CN110750904A - 一种基于遥感数据的区域碳储量空间格局监测系统和方法 - Google Patents

一种基于遥感数据的区域碳储量空间格局监测系统和方法 Download PDF

Info

Publication number
CN110750904A
CN110750904A CN201911007356.7A CN201911007356A CN110750904A CN 110750904 A CN110750904 A CN 110750904A CN 201911007356 A CN201911007356 A CN 201911007356A CN 110750904 A CN110750904 A CN 110750904A
Authority
CN
China
Prior art keywords
data
remote sensing
soil
formula
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911007356.7A
Other languages
English (en)
Other versions
CN110750904B (zh
Inventor
周鹏
薛丰昌
苗春生
詹少伟
周可
张越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Xinatmospheric Image Science And Technology Research Institute Co Ltd
Original Assignee
Nanjing Xinatmospheric Image Science And Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Xinatmospheric Image Science And Technology Research Institute Co Ltd filed Critical Nanjing Xinatmospheric Image Science And Technology Research Institute Co Ltd
Priority to CN201911007356.7A priority Critical patent/CN110750904B/zh
Publication of CN110750904A publication Critical patent/CN110750904A/zh
Application granted granted Critical
Publication of CN110750904B publication Critical patent/CN110750904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了一种基于遥感数据的区域碳储量空间格局监测系统和方法,包括遥感数据处理模块、实测数据处理模块和数据分析与输出模块;其中,所述的遥感数据处理模块和实测数据处理模块的输出端与数据分析与输出模块的输入端相连;使用卫星遥感数据,采用降水量、植被覆盖率、地表温度、土地利用数据、灯光数据、DEM数据和气象数据建立模型的方法来监测区域碳储量的时空变化,克服大范围区域碳储量的研究周期长的缺点。该监测系统还拥有源数据易取,计算机运算效率高,成本低和时效性强等优点。

Description

一种基于遥感数据的区域碳储量空间格局监测系统和方法
技术领域
本发明属于环境保护和城市规划技术领域,具体涉及一种基于遥感数据的区域碳储量空 间格局监测系统和方法。
背景技术
随着经济的快速发展,城市化建设已经蔓延到世界物质文化遗产地区的周边。政府间气 候变化专门委员会(IPCC)评估报告认为,在过去的20年里至少有1/4的人为二氧化碳排放 是由于土地利用变化造成的。由此,人类活动对碳循环的影响是气候变化研究的重要核心问 题之一,在制定应对和缓解气候变暖的对策中,目前提出了通过经营土地来吸收CO2的策略, 因此准确确定土地利用变化对有机碳库的影响对科学认识陆地生态系统碳循环规律及制定缓 解和应对全球气候变暖具有重要的理论和现实意义。
目前对碳储量观测的方式主要有三种:(1)基于站点的碳浓度观测;(2)基于卫星遥 感平台的碳浓度观测;(3)基于大气碳循环模型的碳浓度模拟。基于地面定位观测的方式, 可提供监测站点长时间序列、高精度、连续碳浓度观测数据,能够揭示碳浓度的年变化和季 节变化趋势,对揭示碳浓度时空变化规律、大陆尺度源汇信息等提供了大量基础数据资料, 但实际实施时对监测站点的密度要求高,投入成本高,不能大范围的同步观测,而基于卫星 遥感平台正好弥补了这一缺点,卫星观测可以获得温室气体连续空间分布和变化,是监测温 室气体分布的有效方法,观测资料具有稳定、长时间序列、广空间区域、空间三维监测的优 点,帮助理解温室气体的源与汇以及大气、植被和土壤之间的碳循环过程。大气碳循环模型 的碳浓度模拟不能准确反映中小尺度区域空间的碳储量变化,其结果会造成较大的误差。
发明内容
本发明目的在于针对现有大范围区域碳储量的研究周期长的缺点,提供一种基于遥感数 据的区域碳储量空间格局监测系统和方法,使用卫星遥感数据,采用降水量、植被覆盖率、 地表温度、土地利用数据、灯光数据、DEM数据和气象数据建立模型的方法来监测区域碳储 量的时空变化。
本发明是通过以下技术方案实现的:
一种基于遥感数据的区域碳储量空间格局监测方法,所述方法包括:
步骤一、获取预设时间内遥感卫星观测的数据并进行预处理,分别得到降水量数据、 MODIS数据、热红外影像数据、地表真实反射率数据、DEM数据以及DMSP/OLS夜光数据;其中,所述的降水量数据用于计算月累计降水数据;所述的MODIS数据通过NDVI计算法 获取植被指数最大值;所述的热红外影像数据和地表真实反射率数据通过大气传输方程法获取地表温度;所述的地表真实反射率数据通过监督分类法获取土地利用分类图;所述的DEM数据用于计算坡度、坡向和高程;所述的DMSP/OLS夜光数据用于计算灯光密集区;
步骤二、获取预设时间内的气象站点数据和土壤检测数据,结合气象站点数据和土壤检 测数据建立线性回归模型,使用土壤检测数据对线性回归模型进行精度评价;其中,所述的 气象站点数据通过数据标准化转换生成月降水量、月气温值和月日照百分率的空间分布图; 所述的土壤检测数据通过数据标准化分别抽取为模型样本和检验样本;
步骤三、基于步骤一得到的月累计降水数据、植被指数最大值、地表温度、坡度、坡向、 高程以及灯光密集区与步骤二得到的月降水量、月气温值和月日照百分率的空间分布图建立 土壤有机模型因子,并经过因子筛选和模型分析建立最佳模型线性组合;
步骤四、结合步骤二得到的精度评价结果与步骤三得到的最佳模型线性组合反演土壤有 机含碳量,生成土壤有机碳空间密度分布图,得到土壤碳储量;
步骤五、基于步骤一得到的土地利用分类图统计土地分类面积和土地转移矩阵,结合 CASA模型得到植被碳储量;
步骤六、基于步骤四的土壤碳储量和步骤五的植被碳储量,确定区域碳储量空间格局, 利用时间序列的相关性来确定土壤有机碳变化。
本发明进一步解决的技术方案是,步骤二具体如下:
建立多元线性总体回归方程:
y=β01x12x2+…+βkxk (1)
求解回归系数的估计值:
Figure BDA0002243167250000021
Figure BDA0002243167250000022
使用检验样本对线性回归模型进行精度评价,测定方程的拟合程度:
对拟合程度进行调整:
Figure BDA0002243167250000024
由此评价回归方程的拟合程度;
式(1)中,β0为回归常数,β1,…βk称为回归系数;y为被解释变量;x1,x2,…xk是 k个解释变量;
式(2)中,SSE表示残差平方和,表示被解释变量估计值;
式(3)中,SSR表示回归平方和;SST表示离差平方和;SSE表示残差平方和;
Figure BDA0002243167250000032
表 示被解释变量估计值;
Figure BDA0002243167250000033
表示被解释变量平均值
式(4)中,R2表示拟合程度;(n-1)表示离差平方和的自由度;(n-k-1)表示残差平方和自 由度。
本发明进一步解决的技术方案是,所述的数据标准化包括克里金插值法或泛克里金插值 法。
本发明进一步解决的技术方案是,步骤三中,所述的土壤有机模型因子包括植被因子和 地形因子;
其中,植被因子的具体计算包括:
Figure BDA0002243167250000034
DVI=NIR-RED
Figure BDA0002243167250000035
Figure BDA0002243167250000036
式(5)中,NIR表示卫星遥感影像的近红外数字量化值;RED表示卫星遥感影像的红色 波段的数字量化值;NDVI表示归一化植被指数;RVI表示比值植被指数;DVI表示差值植被指数;SAVI表示土壤调节植被指数;L为土壤调节系数,取值0.5;
地形因子直接由坡度、坡向和高程的数据表示。
本发明进一步解决的技术方案是,步骤四的具体如下:
建立土壤有机碳储量的多元线性回归模型:
Figure BDA0002243167250000037
式(6)中,
Figure BDA0002243167250000038
为常数项,
Figure BDA0002243167250000039
为回归系数,x1,x2,...,xn为影响土壤碳储量的自变量,δ为随机误差项。
本发明进一步解决的技术方案是,步骤五具体如下:
基于土地利用转移矩阵的计算公式为:
NC(i,j)=NC(i)×10+NC(j),(j>1) (1)
基于CASA模型的植被净初级生产力计算公式为:
NPP(x,t)=APAR(x,t)*ε(x,t)
ε=T11×T22×W2×εmax (2)
由此得到植被碳储量;
式(1)中,NC(i,j)为i,j两年份的土地利用变化图;NC(i)为i年份遥感分类影像;NC(j) 为j年份的遥感分类影像;
式(2)中,NPP(x,t)表示像元x在t时间的植被净初级生产力(gC/m2·月);APAR(x,t)表示 像元x在t时间吸收的光合有效辐射(MJ/m2·月);ε(x,t)表示像元x在t时间的实际光能利用 率ε的值;Tε1、Tε2为温度胁迫系数;Wε为水文胁迫系数;εmax为理想条件下光能利用率的最 大值。
本发明进一步解决的技术方案是,基于式(2)的光合有效辐射APAR的计算公式为:
APAR(x,t)=PAR(x,t)*FPAR(x,t) (9)
Figure RE-GDA0002275316000000041
式(9)中,PAR(x,t)表示t时间在像元x处太阳总辐射量,FPAR(x,t)表示植被冠层对入 射光合有效辐射的吸收比例;
式(10)中,NDVI表示归一化植被指数。
本发明进一步解决的技术方案是,步骤六中,所述土壤有机碳变化的计算公式为:
Figure RE-GDA0002275316000000042
式(11)中,θslope为单个像元多时间的趋势斜率,Ci为第i个时间碳储量值,n表示研究 时间,单位为月、年,i表示研究开始的时间。
本发明还保护一种基于遥感数据的区域碳储量空间格局监测系统,包括遥感数据处理模 块、实测数据处理模块和数据分析与输出模块;其中,所述的遥感数据处理模块和实测数据 处理模块的输出端与数据分析与输出模块的输入端相连;
所述的遥感数据处理模块用于获取预设时间内遥感卫星观测的数据并进行预处理;
所述的实测数据处理模块用于获取预设时间内的气象站点数据和土壤检测数据并建立线 性回归模型;
所述的数据分析与输出模块用于根据遥感数据处理层和实测数据处理层的数据确定植被 碳储量和土壤碳储量,并利用时间序列的相关性来分析土壤有机碳变化。
本发明的有益效果为:
本发明所使用的数据源都是易获取的,都有较成熟的算法得到需要的产品数据,通过计 算机编程实现自动化监测运行,耗费人力物力财力少,相比较其他模型准确反映用户需要的 中小尺度区域空间的碳储量变化情况。
本发明结合了卫星遥感技术实现区域碳储量监测的全覆盖,避免了地面监测站数据插值 带来的数据可性度低的缺点,充分发挥了遥感技术在碳储量变化监测方面的应用优势。
附图说明
图1是本发明专利的遥感数据处理模块流程示意图。
图2是本发明专利的实测数据处理模块框图。
图3是本发明专利的数据分析与输出模块的流程图。
具体实施方式
下面结合附图和实施例对本发明的发明内容作进一步地说明。
一种基于遥感数据的区域碳储量空间格局监测系统,包括遥感数据处理模块、实测数据 处理模块和数据分析与输出模块;其中,所述的遥感数据处理模块和实测数据处理模块的输 出端与数据分析与输出模块的输入端相连;
所述的遥感数据处理模块用于获取预设时间内遥感卫星观测的数据并进行预处理;
所述的实测数据处理模块用于获取预设时间内的气象站点数据和土壤检测数据并建立线 性回归模型;
所述的数据分析与输出模块用于根据遥感数据处理层和实测数据处理层的数据确定植碳 储量和土壤碳储量,并利用时间序列的相关性来分析土壤有机碳变化。
参见图1-3,集到的遥感卫星数据进行数据预处理,包括辐射定标、大气校正、归一化植 被指数(NDVI))计算、地表温度反演、夜光数据过滤和土地利用分类等操作;数据预处理 的输出数据包括月累计降水量数据、MODIS地表反射率数据、陆地卫星Landsat热红外数据 和多光谱地表真实反射率数据、DEM数据和灯光数据。数据预处理12的输出数据都具有相 同的空间投影坐标系和删格行列数;
步骤一、获取预设时间内遥感卫星观测的数据并进行预处理,分别得到降水量数据、 MODIS数据、热红外影像数据、地表真实反射率数据、DEM数据以及DMSP/OLS夜光数据;其中,所述的降水量数据用于计算月累计降水数据;所述的MODIS数据通过NDVI计算法 获取植被指数最大值;所述的热红外影像数据和地表真实反射率数据通过大气传输方程法获取地表温度;所述的地表真实反射率数据通过监督分类法获取土地利用分类图;所述的DEM数据用于计算坡度、坡向和高程;所述的DMSP/OLS夜光数据用于计算灯光密集区;
首先通过MODIS数据计算植被指数(NDVI),公式为:
NDVI=(ρNIRRED)/(ρNIRRSD) (12)
式(12)中,ρNIR为近红外波段数据,ρRED为红色波段数据。
然后利用热红外影像数据反演地表温度,用到地表真实反射率数据作为参考,具体方法 为:
①大气透过率计算:
Figure RE-GDA0002275316000000061
式(13)中:ω是大气水分含量(g*cm-2),α和β常量,分别α=0.02和β=0.6321;ρ0.9和ρ0.8分别是0.9和0.8波段的地面反射率;
②地表比辐射率的估算:
εsurface=0.9625+0.0614FV-0.0461FV2
εbuilding=0.9589+0.086FV-0.0671FV2 (14)
式(14)中,εsurface和εbuilding分别代表自然表面像元和城镇像元的比辐射率;
③计算相同温度下黑体的辐射亮度值:
卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑;地面 的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能 量。卫星传感器接收到的热红外辐射亮度值的表达式可写为(辐射传输方程):
Lλ=[ε·B(TS)+(1-ε)L↓]·τ+L↑ (15)
式(15)中,ε为地表辐射率,TS为地表真实温度,B(TS)为普朗克定律推到得到的黑体 在TS的热辐射亮度,τ为大气在热红外波段的透过率;则温度为T的黑体在热红外波段的辐 射亮度B(TS)为:
B(TS)=[Lλ-L↑-τ·(1-ε)L↓]/τ·ε (16)
式(16)中,τ为大气在热红外波段的透过率,L↑为大气向上辐射亮度W/(m2·sr·μm),L↓ 为大气向下辐射亮辐射亮度W/(m2·sr·μm)。
④反演地表温度:
TS=K2/ln(K1/B(TS)+1) (17)
式(17)中,K1和K2是常量。
接着,DEM数据采用SRTM_DEM全球90米分辨率数据,分别通过以下公式计算坡度、坡向和高程。表示坡度最为常用的方法,用度数来表示坡度,利用反三角函数计算而得,其公式如下:α(坡度)=arctan(垂直增量/水平增量);坡向用于识别出从每个像元到其相邻像元方 向上值的变化率最大的下坡方向。坡向可以被视为坡度方向。坡向是一个角度,将按照顺时 针方向进行测量,角度范围介于0(正东)到360(仍是正东)之间,即完整的圆。不具有 下坡方向的平坦区域将赋值为-1。
步骤二、获取预设时间内的气象站点数据和土壤检测数据,结合气象站点数据和土壤检 测数据建立线性回归模型,使用土壤检测数据对线性回归模型进行精度评价;气象数据在国 家气象科学数据共享服务平台上下载得到全国气象站点的温度和降水数据、日值及月值辐射 数据及各个站点的经度,纬度,海拔高程;其中,所述的气象站点数据通过数据标准化转换 生成月降水量、月气温值和月日照百分率的空间分布图;所述的土壤检测数据通过数据标准 化分别抽取为模型样本和检验样本;
利用GIS软件对气象数据进行克里金空间插值或泛克里金插值法,形成具有空间连续性 的逐月气候变化数据;克里金插值法或泛克里金插值法计算方法为:
Figure RE-GDA0002275316000000071
式(18)中,Z0是点(x,y)的估计值,λi是权重系数;
具体步骤如下:
建立多元线性总体回归方程:
y=β01x12x2+…+βkxk (19)
求解回归系数的估计值:
Figure BDA0002243167250000073
Figure BDA0002243167250000074
通过求解这一方程组便可分别得到β01,…βk回归系数的估计值,当自变量个数较多 时,计算十分复杂,必须依靠计算机独立完成。现在,利用SPSS,只要将数据输入,并指定因变量和相应的自变量,立刻就能得到结果。
使用检验样本对线性回归模型进行精度评价,对多元线性回归,也需要测定方程的拟合 程度、检验回归方程和回归系数的显著性。测定方程的拟合程度:
Figure BDA0002243167250000075
同一元线性回归相类似,0≤R2≤1,R2越接近1,回归平面拟合程度越高,反之,R2越接近0,拟合程度越低。R2的平方根成为负相关系数(R),也成为多重相关系数。它表示因变量y与所有自变量全体之间线性相关程度,实际反映的是样本数据与预测数据间的相关程度。 判定系数R2的大小受到自变量x的个数k的影响。在实际回归分析中可以看到,随着自变量x个数的增加,回归平方和(SSR)增大,使R2增大。由于增加自变量个数引起的R2增大与拟 合好坏无关,因此在自变量个数k不同的回归方程之间比较拟合程度时,R2不是一个合适的 指标,必须加以修正或调整。
调整方法为:把残差平方和与总离差平方和的分子分母分别除以各自的自由度,变成均 方差之比,以剔除自变量个数对拟合优度的影响。调整的R2为:
Figure BDA0002243167250000081
由上时可以看出,
Figure BDA0002243167250000082
考虑的是平均的残差平方和,而不是残差平方和,因此,一般在线 性回归分析中,
Figure BDA0002243167250000083
越大越好;由此评价回归方程的拟合程度;
式(19)中,β0为回归常数,β1,…βk称为回归系数;y为被解释变量;x1,x2,…xk是k个解释变量;
式(20)中,SSE表示残差平方和,
Figure BDA0002243167250000087
表示被解释变量估计值;
式(21)中,SSR表示回归平方和;SST表示离差平方和;SSE表示残差平方和;
Figure BDA0002243167250000088
表 示被解释变量估计值;y表示被解释变量平均值
式(22)中,R2表示拟合程度;(n-1)表示离差平方和的自由度;(n-k-1)表示残差平方和 自由度。
步骤三、基于步骤一得到的月累计降水数据、植被指数最大值、地表温度、坡度、坡向、 高程以及灯光密集区与步骤二得到的月降水量、月气温值和月日照百分率的空间分布图建立 土壤有机模型因子,并经过因子筛选和模型分析建立最佳模型线性组合;
所述的土壤有机模型因子包括植被因子和地形因子;由植被因子采用归一化植被指数 (NDVI)、比值植被指数(RVI)、差值植被指数(DVI),土壤调节植被指数(SAVI)参与建立土壤 有机碳储量模型。根据各波段反射率和各植被指数计算公式,计算4种植被指数,具体计算 包括:
Figure BDA0002243167250000084
DVI=NIR-RED
Figure BDA0002243167250000086
式(23)中,NIR表示卫星遥感影像的近红外数字量化值;RED表示卫星遥感影像的红 色波段的数字量化值;NDVI表示归一化植被指数;RVI表示比值植被指数;DVI表示差值植被指数;SAVI表示土壤调节植被指数;L为土壤调节系数,取值0.5;
地形因子可利用DEM数据计算得到高程、坡度数据。
步骤四、结合步骤二得到的精度评价结果与步骤三得到的最佳模型线性组合反演土壤有 机含碳量,生成土壤有机碳空间密度分布图,得到土壤碳储量;在土壤碳储量估测研究中, 模型的选择至关重要。常见的遥感估测模型主要有一元线性或非线性回归模型、多元回归模 型,优选地,采用多元线性回归模型,利用两个或两个以上影响因素作为自变量与因变量建 立最优模型来预测因变量。土壤有机碳储量的多元线性回归模型可以表示为:
Figure BDA0002243167250000091
式(24)中,
Figure BDA0002243167250000092
为常数项,
Figure BDA0002243167250000093
为回归系数,x1,x2,...,xn为影响土壤碳储 量的自变量,δ为随机误差项。
选择自变量时应注意:自变量对因变量必须具有显著的线性相关性;自变量之间应具有 一定的互斥性,即自变量之间的相关性不应高于自变量与因变量的相关性,以保证回归模型 具有良好的预测效果和解释能力。多元回归模型的参数估计,在要求误差平方和最小的前提 下,用最小二乘法求解。对于因变量较多的情况下,多元逐步回归可以决定自变量的去留, 只保留对模型贡献较大的自变量。
步骤五、基于步骤一得到的土地利用分类图统计土地分类面积和土地转移矩阵,结合 CASA模型得到植被碳储量;
具体如下:
基于土地利用转移矩阵的计算公式为:
NC(i,j)=NC(i)×10+NC(j),(j>1) (25)
结合CASA模型得到植被碳储。CASA模型中植被净初级生产力(NPP)的测算由植被吸收 的光合有效辐射(APAR)与光能转化率(ε)这凉个变量的乘积确定;基于CASA模型的植被净初 级生产力计算公式为:
NPP(x,t)=APAR(x,t)*ε(x,t)
ε=Tε1×Tε2×Wε×εmax (26)
光能利用率ε是指植被通过光合作用,将所吸收的光合有效辐射转化为有机碳的效率。 在理想条件下,某种植被的光能利用率可以达到最大值εmax,但实际情况是,植被的光能利 用率主要受到温度、水分胁迫因子的影响,在大多数时候小于最大光能利用率;
由此得到植被碳储量;
式(25)中,NC(i,j)为i,j两年份的土地利用变化图;NC(i)为i年份遥感分类影像;NC(j) 为j年份的遥感分类影像;
式(26)中,NPP(x,t)表示像元x在t时间的植被净初级生产力(gC/m2·月);APAR(x,t)表 示像元x在t时间吸收的光合有效辐射(MJ/m2·月);ε(x,t)表示像元x在t时间的实际光能利 用率ε的值;Tε1、Tε2为温度胁迫系数;Wε为水文胁迫系数;εmax为理想条件下光能利用率的 最大值。
APAR取决于太阳总辐射和植被对光合有效辐射的吸收比例,由于不同植被的生理特性会 影响植被吸收的光合有效辐射,其对太阳辐射的吸收比例会产生不同的表现。公式如下:
APAR(x,t)=PAR(x,t)*FPAR(x,t) (27)
Figure RE-GDA0002275316000000101
其中,APAR与植被类型和归一化植被指数(NDVI)关系密切,存在着一定的线性关系, 这一关系可以通过植被NDVI的最大值和最小值来确定。
式(27)中,PAR(x,t)表示t时间在像元x处太阳总辐射量,FPAR(x,t)表示植被冠层对 入射光合有效辐射的吸收比例;
式(28)中,NDVI表示归一化植被指数。
在实际应用中,植被碳库由植物的地上生物量和地下生物量两部分决定的,地上生物量 使用净初级生产力(NPP)来计算,地下生物量采用地下与地上生物量比例系数来计算。
地上生物量与地下生物量的相关性关系可用下式表示:log y=log b+αlog x;式中,y表 示地上部分生长量,x表示地下部分生长量,α表示相关性的斜率,log b表示截距。
步骤六、基于步骤四的土壤碳储量和步骤五的植被碳储量,确定区域碳储量空间格局, 利用时间序列的相关性来确定土壤有机碳变化;所述土壤有机碳变化的计算公式为:
Figure RE-GDA0002275316000000102
式(29)中,θslope为单个像元多时间的趋势斜率,Ci为第i个时间碳储量值,n表示研究 时间,单位为月、年,i表示研究开始的时间。
DMSP/OLS数据是用来确定土地利用分类结果中城市建成区的精确面积和分布,如若土 地利用分类结果使用的是高分辨率卫星影像生成,则可以不使用DMSP/OLS数据,具体可根 据需要增加减少数据。
本发明使用的数据量和数据类型较多且计算量大,可以根据需要每个功能模块单独开发 再组合,在上述实施方式的描述中,具体数据、算法、模块或者软件的运用可以在任何的一 个或多个实施例或示例中以合适的方式结合。
需要补充的是,为了实现本发明的便利性,所使用的遥感卫星影像空间分辨率需要重采 样到统一,方便后续空间分析和模型建立。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说, 在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护 范围。

Claims (9)

1.一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于,所述方法包括:
步骤一、获取预设时间内遥感卫星观测的数据并进行预处理,分别得到降水量数据、MODIS数据、热红外影像数据、地表真实反射率数据、DEM数据以及DMSP/OLS夜光数据;其中,所述的降水量数据用于计算月累计降水数据;所述的MODIS数据通过NDVI计算法获取植被指数最大值;所述的热红外影像数据和地表真实反射率数据通过大气传输方程法获取地表温度;所述的地表真实反射率数据通过监督分类法获取土地利用分类图;所述的DEM数据用于计算坡度、坡向和高程;所述的DMSP/OLS夜光数据用于计算灯光密集区;
步骤二、获取预设时间内的气象站点数据和土壤检测数据,结合气象站点数据和土壤检测数据建立线性回归模型,使用土壤检测数据对线性回归模型进行精度评价;其中,所述的气象站点数据通过数据标准化转换生成月降水量、月气温值和月日照百分率的空间分布图;所述的土壤检测数据通过数据标准化分别抽取为模型样本和检验样本;
步骤三、基于步骤一得到的月累计降水数据、植被指数最大值、地表温度、坡度、坡向、高程以及灯光密集区与步骤二得到的月降水量、月气温值和月日照百分率的空间分布图建立土壤有机模型因子,并经过因子筛选和模型分析建立最佳模型线性组合;
步骤四、结合步骤二得到的精度评价结果与步骤三得到的最佳模型线性组合反演土壤有机含碳量,生成土壤有机碳空间密度分布图,得到土壤碳储量;
步骤五、基于步骤一得到的土地利用分类图统计土地分类面积和土地转移矩阵,结合CASA模型得到植被碳储量;
步骤六、基于步骤四的土壤碳储量和步骤五的植被碳储量,确定区域碳储量空间格局,利用时间序列的相关性来确定土壤有机碳变化。
2.根据权利要求1所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:步骤二具体如下:
建立多元线性总体回归方程:
y=β01x12x2+…+βkxk (1)
求解回归系数的估计值:
Figure FDA0002243167240000011
Figure FDA0002243167240000012
使用检验样本对线性回归模型进行精度评价,测定方程的拟合程度:
Figure FDA0002243167240000021
对拟合程度进行调整:
Figure FDA0002243167240000022
由此评价回归方程的拟合程度;
式(1)中,β0为回归常数,β1,…βk称为回归系数;y为被解释变量;x1,x2,…xk是k个解释变量;
式(2)中,SSE表示残差平方和,
Figure FDA0002243167240000023
表示被解释变量估计值;
式(3)中,SSR表示回归平方和;SST表示离差平方和;SSE表示残差平方和;
Figure FDA0002243167240000024
表示被解释变量估计值;
Figure FDA0002243167240000025
表示被解释变量平均值;
式(4)中,R2表示拟合程度;(n-1)表示离差平方和的自由度;(n-k-1)表示残差平方和自由度。
3.根据权利要求1或2所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:所述的数据标准化包括克里金插值法或泛克里金插值法。
4.根据权利要求1所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:步骤三中,所述的土壤有机模型因子包括植被因子和地形因子;
其中,植被因子的具体计算包括:
Figure FDA0002243167240000026
DVI=NIR-RED
Figure FDA0002243167240000027
Figure FDA0002243167240000028
式(5)中,NIR表示卫星遥感影像的近红外数字量化值;RED表示卫星遥感影像的红色波段的数字量化值;NDVI表示归一化植被指数;RVI表示比值植被指数;DVI表示差值植被指数;SAVI表示土壤调节植被指数;L为土壤调节系数,取值0.5;
地形因子直接由坡度、坡向和高程的数据表示。
5.根据权利要求1所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:步骤四的具体如下:
建立土壤有机碳储量的多元线性回归模型:
Figure FDA0002243167240000031
式(6)中,
Figure FDA0002243167240000032
为常数项,
Figure FDA0002243167240000033
为回归系数,x1,x2,...,xn为影响土壤碳储量的自变量,δ为随机误差项。
6.根据权利要求1所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:步骤五具体如下:
基于土地利用转移矩阵的计算公式为:
NC(i,j)=NC(i)×10+NC(j),(j>1) (7)
基于CASA模型的植被净初级生产力计算公式为:
NPP(x,t)=APAR(x,t)*ε(x,t)
ε=Tε1×Tε2×Wε×εmax (8)
由此得到植被碳储量;
式(7)中,NC(i,j)为i,j两年份的土地利用变化图;NC(i)为i年份遥感分类影像;NC(j)为j年份的遥感分类影像;
式(8)中,NPP(x,t)表示像元x在t时间的植被净初级生产力(gC/m2·月);APAR(x,t)表示像元x在t时间吸收的光合有效辐射(MJ/m2·月);ε(x,t)表示像元x在t时间的实际光能利用率ε的值;Tε1、Tε2为温度胁迫系数;Wε为水文胁迫系数;εmax为理想条件下光能利用率的最大值。
7.根据权利要求5所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:基于式(2)的光合有效辐射APAR的计算公式为:
APAR(x,t)=PAR(x,t)*FPAR(x,t) (9)
Figure RE-FDA0002275315990000034
式(9)中,PAR(x,t)表示t时间在像元x处太阳总辐射量,FPAR(x,t)表示植被冠层对入射光合有效辐射的吸收比例;
式(10)中,NDVI表示归一化植被指数。
8.根据权利要求1所述的一种基于遥感数据的区域碳储量空间格局监测方法,其特征在于:步骤六中,所述土壤有机碳变化的计算公式为:
Figure RE-FDA0002275315990000041
式(11)中,θslope为单个像元多时间的趋势斜率,Ci为第i个时间碳储量值,n表示研究时间,单位为月、年,i表示研究开始的时间。
9.一种基于遥感数据的区域碳储量空间格局监测系统,其特征在于:包括遥感数据处理模块、实测数据处理模块和数据分析与输出模块;其中,所述的遥感数据处理模块和实测数据处理模块的输出端与数据分析与输出模块的输入端相连;
所述的遥感数据处理模块用于获取预设时间内遥感卫星观测的数据并进行预处理;
所述的实测数据处理模块用于获取预设时间内的气象站点数据和土壤检测数据并建立线性回归模型;
所述的数据分析与输出模块用于根据遥感数据处理层和实测数据处理层的数据确定植被碳储量和土壤碳储量,并利用时间序列的相关性来分析土壤有机碳变化。
CN201911007356.7A 2019-10-22 2019-10-22 一种基于遥感数据的区域碳储量空间格局监测系统和方法 Active CN110750904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911007356.7A CN110750904B (zh) 2019-10-22 2019-10-22 一种基于遥感数据的区域碳储量空间格局监测系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911007356.7A CN110750904B (zh) 2019-10-22 2019-10-22 一种基于遥感数据的区域碳储量空间格局监测系统和方法

Publications (2)

Publication Number Publication Date
CN110750904A true CN110750904A (zh) 2020-02-04
CN110750904B CN110750904B (zh) 2021-07-23

Family

ID=69279339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911007356.7A Active CN110750904B (zh) 2019-10-22 2019-10-22 一种基于遥感数据的区域碳储量空间格局监测系统和方法

Country Status (1)

Country Link
CN (1) CN110750904B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111340643A (zh) * 2020-04-11 2020-06-26 黑龙江省林业科学院 基于碳储量分析小兴安岭针阔混交林类型及群落学特征的方法
CN111340644A (zh) * 2020-04-11 2020-06-26 黑龙江省林业科学院 基于碳储量分布状态分析小兴安岭针阔混交林碳汇结构的方法
CN112257225A (zh) * 2020-09-16 2021-01-22 中国科学院地理科学与资源研究所 一种适用于高寒草地生态系统的npp计算方法
CN112819365A (zh) * 2021-02-23 2021-05-18 中国科学院空天信息创新研究院 碳汇检测方法、装置及存储介质和电子设备
CN112836610A (zh) * 2021-01-26 2021-05-25 平衡机器科技(深圳)有限公司 一种基于遥感数据的土地利用变化与碳储量定量估算方法
CN114021371A (zh) * 2021-11-16 2022-02-08 中国科学院西北生态环境资源研究院 一种碳储量影响估算方法、装置、电子设备及存储介质
CN114358995A (zh) * 2021-12-23 2022-04-15 张�杰 一种基于大数据分析的区域碳中和计算方法
CN114511254A (zh) * 2022-04-21 2022-05-17 滨州学院 基于数据分析的滨海湿地生态系统碳储量调节管理系统
CN114648705A (zh) * 2022-03-28 2022-06-21 王大成 一种基于卫星遥感的碳汇监测系统及方法
CN114819737A (zh) * 2022-05-26 2022-07-29 中交第二公路勘察设计研究院有限公司 公路路域植被的碳储量估算方法、系统及存储介质
CN114896561A (zh) * 2022-05-07 2022-08-12 安徽农业大学 一种基于遥感算法的湿地碳储量计算方法
CN115796712A (zh) * 2023-02-07 2023-03-14 北京师范大学 区域陆地生态系统碳储量估算方法、装置、电子设备
CN116070926A (zh) * 2022-01-21 2023-05-05 武汉大学 一种基于vod数据进行碳储量动态监测可行性的判定方法
CN116663783A (zh) * 2023-07-28 2023-08-29 中国科学院东北地理与农业生态研究所 沼泽湿地生态系统碳储量统计分析系统
CN117172140A (zh) * 2023-11-03 2023-12-05 北京师范大学 基于土地系统类型变化的碳储量预测方法及装置
CN117436908A (zh) * 2023-12-21 2024-01-23 北京英视睿达科技股份有限公司 一种区域连续的土壤碳库管理指数优化计算方法及系统
CN117911896A (zh) * 2024-02-19 2024-04-19 西北师范大学 一种基于卫星遥感的草地碳汇监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507586A (zh) * 2011-11-14 2012-06-20 辽宁师范大学 碳排放遥感监测方法
CN103810387A (zh) * 2014-02-13 2014-05-21 中国科学院地理科学与资源研究所 基于modis数据的地表蒸散发全遥感反演方法及系统
CN104166782A (zh) * 2014-06-05 2014-11-26 刘健 一种林地土壤有机碳遥感估测的方法
KR20150014359A (ko) * 2013-07-29 2015-02-06 강원대학교산학협력단 도시 상록성 조경수의 직접수확법을 통한 탄소 저장량 및 연간 탄소 흡수량을 산출하는 방법
CN107064068A (zh) * 2017-01-12 2017-08-18 杭州师范大学 一种浑浊水体颗粒有机碳浓度的遥感反演方法
CN110263299A (zh) * 2019-05-31 2019-09-20 西南大学 一种基于遥感的高寒草甸生态系统呼吸碳排放估算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507586A (zh) * 2011-11-14 2012-06-20 辽宁师范大学 碳排放遥感监测方法
KR20150014359A (ko) * 2013-07-29 2015-02-06 강원대학교산학협력단 도시 상록성 조경수의 직접수확법을 통한 탄소 저장량 및 연간 탄소 흡수량을 산출하는 방법
CN103810387A (zh) * 2014-02-13 2014-05-21 中国科学院地理科学与资源研究所 基于modis数据的地表蒸散发全遥感反演方法及系统
CN104166782A (zh) * 2014-06-05 2014-11-26 刘健 一种林地土壤有机碳遥感估测的方法
CN107064068A (zh) * 2017-01-12 2017-08-18 杭州师范大学 一种浑浊水体颗粒有机碳浓度的遥感反演方法
CN110263299A (zh) * 2019-05-31 2019-09-20 西南大学 一种基于遥感的高寒草甸生态系统呼吸碳排放估算方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DAI ERFU等: ""Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s"", 《JOURNAL OF GEOGRAPHICAL SCIENCES》 *
S.VAN TUYL 等: ""Variability in net primary production and carbon storage in biomass across Oregon forests-an assessment integrating data from forest inventories,intensive sites,and remote sensing"", 《FOREST ECOLOGY AND MANAGEMENT》 *
刘思瑶: ""遥感过程模型应用于中国南方草地近30年碳储量变化的研究"", 《中国优秀硕士学位论文全文数据库 农业科技辑 (月刊)》 *
李亚 等: ""基于Landsat遥感影像和1:50000土壤数据库的福州市耕地有机碳动态变化研究"", 《中国生态农业学报》 *
柳梅英 等: ""近30年玛纳斯河流域土地利用_覆被变化对植被碳储量的影响"", 《自然资源学报.》 *
游浩辰: ""林地土壤有机碳遥感反演及空间分异研究"", 《中国优秀硕士学位论文全文数据库 农业科技辑 (月刊)》 *
靳熙: ""河南省耕地表层土壤有机碳储量估算与尺度效应分析"", 《中国优秀硕士学位论文全文数据库 农业科技辑(月刊)》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111340643A (zh) * 2020-04-11 2020-06-26 黑龙江省林业科学院 基于碳储量分析小兴安岭针阔混交林类型及群落学特征的方法
CN111340644A (zh) * 2020-04-11 2020-06-26 黑龙江省林业科学院 基于碳储量分布状态分析小兴安岭针阔混交林碳汇结构的方法
CN112257225A (zh) * 2020-09-16 2021-01-22 中国科学院地理科学与资源研究所 一种适用于高寒草地生态系统的npp计算方法
CN112257225B (zh) * 2020-09-16 2023-07-14 中国科学院地理科学与资源研究所 一种适用于高寒草地生态系统的npp计算方法
CN112836610A (zh) * 2021-01-26 2021-05-25 平衡机器科技(深圳)有限公司 一种基于遥感数据的土地利用变化与碳储量定量估算方法
CN112819365A (zh) * 2021-02-23 2021-05-18 中国科学院空天信息创新研究院 碳汇检测方法、装置及存储介质和电子设备
CN114021371A (zh) * 2021-11-16 2022-02-08 中国科学院西北生态环境资源研究院 一种碳储量影响估算方法、装置、电子设备及存储介质
CN114021371B (zh) * 2021-11-16 2023-03-03 中国科学院西北生态环境资源研究院 一种碳储量影响估算方法、装置、电子设备及存储介质
CN114358995A (zh) * 2021-12-23 2022-04-15 张�杰 一种基于大数据分析的区域碳中和计算方法
CN116070926B (zh) * 2022-01-21 2024-06-07 武汉大学 一种基于vod数据进行碳储量动态监测可行性的判定方法
CN116070926A (zh) * 2022-01-21 2023-05-05 武汉大学 一种基于vod数据进行碳储量动态监测可行性的判定方法
CN114648705B (zh) * 2022-03-28 2022-11-22 王大成 一种基于卫星遥感的碳汇监测系统及方法
CN114648705A (zh) * 2022-03-28 2022-06-21 王大成 一种基于卫星遥感的碳汇监测系统及方法
CN114511254B (zh) * 2022-04-21 2022-07-08 滨州学院 基于数据分析的滨海湿地生态系统碳储量调节管理系统
CN114511254A (zh) * 2022-04-21 2022-05-17 滨州学院 基于数据分析的滨海湿地生态系统碳储量调节管理系统
CN114896561B (zh) * 2022-05-07 2023-06-16 安徽农业大学 一种基于遥感算法的湿地碳储量计算方法
CN114896561A (zh) * 2022-05-07 2022-08-12 安徽农业大学 一种基于遥感算法的湿地碳储量计算方法
CN114819737B (zh) * 2022-05-26 2023-10-17 中交第二公路勘察设计研究院有限公司 公路路域植被的碳储量估算方法、系统及存储介质
CN114819737A (zh) * 2022-05-26 2022-07-29 中交第二公路勘察设计研究院有限公司 公路路域植被的碳储量估算方法、系统及存储介质
CN115796712A (zh) * 2023-02-07 2023-03-14 北京师范大学 区域陆地生态系统碳储量估算方法、装置、电子设备
CN116663783A (zh) * 2023-07-28 2023-08-29 中国科学院东北地理与农业生态研究所 沼泽湿地生态系统碳储量统计分析系统
CN116663783B (zh) * 2023-07-28 2023-10-13 中国科学院东北地理与农业生态研究所 沼泽湿地生态系统碳储量统计分析系统
CN117172140A (zh) * 2023-11-03 2023-12-05 北京师范大学 基于土地系统类型变化的碳储量预测方法及装置
CN117172140B (zh) * 2023-11-03 2024-01-09 北京师范大学 基于土地系统类型变化的碳储量预测方法及装置
CN117436908A (zh) * 2023-12-21 2024-01-23 北京英视睿达科技股份有限公司 一种区域连续的土壤碳库管理指数优化计算方法及系统
CN117436908B (zh) * 2023-12-21 2024-04-16 北京英视睿达科技股份有限公司 一种区域连续的土壤碳库管理指数优化计算方法及系统
CN117911896A (zh) * 2024-02-19 2024-04-19 西北师范大学 一种基于卫星遥感的草地碳汇监测方法

Also Published As

Publication number Publication date
CN110750904B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN110750904B (zh) 一种基于遥感数据的区域碳储量空间格局监测系统和方法
Sjöström et al. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems
Jang et al. Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation
Hu et al. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011
Wang et al. Prediction of diffuse solar radiation based on multiple variables in China
Wang et al. Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China
McCallum et al. Satellite-based terrestrial production efficiency modeling
CN111487216B (zh) 一种二氧化碳通量反演方法、系统
CN104166782A (zh) 一种林地土壤有机碳遥感估测的方法
CN114019579B (zh) 高时空分辨率近地表空气温度重构方法、系统、设备
Zhang et al. Review of aerosol optical depth retrieval using visibility data
Li et al. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data
CN115204691B (zh) 基于机器学习和遥感技术的城市人为热排放量估算方法
Wang et al. Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces
CN101936777A (zh) 一种基于热红外遥感反演近地层气温的方法
Qing-Ling et al. Topographical effects of climate data and their impacts on the estimation of net primary productivity in complex terrain: A case study in Wuling mountainous area, China
CN115795819A (zh) 基于sebs模型和casa模型的水分利用效率模拟方法
Chen et al. Development of a three-source remote sensing model for estimation of urban evapotranspiration
Memme et al. Maximum energy yield of PV surfaces in France and Italy from climate based equations for optimum tilt at different azimuth angles
Gong et al. Evaluating the monthly and interannual variation of net primary production in response to climate in Wuhan during 2001 to 2010
He et al. Spatiotemporal change patterns and driving factors of land surface temperature in the Yunnan-Kweichow Plateau from 2000 to 2020
Jin et al. Urban–rural interface dominates the effects of urbanization on watershed energy and water balances in Southern China
CN116822141A (zh) 利用卫星微光遥感反演夜间大气气溶胶光学厚度的方法
AU2021105536A4 (en) A High Spatial-Temporal Resolution Method for Near-Surface Air Temperature Reconstruction
CN116185616A (zh) 一种fy-3d mersi l1b数据自动化再处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant