彩新材料科技有限公司 Intelligent control system for granulation equipment of heat-shrinkable tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108898602A (en) * 2018-06-27 2018-11-27 南京邮电大学 A kind of FCM medical image cutting method based on improvement QPSO
CN110111343A (en) * 2019-05-07 2019-08-09 齐鲁工业大学 A kind of middle intelligence image partition method and device based on improvement fuzzy C-mean algorithm

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10402623B2 (en) * 2017-11-30 2019-09-03 Metal Industries Research & Development Centre Large scale cell image analysis method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108898602A (en) * 2018-06-27 2018-11-27 南京邮电大学 A kind of FCM medical image cutting method based on improvement QPSO
CN110111343A (en) * 2019-05-07 2019-08-09 齐鲁工业大学 A kind of middle intelligence image partition method and device based on improvement fuzzy C-mean algorithm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚类算法的研究与应用;李引;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑(月刊)》;20131215;第22-24页 *

Also Published As

Publication number Publication date
CN110751662A (en) 2020-02-04

Similar Documents

Publication Publication Date Title
Kendall et al. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
CN111191583B (en) Space target recognition system and method based on convolutional neural network
CN107633226B (en) Human body motion tracking feature processing method
Zhang et al. An adaptive computational model for salient object detection
Morris A pyramid CNN for dense-leaves segmentation
CN110111343B (en) Middle-intelligence image segmentation method and device based on improved fuzzy C-means
ya Guo et al. Two-dimensional Otsu's thresholding segmentation method based on grid box filter
Mirghasemi et al. A target-based color space for sea target detection
CN111652317A (en) Hyper-parameter image segmentation method based on Bayesian deep learning
Zhu et al. Solar filament recognition based on deep learning
CN112183237A (en) Automatic white blood cell classification method based on color space adaptive threshold segmentation
CN115661860A (en) Method, device and system for dog behavior and action recognition technology and storage medium
CN110751662B (en) Image segmentation method and system for quantum-behaved particle swarm optimization fuzzy C-means
Yang et al. An improved algorithm for the detection of fastening targets based on machine vision
Qin et al. An image segmentation approach based on histogram analysis utilizing cloud model
Sun et al. Visual tracking via joint discriminative appearance learning
CN107423771B (en) Two-time-phase remote sensing image change detection method
Firouznia et al. Adaptive chaotic sampling particle filter to handle occlusion and fast motion in visual object tracking
Zhong et al. Classification for SAR scene matching areas based on convolutional neural networks
CN107492101B (en) Multi-modal nasopharyngeal tumor segmentation algorithm based on self-adaptive constructed optimal graph
Qin et al. Maximum fuzzy entropy image segmentation based on artificial fish school algorithm
Xiang et al. Range image segmentation based on split-merge clustering
Wei et al. Salient object detection based on weighted hypergraph and random walk
Chacon-Murguia et al. Adaptive fuzzy weighted color histogram and HOG appearance model for object tracking with a dynamic trained neural network prediction
Kumar et al. Pixel-based skin color classifier: A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant