CN110749956B - Reconfigurable optical mode converter compatible with wavelength division multiplexing - Google Patents
Reconfigurable optical mode converter compatible with wavelength division multiplexing Download PDFInfo
- Publication number
- CN110749956B CN110749956B CN201911064559.XA CN201911064559A CN110749956B CN 110749956 B CN110749956 B CN 110749956B CN 201911064559 A CN201911064559 A CN 201911064559A CN 110749956 B CN110749956 B CN 110749956B
- Authority
- CN
- China
- Prior art keywords
- ring
- waveguide
- waveguides
- straight
- curved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 53
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000012792 core layer Substances 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明提供了一种兼容波分复用的可重构光模式转换器,包括相连接的多环级联件和模式转换器;多环级联件由一根直波导、一个无源微环和n‑1个可调微环谐振器构成,其中n为大于等于2的正整数。该光模式转换器将多环级联应用于模式转换器中,通过改变各个可调谐微环谐振器的谐振状态,使得有源微环中的光被等分为x份,并通过谐振的微环谐振器下载到相应的波导中,通过模式转换器可以实现基模同时向任意多种高阶模式的转换,即同时产生多个模式,从而解决光通信系统中需要的激光器数目过多的问题。本发明具有良好的可扩展性,能与波分复用相结合,从而提高光通信系统的灵活性。
The invention provides a reconfigurable optical mode converter compatible with wavelength division multiplexing, which includes a multi-ring cascade and a mode converter that are connected to each other; and n-1 tunable microring resonators, where n is a positive integer greater than or equal to 2. The optical mode converter applies multi-ring cascade to the mode converter. By changing the resonant state of each tunable micro-ring resonator, the light in the active micro-ring is divided into x equal parts, and the light in the active micro-ring is divided into x parts, and the light in the active micro-ring is divided into x parts through the resonant micro-ring resonator. The ring resonator is downloaded into the corresponding waveguide, and the fundamental mode can be converted into any high-order mode at the same time through the mode converter, that is, multiple modes are generated at the same time, so as to solve the problem of too many lasers required in the optical communication system. . The invention has good expansibility and can be combined with wavelength division multiplexing, thereby improving the flexibility of the optical communication system.
Description
技术领域technical field
本发明属于光模式复用技术领域,涉及一种兼容波分复用的可重构光模式转换器。The invention belongs to the technical field of optical mode multiplexing, and relates to a reconfigurable optical mode converter compatible with wavelength division multiplexing.
背景技术Background technique
随着大数据时代的到来,人们对信息的处理速度和处理容量的要求有了进一步地提高。研究人员通过将光的先进的复用技术应用于高速的光通信系统中,使得光网络的信息传输能力得到了提高。目前应用最为成熟的复用技术是波分复用,而随着数据通信容量的增大,波分技术所需要的激光源数量将会成比例地增多,这使得光通信系统的成本也大幅度升高。为此,研究人员在光的传输中引入了光的模式复用技术。光的模式是光的波长、偏振外的一种维度,不同光的模式在波导或光纤中传播时相互独立。因此,可以将传输信号搭载在同一波长的不同模式上,利用模式的正交性进行数据传输,并在接收端通过模式解复用器,将不同的光模式解复用到不同的端口中。这样就可以通过光的模式复用技术用一种波长的不同模式代替所需的更多的波长,从而大大降低片上激光源的数目,同时提高了光通信系统中的信息处理能力。With the advent of the era of big data, people's requirements for information processing speed and processing capacity have been further improved. By applying advanced optical multiplexing technology to high-speed optical communication systems, researchers have improved the information transmission capacity of optical networks. At present, the most mature multiplexing technology is wavelength division multiplexing. With the increase of data communication capacity, the number of laser sources required by wavelength division technology will increase proportionally, which makes the cost of optical communication systems also greatly increased. rise. To this end, the researchers introduced optical mode multiplexing technology in the transmission of light. The mode of light is the wavelength of light, a dimension outside the polarization, and different modes of light propagate independently of each other in a waveguide or fiber. Therefore, the transmission signal can be carried on different modes of the same wavelength, data transmission can be carried out by using the orthogonality of the modes, and the mode demultiplexer can be used at the receiving end to demultiplex different optical modes into different ports. In this way, different modes of one wavelength can be used to replace more required wavelengths through the optical mode multiplexing technology, thereby greatly reducing the number of on-chip laser sources, and at the same time improving the information processing capability in the optical communication system.
目前的光模式转换器、模式复用器一般是将一种模式转换为另一种特定的模式,在2014年,L. W. Luo等人在著名期刊Nature Communications上发表了文章“WDM-compatible mode-division multiplexing on a silicon chip”(NatureCommunications, Vol. 5, pp. 3069)。首次提出了基于微环的模式复用器,自此关于模式的研究受到了越来越多研究人员的关注。2019年,X.Han等人在期刊Journal of LightwaveTechnology上发表了科技论文“Reconfigurable On-Chip Mode Exchange for Mode-Division Multiplexing Optical Networks”(Journal of Lightwave Technology, Vol.37, Issue 3, pp. 1008-1013)基于微环模式转换器提出了一种基模和高阶模式之间的模式选择交换器。而这些器件无法实现一种模式同时向多种模式的转换,即无法同时产生多种模式。对于波分复用技术来说,可以将不同的波长同时输入到同一根波导或光纤中。而上述器件无法实现同时产生多种模式,无法对所需的模式进行并行处理,大大降低了光通信系统的处理信息的能力,无法满足日益庞大的光通信系统的需求。The current optical mode converters and mode multiplexers generally convert one mode into another specific mode. In 2014, L. W. Luo et al. published an article in the famous journal Nature Communications "WDM-compatible mode-division multiplexing on a silicon chip” (Nature Communications, Vol. 5, pp. 3069). The pattern multiplexer based on microring was proposed for the first time. Since then, the research on patterns has attracted more and more researchers' attention. In 2019, X.Han et al. published the technical paper "Reconfigurable On-Chip Mode Exchange for Mode-Division Multiplexing Optical Networks" in the Journal of Lightwave Technology (Journal of Lightwave Technology, Vol.37, Issue 3, pp. 1008- 1013) proposed a mode-selective switch between fundamental and higher-order modes based on a micro-ring mode converter. However, these devices cannot realize the conversion from one mode to multiple modes at the same time, that is, cannot generate multiple modes at the same time. For wavelength division multiplexing, different wavelengths can be input into the same waveguide or fiber at the same time. However, the above devices cannot generate multiple modes at the same time, and cannot perform parallel processing on the required modes, which greatly reduces the information processing capability of the optical communication system and cannot meet the demands of the increasingly large optical communication system.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种兼容波分复用的可重构光模式转换器,实现基模同时向任意多种高阶模进行模式转换,利用模分复用减少光通信系统中的激光源数目,从而降低光通信系统的功耗。The purpose of the present invention is to provide a reconfigurable optical mode converter compatible with wavelength division multiplexing, which can realize mode conversion from the fundamental mode to any number of high-order modes at the same time, and reduce the number of laser sources in the optical communication system by using the mode division multiplexing. Thereby, the power consumption of the optical communication system is reduced.
为实现上述目的,本发明所采用的技术方案是:一种兼容波分复用的可重构光模式转换器,包括相连接的多环级联件和模式转换器;多环级联件由一根直波导、一个无源微环和n个可调微环谐振器构成。In order to achieve the above object, the technical solution adopted in the present invention is: a reconfigurable optical mode converter compatible with wavelength division multiplexing, comprising a multi-ring cascade and a mode converter connected; the multi-ring cascade is composed of It consists of a straight waveguide, a passive microring and n tunable microring resonators.
本发明光模式转换器是在现有技术中模式转换原理的基础上,将级联微环应用于模式转换器中,该光模式转换器中的无源微环R1与微环R2、微环R3、微环R4等级联,通过调节微环R2、微环R3、微环R4等有源微环的有效折射率,从而改变R2、R3、R4等有源微环的谐振状态,实现基模同时向任意多种高阶模式的转换。该光模式转换器可以很好的与成熟的CMOS工艺技术相结合,且该器件具有良好的可拓展性,可以与波分复用技术相结合,提高光网络的灵活性,在日益灵活的光通信系统中发挥重要作用。The optical mode converter of the present invention is based on the mode conversion principle in the prior art, and the cascaded micro-ring is applied to the mode converter. The passive micro-ring R1 and the micro-ring R2 and the micro-ring in the optical mode converter are R3 and microring R4 are cascaded, and by adjusting the effective refractive index of active microrings such as microring R2, microring R3 and microring R4, the resonance state of active microrings such as R2, R3 and R4 can be changed to realize the fundamental mode. Conversion to any number of higher-order modes at the same time. The optical mode converter can be well combined with mature CMOS process technology, and the device has good scalability and can be combined with wavelength division multiplexing technology to improve the flexibility of optical networks. important role in the communication system.
附图说明Description of drawings
图1是本发明光模式转换器的示意图。FIG. 1 is a schematic diagram of an optical mode converter of the present invention.
图2是本发明光模式转换器一种实施例中多环级联的示意图。FIG. 2 is a schematic diagram of a multi-loop cascade in an embodiment of the optical mode converter of the present invention.
图3是本发明光模式转换器一种实施例中模式转换结构的示意图。FIG. 3 is a schematic diagram of a mode conversion structure in an embodiment of the optical mode converter of the present invention.
图4是本发明光模式转换器中基模转换为任意一种高阶模式的输出光谱图。FIG. 4 is an output spectrum diagram of the fundamental mode converted into any high-order mode in the optical mode converter of the present invention.
图5是本发明光模式转换器中基模转换为任意两种高阶模式的输出光谱图。FIG. 5 is an output spectrum diagram of the fundamental mode converted into any two high-order modes in the optical mode converter of the present invention.
图6是本发明光模式转换器中基模转换为任意三种高阶模式的输出光谱图。6 is an output spectrum diagram of the fundamental mode converted into any three high-order modes in the optical mode converter of the present invention.
图7是硅基热光调制的微环谐振器或直波导的横截面结构示意图。Figure 7 is a schematic diagram of the cross-sectional structure of a silicon-based thermo-optically modulated microring resonator or straight waveguide.
图8是硅基电光调制的微环谐振器或直波导的横截面结构示意图。FIG. 8 is a schematic diagram of the cross-sectional structure of a silicon-based electro-optically modulated microring resonator or straight waveguide.
图9是以硅基热光调制为例,微环谐振器的波谱响应图。Figure 9 is a graph of the spectral response of a microring resonator, taking silicon-based thermo-optic modulation as an example.
图中:1.多环级联件,2.模式转换器,2-1.第一直波导,2-2.第一弯波导,2-3.第二直波导,2-4.第二弯波导,2-5.第三弯波导,2-6.第三直波导,2-7.第四弯波导,2-8.第五弯波导,2-9.第四直波导,2-10.第六弯波导,2-11.第七弯波导,2-12.第五直波导,2-13.第八弯波导,2-14.第六直波导,2-15.第七直波导,2-16.第八直波导;In the figure: 1. Multi-loop cascade, 2. Mode converter, 2-1. The first straight waveguide, 2-2. The first curved waveguide, 2-3. The second straight waveguide, 2-4. The second Curved waveguide, 2-5. Third curved waveguide, 2-6. Third straight waveguide, 2-7. Fourth curved waveguide, 2-8. Fifth curved waveguide, 2-9. Fourth straight waveguide, 2- 10. The sixth curved waveguide, 2-11. The seventh curved waveguide, 2-12. The fifth straight waveguide, 2-13. The eighth curved waveguide, 2-14. The sixth straight waveguide, 2-15. The seventh straight waveguide Waveguide, 2-16. Eighth straight waveguide;
1-1.第九直波导,1-2.第十直波导,1-3.第九弯波导,1-4.第十一直波导,1-5.第十弯波导,1-6.第十二直波导,1-7.第十一弯波导,1-8.第十三直波导,1-9.第十四直波导,1-10.第十二弯波导,1-11.第十五直波导,1-12.第十六直波导,1-13.第十三弯波导,1-14.第十七直波导,1-15.第十八直波导。1-1. The ninth straight waveguide, 1-2. The tenth straight waveguide, 1-3. The ninth curved waveguide, 1-4. The tenth straight waveguide, 1-5. The tenth curved waveguide, 1-6. Twelfth straight waveguide, 1-7. Eleventh curved waveguide, 1-8. Thirteenth straight waveguide, 1-9. Fourteenth straight waveguide, 1-10. Twelfth curved waveguide, 1-11. The fifteenth straight waveguide, 1-12. The sixteenth straight waveguide, 1-13. The thirteenth curved waveguide, 1-14. The seventeenth straight waveguide, and 1-15. The eighteenth straight waveguide.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,本发明可重构光模式转换器,包括相连接的多环级联件1和模式转换器2;多环级联件1由一根直波导、一个无源微环和n个可调微环谐振器构成。As shown in FIG. 1, the reconfigurable optical mode converter of the present invention includes a
本发明可重构光模式转换器中的模式转换器2,包括依次设置的多根模式转换器用直波导,相邻模式转换器用直波导通过绝热锥相连,该多根模式转换器用直波导的宽度依次递减;一根模式转换器用直波导与一个弯结构波导耦合,该弯结构波导由一根弯结构波导用直波导和两根弯结构波导用弯波导组成,两根弯结构波导用弯波导通过该弯结构波导用直波导相连,弯结构波导用直波导与耦合的模式转换器用直波导平行设置;同一个弯结构波导中朝向模式转换器用直波导中宽度最小直波导的弯结构波导用弯波导的另一端均与多环级联件1相连。所有弯结构波导中弯结构波导用直波导和弯结构波导用弯波导的宽度均相同。The
图2是本发明可重构光模式转换器一种实施例中的模式转换器2,包括依次设置的第一直波导2-1、第八直波导2-16、第七直波导2-15和第六直波导2-14,第一直波导2-1通过第一个绝热锥与第八直波导2-16相连,第八直波导2-16通过第二个绝热锥与第七直波导2-15相连,第七直波导2-15通过第三个绝热锥与第六直波导2-14相连;第一直波导2-1的宽度小于第八直波导2-16的宽度,第八直波导2-16的宽度小于第七直波导2-15的宽度,第七直波导2-15的宽度小于第六直波导2-14的宽度;2 is a
图2所示的模式转换器2还包括第二直波导2-3、第三直波导2-6、第四直波导2-9和第五直波导2-12,第二直波导2-3与第一直波导2-1平行且耦合,第三直波导2-6与第八直波导2-16平行且耦合,第四直波导2-9与第七直波导2-15平行且耦合,第五直波导2-12与第六直波导2-14平行且耦合;第二直波导2-3的两端分别连接有第一弯波导2-2和第二弯波导2-4,第三直波导2-6的两端分别连接有第三弯波导2-5和第四弯波导2-7,第四直波导2-9的两端分别连接有第五弯波导2-8和第六弯波导2-10,第五直波导2-12的两端分别连接有第七弯波导2-11和第八弯波导2-13;The
第一弯波导2-2、第三弯波导2-5、第五弯波导2-8和第七弯波导2-11均朝向第一直波导2-1的方向,且第一弯波导2-2的另一端、第三弯波导2-5的另一端、第五弯波导2-8的另一端和第七弯波导2-11的另一端均与图3所示的多环级联件1相连。The first curved waveguide 2-2, the third curved waveguide 2-5, the fifth curved waveguide 2-8 and the seventh curved waveguide 2-11 all face the direction of the first straight waveguide 2-1, and the first curved waveguide 2- The other end of connected.
第一弯波导2-2的宽度、第二直波导2-3的宽度、第二弯波导2-4的宽度、第三弯波导2-5的宽度、第三直波导2-6的宽度、第四弯波导2-7的宽度、第五弯波导2-8的宽度、第四直波导2-9的宽度、第六弯波导2-10的宽度、第七弯波导2-11的宽度、第五直波导2-12的宽度和第八弯波导2-13的宽度相同。The width of the first curved waveguide 2-2, the width of the second straight waveguide 2-3, the width of the second curved waveguide 2-4, the width of the third curved waveguide 2-5, the width of the third straight waveguide 2-6, The width of the fourth curved waveguide 2-7, the width of the fifth curved waveguide 2-8, the width of the fourth straight waveguide 2-9, the width of the sixth curved waveguide 2-10, the width of the seventh curved waveguide 2-11, The width of the fifth straight waveguide 2-12 is the same as the width of the eighth curved waveguide 2-13.
本发明可重构光模式转换器中的多环级联件1,包括由第九直波导1-1和n个可调微环谐振器构成的环状结构,构成该环状结构的各器件不相接触,n个可调微环谐振器为依次设置的微环谐振器R2、微环谐振器R3、微环谐振器R4、……和微环谐振器Rn,可调微环谐振器为有源微环;该环状结构内设有微环谐振器R1,微环谐振器R1为无源微环;有源微环的数量与模式转换器2中弯结构波导的数量相同。所有有源微环的半径相同,且小于无源微环的半径。The
每个有源微环均与一根多环级联件用直波导耦合,且该有源微环位于与该有源微环耦合的多环级联件用直波导和微环谐振器R1之间,所有与有源微环耦合的多环级联件用直波导均不相交,且一根与有源微环耦合的多环级联件用直波导通过一根连接波导与模式转换器2中的一个弯结构波导相连,即该一根与有源微环耦合的多环级联件用直波导通过一根连接波导与模式转换器2的一个弯结构波导中朝向模式转换器用直波导中宽度最小直波导的弯结构波导用弯波导的另一端相连。Each active micro-ring is coupled with a straight waveguide for the multi-ring cascade, and the active micro-ring is located between the straight waveguide for the multi-ring cascade coupled to the active micro-ring and the micro-ring resonator R1 During the period, all straight waveguides for multi-ring cascades coupled with active micro-rings do not intersect, and a straight waveguide for multi-ring cascades coupled with active micro-rings is connected to the mode converter through a connecting
该连接波导的结构根据与有源微环耦合的多环级联件用直波导和该直波导所要连接的模式转换器2中弯结构波导之间的距离确定,可以是两根弯波导和两根直波导依次间隔设置连接而成,可以是一根弯波导连接两根直波导而成,也可以是一根直波导,且所有的连接波导不相交。The structure of the connecting waveguide is determined according to the distance between the straight waveguide for the multi-loop cascade coupled with the active micro-ring and the curved waveguide in the
图3是本发明可重构光模式转换器一种实施例中的多环级联件1,包括由第九直波导1-1、微环谐振器R2、微环谐振器R3、微环谐振器R4和微环谐振器R5构成的环状结构,第九直波导1-1、微环谐振器R2、微环谐振器R3、微环谐振器R4和微环谐振器R5不相接触,该环状结构内设有微环谐振器R1,微环谐振器R1为无源微环,微环谐振器R2、微环谐振器R3、微环谐振器R4和微环谐振器R5为有源微环;微环谐振器R2的半径、微环谐振器R3的半径、微环谐振器R4的半径和微环谐振器R5的半径相同,且小于微环谐振器R1的半径。3 is a
微环谐振器R2与竖直设置的第十直波导1-2耦合,第十直波导1-2的上端通过第九弯波导1-3与第十一直波导1-4的一端相连,第十一直波导1-4的另一端通过第十弯波导1-5与第十二直波导1-6的上端相连,第十二直波导1-6的下端与第一弯波导2-2的另一端相连;这里,依次相连的第九弯波导1-3、第十一直波导1-4、第十弯波导1-5和第十二直波导1-6构成连接波导。The micro-ring resonator R2 is coupled to the tenth straight waveguide 1-2 arranged vertically, and the upper end of the tenth straight waveguide 1-2 is connected to one end of the tenth straight waveguide 1-4 through the ninth curved waveguide 1-3. The other end of the tenth straight waveguide 1-4 is connected to the upper end of the twelfth straight waveguide 1-6 through the tenth curved waveguide 1-5, and the lower end of the twelfth straight waveguide 1-6 is connected to the first curved waveguide 2-2. The other ends are connected; here, the ninth curved waveguide 1-3, the tenth straight waveguide 1-4, the tenth curved waveguide 1-5 and the twelfth straight waveguide 1-6, which are connected in sequence, constitute the connecting waveguide.
微环谐振器R3与竖直设置的第十五直波导1-11耦合,第十五直波导1-11的上端通过第十二弯波导1-10与第十四直波导1-9的一端相连,第十四直波导1-9的另一端通过第十一弯波导1-7与第十三直波导1-8的上端相连,第十三直波导1-8的下端与第三弯波导2-5的另一端相连;这里,依次相连的第十二弯波导1-10、第十四直波导1-9、第十三直波导1-8和第十一弯波导1-7构成连接波导。The micro-ring resonator R3 is coupled with the vertically arranged fifteenth straight waveguide 1-11, and the upper end of the fifteenth straight waveguide 1-11 passes through the twelfth curved waveguide 1-10 and one end of the fourteenth straight waveguide 1-9 connected, the other end of the fourteenth straight waveguide 1-9 is connected to the upper end of the thirteenth straight waveguide 1-8 through the eleventh curved waveguide 1-7, and the lower end of the thirteenth straight waveguide 1-8 is connected to the third curved waveguide The other ends of 2-5 are connected; here, the twelfth curved waveguide 1-10, the fourteenth straight waveguide 1-9, the thirteenth straight waveguide 1-8 and the eleventh curved waveguide 1-7, which are connected in sequence, form a connection waveguide.
微环谐振器R4与水平设置的第十七直波导1-14耦合,第十七直波导1-14的一端通过第十三弯波导1-13与第十六直波导1-12的上端相连,第十六直波导1-12的下端与第五弯波导2-8的另一端相连;这里,相连接的第十三弯波导1-13和第十六直波导1-12构成连接波导。The microring resonator R4 is coupled with the seventeenth straight waveguide 1-14 arranged horizontally, and one end of the seventeenth straight waveguide 1-14 is connected to the upper end of the sixteenth straight waveguide 1-12 through the thirteenth curved waveguide 1-13 , the lower end of the sixteenth straight waveguide 1-12 is connected to the other end of the fifth curved waveguide 2-8; here, the connected thirteenth curved waveguide 1-13 and the sixteenth straight waveguide 1-12 constitute a connecting waveguide.
微环谐振器R5与竖直设置的第十八直波导1-15耦合,第十八直波导1-15的下端与第七弯波导2-11的另一端相连。这里,第十八直波导1-15为连接波导。The microring resonator R5 is coupled to the eighteenth straight waveguide 1-15 arranged vertically, and the lower end of the eighteenth straight waveguide 1-15 is connected to the other end of the seventh curved waveguide 2-11. Here, the eighteenth straight waveguides 1-15 are connecting waveguides.
图3中所有波导(包括直波导和弯波导)的宽度均相同。All waveguides in Figure 3 (both straight and curved) have the same width.
通过改变微环谐振器的有效折射率改变微环谐振器的谐振波长。The resonant wavelength of the microring resonator is changed by changing the effective refractive index of the microring resonator.
本发明可重构光模式转换器中模式转换器2中依次相连的不同宽度的直波导之间通过足够长的绝热锥连接,构成一个输出波导,其中绝热锥的宽度变化是线性缓变的,从较窄的波导宽度变为较宽的波导宽度,从而确保较低阶模式光信号在绝热锥中传输时不发生模式转换。由于不同的模式传输的有效折射率与波导的宽度及模式的阶数有关,要实现模式转换就必须使转换的模式的有效折射率相同,通过改变不同模式转换处的波导宽度,即可实现模式的转换。In the reconfigurable optical mode converter of the present invention, the straight waveguides of different widths connected in sequence in the
例如,输入到第九直波导1-1的光的模式为基模TE0,输入的光中符合微环谐振器R1谐振波长λ的光经过耦合区被耦合到微环谐振器R1中。微环谐振器R1与半径小于微环谐振器R1半径的多个微环谐振器R2、R3、R4、……、Rn级联,通过改变施加在半径较小的微环谐振器上的电压,改变微环谐振器R2、R3、R4、……、Rn的波导温度,从而改变微环谐振器R2、R3、R4、……、Rn的有效折射率,相应地就实现了对微环谐振器R2、R3、R4、……、Rn的调谐作用。若要使波长为λ的光被下载到微环谐振器R2的输出波导,只需将微环谐振器R2的谐振波长调至λ即可,同理可以调节R3、R4等微环谐振器任意一个或多个谐振器的谐振波长即可实现波长为λ的光被均分后从所需的输出波导输出。若改变输入波长为λ1,相应地增加谐振微环的数量,即可同时实现λ和λ1两种波长内的多个模式同时转换。以此类推,因此本发明的可重构光模式转换器具有兼容波分复用的功能。For example, the mode of the light input into the ninth straight waveguide 1-1 is the fundamental mode TE 0 , and the input light conforming to the resonance wavelength λ of the microring resonator R1 is coupled into the microring resonator R1 through the coupling region. The micro-ring resonator R1 is cascaded with a plurality of micro-ring resonators R2, R3, R4, ..., Rn whose radius is smaller than the radius of the micro-ring resonator R1. Change the waveguide temperature of the micro-ring resonators R2, R3, R4,..., Rn, so as to change the effective refractive index of the micro-ring resonators R2, R3, R4,..., Rn, correspondingly, the micro-ring resonator is realized. Tuning effect of R2, R3, R4, ..., Rn. If the light with wavelength λ is downloaded to the output waveguide of the micro-ring resonator R2, it is only necessary to adjust the resonance wavelength of the micro-ring resonator R2 to λ. Similarly, any micro-ring resonator such as R3 and R4 can be adjusted to any The resonant wavelength of one or more resonators can realize that the light with wavelength λ is evenly divided and output from the desired output waveguide. If the input wavelength is changed to λ1 and the number of resonant microrings is correspondingly increased, the simultaneous conversion of multiple modes in the two wavelengths of λ and λ1 can be realized at the same time. By analogy, the reconfigurable optical mode converter of the present invention has the function of being compatible with wavelength division multiplexing.
图4为微环谐振器R2、R3、R4、…、Rn中任意一个微环谐振器谐振时所得的下载端光谱图,纵坐标为下载端光强度,横坐标为波长。当微环谐振器R2、R3、R4、…Rn中只有一个微环谐振器谐振时,从输入波导耦合到微环谐振器R1中的光将会直接通过谐振的微环谐振器下载到相应的波导中并进入模式转换器中。由于基模波导中的基模有效折射率与所需转换的模式在其转换区的波导宽度中传输的有效折射率相同,故基模波导中的基模将被转换为相应的模式。Figure 4 is a spectrum diagram of the download end obtained when any one of the micro-ring resonators R2, R3, R4, ..., Rn resonates, the ordinate is the light intensity of the download end, and the abscissa is the wavelength. When only one of the microring resonators R2, R3, R4,...Rn resonates, the light coupled from the input waveguide into the microring resonator R1 will be directly downloaded to the corresponding microring resonator through the resonating microring resonator into the waveguide and into the mode converter. Since the effective refractive index of the fundamental mode in the fundamental mode waveguide is the same as the effective refractive index of the mode to be converted in the waveguide width of its conversion region, the fundamental mode in the fundamental mode waveguide will be converted into the corresponding mode.
如图5所示,为微环R2、R3、R4、…Rn中任意两个微环谐振器谐振时所得的下载端光谱图,纵坐标为下载端光强度,横坐标为波长。图5中两条曲线基本重合,由于每个微环谐振器的耦合条件存在轻微的差异,使得两条曲线的顶端有略微高低的差别。在曲线当R2、R3、R4、…、Rn存在两个微环谐振器谐振时,从输入波导耦合到微环谐振器R1中的光将会被均分为两部分,分别通过谐振状态的微环谐振器下载到相应的波导中,并通过模式转换器2转换为对应的模式,转换后的模式可以同时在多模波导中传输。As shown in Figure 5, it is the download end spectrum obtained when any two microring resonators in the microrings R2, R3, R4, ... Rn resonate, the ordinate is the light intensity of the download end, and the abscissa is the wavelength. The two curves in Fig. 5 basically overlap. Due to the slight difference in the coupling conditions of each microring resonator, the tops of the two curves are slightly different. In the curve, when there are two micro-ring resonators in R2, R3, R4, ..., Rn, the light coupled from the input waveguide to the micro-ring resonator R1 will be divided into two parts, respectively, passing through the micro-ring resonator in the resonant state. The ring resonator is downloaded into the corresponding waveguide and converted into the corresponding mode by the
图6为微环R2、R3、R4、…Rn中任意三个微环谐振器谐振时所得的下载端光谱图,纵坐标为下载端光强度,横坐标为波长。图6中三条曲线基本重合,由于每个微环谐振器的耦合条件有轻微差异,使得三条曲线的顶端有略微高低的差别。当R2、R3、R4、…、Rn中存在三个微环谐振器谐振时,从输入波导耦合到微环谐振器R1中的光将会被均分为三等分,分别通过谐振的微环下载到相应的波导中,再通过模式转换器2转换为对应的模式,转换后的模式可以同时在多模波导中进行传输。Figure 6 is a spectrum diagram of the download end obtained when any three micro-ring resonators in the micro-rings R2, R3, R4, ... Rn resonate, the ordinate is the light intensity of the download end, and the abscissa is the wavelength. The three curves in Fig. 6 basically overlap, and the tops of the three curves are slightly different due to the slight difference in the coupling conditions of each microring resonator. When there are three microring resonators in R2, R3, R4, ..., Rn to resonate, the light coupled from the input waveguide to the microring resonator R1 will be equally divided into three equal parts, respectively passing through the resonating microrings Downloaded to the corresponding waveguide, and then converted into the corresponding mode through the
本发明的器件是基于SOI材料的,由于SOI材料制成的波导芯层Si(折射率为3.45)与衬底SiO2(折射率为1.44)的折射率差较大,对光场具有很强的限制能力,从而使得器件的尺寸较小,微环谐振器的半径也可以很小。同时本发明可重构光模式转换器也可采用SIN、Ⅲ-Ⅴ族等材料来实现。The device of the present invention is based on SOI material. Since the refractive index difference between the waveguide core layer Si (refractive index: 3.45) made of SOI material and the substrate SiO 2 (refractive index: 1.44) is large, it has a strong effect on the optical field. Therefore, the size of the device is small, and the radius of the microring resonator can also be small. At the same time, the reconfigurable optical mode converter of the present invention can also be realized by using materials such as SIN and III-V groups.
本发明可重构光模式转换器中微环谐振器的谐振频率可以基于热光效应进行调谐,也可以用等离子色散效应进行调谐。图7为硅基热光调制的微环谐振器或直波导的横截面图,其衬底为Si,在衬底上具有一层SiO2材料,在SiO2层上设有波导芯层(Si材料)和调谐电极,波导芯层和调谐电极周围被SiO2材料所包围。波导芯层的宽度为W,高度为H,芯区顶部与调谐电极底部的间距为dSiO2。图8所示为硅基电光调制的微环谐振器或直波导的横截面图,电光调制结构的调制效率高,且调制速度快。通过外加的电压可以改变波导中载流子的注入和抽取,从而改变波导的有效折射率。当外加正偏压时,载流子将会从P区、N区中注入到波导SI中,当外加反偏压时,波导SI中的电子和空穴将会被抽取出来。The resonant frequency of the microring resonator in the reconfigurable optical mode converter of the present invention can be tuned based on the thermo-optic effect, or can be tuned by the plasmon dispersion effect. Figure 7 is a cross-sectional view of a silicon-based thermo-optically modulated microring resonator or straight waveguide, whose substrate is Si, with a layer of SiO2 material on the substrate, and a waveguide core layer (Si material) and tuning electrodes, the waveguide core layer and tuning electrodes are surrounded by SiO2 material. The width of the waveguide core layer is W, the height is H, and the distance between the top of the core region and the bottom of the tuning electrode is d SiO2 . Figure 8 shows a cross-sectional view of a silicon-based electro-optical modulation microring resonator or straight waveguide. The electro-optical modulation structure has high modulation efficiency and fast modulation speed. The injection and extraction of carriers in the waveguide can be changed by an applied voltage, thereby changing the effective refractive index of the waveguide. When a forward bias is applied, carriers will be injected into the waveguide SI from the P and N regions, and when a reverse bias is applied, the electrons and holes in the waveguide SI will be extracted.
图9为热光调制的微环谐振器的波谱响应图,当未施加电压时,微环谐振器的谐振波长位于λ1处,此时只有波长为λ1的光才能被微环谐振器所下载,如图9a;当施加适当电压时,由于热光效应,微环谐振器的谐振波长将会移动到λ2处,此时只有波长为λ2的光才能被微环谐振器所下载,如图9b。Figure 9 shows the spectral response of the thermo-optically modulated micro-ring resonator. When no voltage is applied, the resonant wavelength of the micro-ring resonator is located at λ1. At this time, only the light with wavelength λ1 can be downloaded by the micro-ring resonator. As shown in Figure 9a; when an appropriate voltage is applied, the resonant wavelength of the microring resonator will move to λ2 due to the thermo-optic effect, and only the light with wavelength λ2 can be downloaded by the microring resonator, as shown in Figure 9b.
本发明光模式转换器将多环级联应用于模式转换器中,通过改变各个可调谐微环谐振器(有源微环)的谐振状态,使得无源微环中的光被等分为x份,并通过x个谐振的有源微环谐振器下载到相应的波导中,通过本发明光模式转换器可以实现基模同时向任意多种高阶模式的转换,即同时产生多个模式,从而解决光通信系统中需要的激光器数目过多的问题。本发明具有良好的可扩展性,能与波分复用相结合,提高光通信系统的灵活性。The optical mode converter of the invention applies multi-ring cascade to the mode converter, and by changing the resonance state of each tunable micro-ring resonator (active micro-ring), the light in the passive micro-ring is equally divided into x The optical mode converter of the present invention can realize the conversion of the fundamental mode to any variety of high-order modes at the same time, that is, to generate multiple modes at the same time, Thus, the problem that the number of lasers required in the optical communication system is too large is solved. The invention has good expansibility, can be combined with wavelength division multiplexing, and improves the flexibility of the optical communication system.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911064559.XA CN110749956B (en) | 2019-11-04 | 2019-11-04 | Reconfigurable optical mode converter compatible with wavelength division multiplexing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911064559.XA CN110749956B (en) | 2019-11-04 | 2019-11-04 | Reconfigurable optical mode converter compatible with wavelength division multiplexing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110749956A CN110749956A (en) | 2020-02-04 |
CN110749956B true CN110749956B (en) | 2020-07-03 |
Family
ID=69282005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911064559.XA Active CN110749956B (en) | 2019-11-04 | 2019-11-04 | Reconfigurable optical mode converter compatible with wavelength division multiplexing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110749956B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113612539B (en) * | 2021-08-27 | 2023-01-03 | 中国地质大学(武汉) | Silicon optical transmitter chip structure integrating multiplexing and modulating functions |
CN114858276B (en) * | 2022-07-07 | 2022-09-09 | 南京航空航天大学 | Multiport Broad Spectrum Shaping Device and Computational Spectrometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104133270A (en) * | 2014-07-18 | 2014-11-05 | 南京大学 | On-chip tunable optical isolator based on active-passive optical micro cavity coupling system |
CN106291820A (en) * | 2016-10-13 | 2017-01-04 | 兰州大学 | A kind of silicon-based integrated optical mode data exchange unit |
CN106463908A (en) * | 2014-04-16 | 2017-02-22 | 阿尔卡特朗讯 | Tunable emitting device with a directly modulated laser coupled to a ring resonator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2892151B2 (en) * | 1990-11-27 | 1999-05-17 | 日本原子力研究所 | Gyrotron device |
CN101840028A (en) * | 2010-04-07 | 2010-09-22 | 中国科学院半导体研究所 | Integrated reconfigurable optical add/drop multiplexer based on microring resonator |
CN103353632B (en) * | 2013-06-18 | 2015-06-17 | 西安电子科技大学 | Optical switching unit based on micro-ring resonator |
CN104238233A (en) * | 2014-09-17 | 2014-12-24 | 兰州大学 | Reconfigurable guiding logic device based on multiple-wavelength single-waveguide multiple-ring cascade structure |
CN104317005A (en) * | 2014-10-27 | 2015-01-28 | 中国科学院半导体研究所 | Wavelength choice photoswitch based on tunable micro-ring resonators |
CN108519641B (en) * | 2018-05-11 | 2019-07-19 | 兰州大学 | A Reconfigurable Optical Mode Converter |
-
2019
- 2019-11-04 CN CN201911064559.XA patent/CN110749956B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106463908A (en) * | 2014-04-16 | 2017-02-22 | 阿尔卡特朗讯 | Tunable emitting device with a directly modulated laser coupled to a ring resonator |
CN104133270A (en) * | 2014-07-18 | 2014-11-05 | 南京大学 | On-chip tunable optical isolator based on active-passive optical micro cavity coupling system |
CN106291820A (en) * | 2016-10-13 | 2017-01-04 | 兰州大学 | A kind of silicon-based integrated optical mode data exchange unit |
Also Published As
Publication number | Publication date |
---|---|
CN110749956A (en) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jia et al. | WDM-compatible multimode optical switching system-on-chip | |
Seif-Dargahi | Ultra-fast all-optical encoder using photonic crystal-based ring resonators | |
Ji et al. | Five-port optical router based on microring switches for photonic networks-on-chip | |
US9261754B2 (en) | Parallel and WDM silicon photonics integration in information and communications technology systems | |
Wang et al. | Polarization-independent tunable optical filter with variable bandwidth based on silicon-on-insulator waveguides | |
CN110703851B (en) | An Optical Matrix-Vector Multiplier Based on Pattern Multiplexing | |
Small et al. | Multiple-wavelength integrated photonic networks based on microring resonator devices | |
CN102156507B (en) | Two-bit optical decoder based on micro-ring resonator | |
CN1819379A (en) | Multiple resonator and variable-wavelength light source using the same | |
CN108519641B (en) | A Reconfigurable Optical Mode Converter | |
CN106291820B (en) | A silicon-based integrated optical mode data switch | |
KR20050084381A (en) | A tunable micro-ring filter for optical wdm/dwdm communication | |
CN108519642B (en) | An integrated optical mode switch compatible with wavelength division multiplexing and mode division multiplexing functions | |
Law et al. | Demonstration of photonic micro-ring resonator based digital bit magnitude comparator | |
CN111880267A (en) | Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system | |
CN110749956B (en) | Reconfigurable optical mode converter compatible with wavelength division multiplexing | |
CN116299849B (en) | A wavelength-mode hybrid multiplexer/demultiplexer based on thin-film lithium niobate | |
CN113031162B (en) | Optical filter | |
CN110737052B (en) | A Reconfigurable Arbitrary Optical Mode Switch Based on Microring Resonator | |
US20090304327A1 (en) | Method and apparatus for implementing optical deflection switching using coupled resonators | |
CN109491175B (en) | Reconfigurable steering logic device based on mode multiplexing | |
CN109240019B (en) | Binary all-optical comparator | |
Zhang et al. | Optical spectral shaping based on reconfigurable integrated microring resonator-coupled Fabry–Perot cavity | |
CN113466998A (en) | Tunable optical filter and optical communication equipment using same | |
US12222628B2 (en) | Nonlinear optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |