CN110736088B - Steam generator capable of controlling opening and closing of valve according to water level - Google Patents

Steam generator capable of controlling opening and closing of valve according to water level Download PDF

Info

Publication number
CN110736088B
CN110736088B CN201911032935.7A CN201911032935A CN110736088B CN 110736088 B CN110736088 B CN 110736088B CN 201911032935 A CN201911032935 A CN 201911032935A CN 110736088 B CN110736088 B CN 110736088B
Authority
CN
China
Prior art keywords
gas
valve
water level
heat
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911032935.7A
Other languages
Chinese (zh)
Other versions
CN110736088A (en
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yangxin Xingye Oil Chemical Co Ltd
Original Assignee
Tenon And Mortise Technology Service Wenzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenon And Mortise Technology Service Wenzhou Co ltd filed Critical Tenon And Mortise Technology Service Wenzhou Co ltd
Priority to CN201911032935.7A priority Critical patent/CN110736088B/en
Publication of CN110736088A publication Critical patent/CN110736088A/en
Application granted granted Critical
Publication of CN110736088B publication Critical patent/CN110736088B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1892Systems therefor not provided for in F22B1/1807 - F22B1/1861
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • A61H33/065Heaters specifically designed therefor with steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H2033/068Steam baths

Abstract

The invention provides a loop heat pipe steam generator which comprises a shell, a fluid inlet, a steam outlet, a gas inlet channel, a gas outlet channel, a loop heat pipe and a gas chamber, wherein a gas sensor is arranged in the gas inlet channel at the upstream of a first valve and used for detecting whether gas flows through a flue; the shell in set up water level sensor, water level sensor and controller data connection, the controller is according to the aperture of the water level automatic control second valve in the casing of measurement and first valve. Through the arrangement, on one hand, the damage to the shell and the safety accident caused by the dry burning of the shell due to the excessively low water level are avoided, and on the other hand, the overlarge water amount in the shell due to the excessively high water level is avoided.

Description

Steam generator capable of controlling opening and closing of valve according to water level
Technical Field
The invention relates to a heat pipe loop heat pipe steam generator.
Background
The heat pipe technology is a heat transfer element called a heat pipe invented by George Grover (George Grover) of national laboratory of Los Alamos (Los Alamos) in 1963, fully utilizes the heat conduction principle and the rapid heat transfer property of a phase change medium, quickly transfers the heat of a heating object to the outside of a heat source through the heat pipe, and the heat conduction capability of the heat transfer element exceeds the heat conduction capability of any known metal.
The heat pipe technology is widely applied to the industries of aerospace, military industry and the like, and since the heat pipe technology is introduced into the radiator manufacturing industry, the design idea of the traditional radiator is changed for people, the single heat radiation mode that a high-air-volume motor is used for obtaining a better heat radiation effect is avoided, the heat pipe technology is adopted for enabling the radiator to obtain a satisfactory heat exchange effect, and a new place in the heat radiation industry is opened up. At present, the heat pipe is widely applied to various heat exchange devices, including the field of nuclear power, such as the utilization of waste heat of nuclear power.
In the prior art, the heat pipe generally depends on gravity to realize the circulation of the heat pipe, but the heat pipe is only suitable for the condition of heat absorption at the lower part and heat release at the upper part, and cannot be suitable for the condition of heat absorption at the upper part and heat release at the lower part. Accordingly, in response to this situation, the present inventors developed, among other things, countergravity heat pipes and applied the countergravity heat pipes to steam generators. However, the intelligent degree of the steam generator is not high, and intelligent control cannot be realized, so that the steam generator which is intelligently controlled needs to be designed.
Disclosure of Invention
The invention provides a novel loop heat pipe steam generator, which utilizes the performance of an antigravity heat pipe and the expanded intelligent function thereof so as to solve the technical problems.
In order to achieve the purpose, the technical scheme of the invention is as follows:
a loop heat pipe steam generator comprises a shell, a fluid inlet, a steam outlet, a gas inlet channel, a gas outlet channel, a loop heat pipe and a gas cavity, wherein the fluid inlet and the steam outlet are respectively arranged on the shell; the gas chamber is arranged in the shell, the loop heat pipe is an antigravity heat pipe, an outlet of the gas inlet channel and an inlet of the gas outlet channel are communicated with the gas chamber, the gas exchanges heat with the evaporation end in the process of being introduced into the gas chamber from the gas inlet channel, and the condensation end conducts the heat to fluid in the shell. The gas inlet channel is provided with a first temperature sensor, the first temperature sensor is used for measuring the temperature of gas, and the central controller automatically controls the electric heater to heat according to the temperature detected by the first temperature sensor.
Preferably, the central controller controls the electric heater to heat if the temperature detected by the first temperature sensor is lower than a certain value.
Preferably, the central controller stops the electric heater from heating if the temperature detected by the first temperature sensor is higher than a certain value.
Preferably, the condensing end is an annular tube wrapped around the outer wall of the gas chamber.
Preferably, a part or the whole of the capillary wick is arranged at the evaporation end.
Preferably, the gas inlet channel is connected to the inlet tube of the gas chamber, and the gas outlet channel is provided in the inlet tube of the gas chamber and protrudes from the inlet tube side of the gas chamber.
Preferably, the evaporation end comprises a riser, and at least one part of the riser is provided with a capillary core, so that the function of a counter-gravity heat pipe is realized; a pipeline with a condensing end flowing to an evaporating end is arranged in the center of the capillary core, and a longitudinal vertical fin is arranged on the outer wall surface of the evaporating end in a surrounding manner; the air outlet channel is arranged between and in contact with two adjacent vertical fins; the descending tube of the heat pipe is arranged between and contacted with the two adjacent vertical fins; at least a portion of the upleg and downleg are disposed within the air inlet passage.
Preferably, the fluid inlet is located on a lower side of the housing and the steam outlet is located on an upper side of the housing.
Preferably, a portion of the inlet duct of the gas chamber extends into the housing, the cross-sectional area of the gas chamber within the housing tapering downwardly in the height direction.
Preferably, the bottom of the gas chamber is of planar configuration.
Preferably, a plurality of gas chambers are arranged in the shell, and gas inlet channels of the plurality of gas chambers are in a parallel structure.
Preferably, the evaporation end is arranged on the inlet pipe of the gas chamber, at least one part of the evaporation end is filled with the capillary core, the center of the capillary core is provided with a pipeline from the condensation end to the evaporation end, and the outer wall surface of the evaporation end is provided with longitudinal vertical fins in a surrounding mode.
Preferably, the gas outlet channel is disposed between and in contact with two adjacent vertical fins.
Preferably, the condensation end pipeline flowing to the evaporation end is arranged between and in contact with two adjacent vertical fins.
The pipeline is a plurality of, the gas outlet passageway is a plurality of, the pipeline equals with gas outlet passageway's quantity.
Further preferably, the lines are arranged between adjacent gas outlet channels, the gas outlet channels 4 flowing between adjacent evaporation end to condensation end lines 9.
Further preferably, the distance between the center of the evaporation end pipeline 9 flowing to the condensation end pipeline and the center of the adjacent gas outlet channel 4 is the same; the distance between the center of the gas outlet channel 4 and the center of the pipeline 9 from the adjacent gas evaporation end to the condensation end is the same.
Preferably, the radius of the gas outlet channel 4 is R, the radius of the pipeline 9 from the evaporation end to the condensation end is R, and the included angle between adjacent fins is a, so that the following requirements are met:
Sin(A)=a*(r/R)-b*(r/R)2-c;
a, b, c are parameters,
wherein 1.23< a <1.24,0.225< b <0.235, 0.0185< c < 0.0195;
14°<A<30°;
0.24<r/R<0.5;
further preferably, 0.26< R/R < 0.38.
Compared with the prior art, the invention has the following advantages:
1) according to the invention, the electric heater is controlled to heat according to the temperature of the inlet gas, so that the actual heat exchange requirement can be met, and the insufficient heat exchange caused by low air temperature is avoided.
2) The invention provides a steam generator with a novel structure, which utilizes an antigravity heat pipe to exchange heat, transfers heat in gas to a cold source in the steam generator and improves the heat utilization.
3) The condensing end of the antigravity heat pipe is wound on the outer wall of the gas cavity, and the area of the gas cavity is enlarged, so that the heat exchange area is increased, and the heat exchange effect is improved.
4) The invention improves and designs the structure of the loop heat pipe evaporation end, and further improves the heat exchange coefficient.
5) According to the invention, through a large number of numerical simulation and experiments, included angles between the pipeline 9 of the gas outlet channel and the evaporating end of the loop heat pipe flowing to the condensing end and the adjacent fins are optimized, and the heat exchange efficiency is further improved.
Drawings
Fig. 1 is a schematic view of the overall structure of the present invention.
FIG. 2 is a schematic view of one embodiment of a gas chamber of the present invention.
Figure 3 is a cross-sectional view of another embodiment of a gas chamber of the present invention.
Fig. 4 is a cross-sectional view a-a of fig. 3.
Fig. 5 is a schematic structural diagram of a heat pipe according to the present invention.
Fig. 6 is a schematic diagram of a multi-evaporation-end to condensation-end pipeline (descending section) according to the present invention.
Fig. 7 is a schematic view of a pipe connection structure for providing a capillary wick according to the present invention.
Fig. 8 is a schematic diagram of an intelligent control structure according to the present invention.
The reference numbers are as follows: the heat pump comprises a shell 1, a fluid inlet 2, a steam outlet 3, a gas outlet channel 4, a gas inlet channel 5, a loop heat pipe evaporation end 6, a gas chamber 7, a loop heat pipe condensation end 8, a loop heat pipe condensation end 9, a loop heat pipe condensation end 10, a loop heat pipe evaporation end 11, a loop heat pipe inlet pipe 12, a loop heat pipe 13, a loop heat pipe condensation end 10, a loop heat pipe evaporation end 11, a loop heat pipe 12, a
Detailed Description
The following detailed description of embodiments of the invention refers to the accompanying drawings.
In this document, "/" denotes division and "×", "denotes multiplication, referring to formulas, if not specifically stated.
The following detailed description of embodiments of the invention refers to the accompanying drawings.
An antigravity loop heat pipe, as shown in fig. 5, comprises an evaporation end 6 and a condensation end 8, wherein the evaporation end 6 is located above the condensation end 8, a part of the evaporation end 6 is arranged in a fluid rising section, and a capillary wick 13 is arranged at least in a part of the evaporation end of the fluid rising section, as shown in fig. 7.
Preferably, the evaporation end comprises two parts, namely an evaporation end flow direction condensation end pipeline (descending section) 9 and an ascending section. Preferably, a condensation end flow to the evaporation end line 10 is arranged in the rising section.
As shown in fig. 1, a loop heat pipe steam generator includes a housing 1, a fluid inlet 2, a steam outlet 3, a gas inlet channel 5, a gas outlet channel 4, a loop heat pipe, and a gas chamber 7, where the fluid inlet 2 and the steam outlet 3 are respectively disposed on the housing 1, the heat pipe includes an evaporation end 6 and a condensation end 8, the evaporation end 6 is located on the upper portion of the condensation end 8, a capillary wick 13 is disposed in a pipeline of the condensation end 8 leading to the evaporation end 6, and the condensation end 8 is disposed on an outer wall of the gas chamber 7; the gas chamber 7 is arranged in the housing 1, the loop heat pipe is an antigravity heat pipe as shown in fig. 5, the outlet 5 of the gas inlet channel and the inlet of the gas outlet channel 4 are communicated with the gas chamber 7, the gas exchanges heat with the evaporation end 6 in the process of being introduced into the gas chamber 7 from the gas inlet channel 5, and the condensation end 8 conducts heat to the fluid in the housing 1.
The invention provides the steam generator of the loop heat pipe with a novel structure, and the loop heat pipe is used as a high-efficiency heat transfer tool, so that the steam generator is simple in principle and compact in structure, and the cooling efficiency is obviously improved.
Preferably, an electric heater for auxiliary heating is arranged in the housing 1. When the heat is insufficient, the heating is supplemented by the electric heater.
Further optionally, the electric heaters are symmetrically distributed along the central axis of the housing 1, as shown in fig. 1.
Preferably, the electric heater is provided in plurality, and the heating power of the electric heater 14 becomes lower as the electric heater is closer to the gas chamber 7. Further alternatively, the lower the heating power of the electric heater 14, the larger and the closer to the gas chamber 7. Mainly because the closer to the gas chamber 7, the higher the temperature, and by setting the electric heating power variation, the uniform heating of the whole water can be realized.
Preferably, the housing 1 is provided with a liquid medicine. The evaporator is an evaporator with a medicine fumigation and washing treatment function.
Preferably, the generated steam is directed out of the steam outlet 3.
As another option, the evaporator further comprises a liquid medicine evaporation tank, the liquid medicine evaporation tank is communicated with the shell 1 through a pipeline, an atomizer is arranged in the liquid medicine evaporation tank, and the liquid medicine evaporation tank is provided with a steam outlet.
Preferably, a first valve 15 is arranged on the gas inlet channel 5 for controlling the gas flow into the evaporator, and the first valve 15 is in data connection with a central controller 18. A temperature sensor 16 is arranged on the gas inlet channel 5, and the first temperature sensor 16 is used for measuring the temperature of the gas. The first temperature sensor 16 is arranged upstream of the first valve 15. The first temperature sensor 16 is in data connection with a central controller 18.
The system is also provided with a bypass pipeline connected with the inlet channel 5, the connecting position of the bypass pipeline and the inlet channel 5 is positioned at the upstream of the first valve 15, and the bypass pipeline is provided with a second valve 17. The second valve 17 is in data connection with a central control unit 18. The opening and closing of the second valve 17 ensures that gas passes through the bypass line.
Preferably, the first valve is open and the second valve is closed.
Controlling the opening and closing of the valve according to the gas flow
Preferably, a gas sensor is arranged in the gas inlet channel 5 upstream of said first valve 15, the gas sensor being adapted to detect whether gas is flowing through the flue. The gas sensor is in data connection with a central controller, and the central controller controls the opening and closing of the first valve 15 and the second valve 17 according to the data detected by the gas sensor and controls the electric heater to heat.
When the central controller detects that gas passes through the gas inlet channel 5, for example, when the fan starts to operate, high-temperature gas is conveyed, the central controller controls the first valve to be opened, the second valve is closed, the gas can enter the evaporator, and the gas is discharged from the gas outlet channel after heat exchange is completed. When the central controller detects that no gas passes through the inlet channel 5, for example, when the fan stops running or heat cannot be used for heat exchange, the central controller controls the first valve to be closed and the second valve to be opened, and controls the electric heater to heat. Through the operation, the excessive heat can be stored in the evaporator 2 when gas exists, and the electric heater is used for heat exchange under the condition that no gas exists, so that the actual working requirement of the evaporator is met. Therefore, the heat of the gas can be fully utilized, and the actual working requirement can be met.
(II) controlling the valve to open or close according to the temperature detection
Preferably, a second temperature sensor is arranged in the evaporator and used for detecting the temperature of water in the evaporator. The second temperature sensor is in data connection with the central controller 18. The central controller 18 automatically controls the opening and closing of the first valve and the second valve according to the temperatures detected by the first temperature sensor and the second temperature sensor.
If the temperature detected by the first temperature sensor is lower than the temperature detected by the second temperature sensor, the central controller 18 controls the first valve to be closed and the second valve to be opened. If the temperature detected by the first temperature sensor is higher than the temperature detected by the second temperature sensor, the central controller 18 controls the first valve to be opened and the second valve to be closed.
The opening and closing of the valve are controlled through the detected temperature, and the independent heat exchange of the evaporator can be realized. Since it was found during development and experimentation that the temperature of the hot gas is lower than the temperature of the fluid in the evaporator, it is impossible to exchange heat again in this case, which may lead to the heat in the evaporator being carried away. Therefore, the opening and closing of the valve are intelligently controlled according to the detected temperature, so that the heat exchange of the evaporator is intelligently controlled.
(III) controlling the heating of the electric heater according to the temperature detection
The central controller 18 automatically controls the electric heater to heat according to the temperature detected by the first temperature sensor.
The central controller 18 controls the electric heater to heat if the temperature detected by the first temperature sensor is lower than a certain value, and the central controller 18 stops the electric heater to heat if the temperature detected by the first temperature sensor is higher than a certain value. Through controlling electric heater according to entry gas temperature and heating, can satisfy the heat transfer demand of reality, avoid because the heat transfer that the air temperature is low to lead to is not enough.
(IV) controlling the electric heater to heat according to the temperature of the water
Preferably, a second temperature sensor is arranged in the evaporator shell and used for detecting the temperature of water in the evaporator. The second temperature sensor is in data connection with the central controller 18.
The central controller 18 controls the electric heater to heat if the temperature detected by the second temperature sensor is lower than a certain value, and the central controller 18 stops the electric heater to heat if the temperature detected by the second temperature sensor is higher than a certain value. Through controlling electric heater according to the fluid and heating, can satisfy the heat transfer demand of reality, avoid can't satisfy the actual work demand because the heat transfer is not enough.
(V) controlling the opening and closing of the valve and the heating of the electric heater according to the temperature detection
Preferably, a second temperature sensor is arranged in the evaporator and used for detecting the temperature of water in the evaporator. The second temperature sensor is in data connection with the central controller 18. The central controller 18 automatically controls the opening and closing of the first and second valves and the heating of the electric heater according to the temperatures detected by the first and second temperature sensors.
If the temperature detected by the first temperature sensor is lower than the temperature detected by the second temperature sensor, the central controller 18 controls the first valve to be closed and the second valve to be opened, and controls the electric heater to perform heating. If the temperature detected by the first temperature sensor is higher than the temperature detected by the second temperature sensor, the central controller 18 controls the first valve to be opened and the second valve to be closed while the electric heater is stopped from heating.
The opening and closing of the valve are controlled through the detected temperature, and the independent heat exchange of the evaporator can be realized. Because the temperature of the high-temperature gas is lower than the temperature of the fluid in the evaporator in the research and development and experiment processes, the heat exchange is impossible under the condition, but the heat of the evaporator is possibly taken away, and therefore the electric heater is required to heat and exchange the heat so as to meet the working requirement. Therefore, the opening and closing of the valve are intelligently controlled according to the detected temperature, so that the heat exchange of the evaporator is intelligently controlled.
Sixthly, detecting and controlling the opening of the valve and heating the electric heater according to the temperature of the fluid
Preferably, the central controller 18 automatically controls the opening of the first valve and the heating of the electric heater according to the temperatures detected by the first temperature sensor and the second temperature sensor.
If the temperature detected by the second temperature sensor decreases, the central controller 18 controls the first valve opening to increase the amount of gas entering the evaporator to increase the amount of heat exchange, and if the temperature detected by the second temperature sensor increases, the central controller 18 controls the first valve opening to decrease the amount of gas entering the evaporator to decrease the amount of heat exchange.
Preferably, the central controller 18 controls the electric heater heating power to increase while the central controller 18 controls the first valve opening to increase, and the central controller 18 controls the electric heater heating power to decrease while the central controller 18 controls the first valve opening to decrease.
Preferably, the temperature detected by the first temperature sensor is higher than the temperature detected by the second temperature sensor, otherwise not the gas heats the water, but the water heats the gas.
The opening of the valve and the change of the heating power of the electric heater are controlled by the detected temperature, so that the constant control of the temperature of the evaporator can be realized. And the intelligent degree of the system is improved.
(VII) Outlet steam temperature control
A third temperature sensor is arranged at the position of the steam outlet 3 and used for measuring the temperature of the steam outlet; the third temperature sensor is in data connection with a central controller 18, and the controller 18 automatically controls the opening of the first valve 15 according to the temperature measured by the third temperature sensor.
If the temperature measured by the third temperature sensor is lower than the first temperature, the controller controls the first valve 15 to be opened maximally and the second valve 17 to be closed; if the temperature measured by the temperature sensor is higher than the second temperature, the controller controls the first valve 15 to be closed and the second valve 17 to be opened maximally. This situation indicates that at the first temperature, the generated steam cannot meet the minimum temperature requirement of the actual demand, and at this time, all the gas needs to enter the steam generator to heat the steam generator. Under the second temperature, the steam temperature of production is too high, has surpassed actual need's temperature, and steam generator need not heat this moment, can be used for other purposes with gaseous whole entering bypass line, avoids thermal loss.
Preferably, the controller 18 controls the opening degree of the first valve 15 to be increased and the opening degree of the second valve 17 to be decreased if the temperature data measured by the temperature sensor is lower than a first value, and the controller 18 controls the opening degree of the first valve 15 to be decreased and the opening degree of the second valve 17 to be increased if the temperature data measured by the temperature sensor is higher than a second value, which is greater than the first value. This situation indicates that the temperature of the generated steam is higher or lower than actually necessary, and therefore the steam temperature needs to be increased or decreased by reducing or increasing the flow of gas into the steam generator.
Preferably, the third temperature sensor is a plurality of temperature sensors, and the controller controls the operation of the steam generator according to the temperature data measured by the plurality of temperature sensors.
(VIII) Hot Water temperature control
Preferably, a second temperature sensor is arranged in the housing 1 for measuring the temperature of the water in the housing 1. The second temperature sensor is in data connection with a controller 18, and the controller 18 automatically controls the opening of the second valve 17 and the first valve 15 according to the temperature measured by the second temperature sensor.
If the temperature measured by the second temperature sensor is lower than a certain temperature, the controller controls the first valve 15 to be opened to the maximum degree, and the second valve 17 to be closed; if the temperature measured by the second temperature sensor is higher than a certain temperature, the controller controls the first valve 15 to be closed and the second valve 17 to be opened maximally. This situation shows that at a certain temperature, the steam generated cannot meet the minimum temperature requirement of the actual requirement because the temperature of the hot water is low, and all the gas needs to enter the steam generator to heat the steam generator. Under the uniform temperature, because the hot water temperature is high to the steam temperature that leads to producing is too high, has surpassed actual need's temperature, steam generator need not heat this moment, can save the thermal loss with gaseous whole entering bypass pipeline.
Preferably, the controller 18 controls the opening degree of the first valve 15 to be increased and the opening degree of the second valve 17 to be decreased if the temperature data measured by the second temperature sensor is lower than a first value, and the controller 18 controls the opening degree of the first valve 15 to be decreased and the opening degree of the second valve 17 to be increased if the temperature data measured by the temperature sensor is higher than a second value, which is greater than the first value. This situation shows that the steam temperature needs to be increased or decreased by reducing or increasing the gas flow into the steam generator, since the hot water temperature may cause the steam temperature to be higher or lower than the actual need.
Preferably, the second temperature sensor is provided on a bottom wall of the housing.
Preferably, the temperature sensor is a plurality of temperature sensors, and the controller controls the operation of the steam generator according to the temperature data measured by the plurality of temperature sensors.
(nine) Water level control
Preferably, a water level sensor is arranged in the housing 1, a water pump is arranged on the housing inlet pipe 9, the water level sensor and the water pump are in data connection with a controller 18, and the controller 18 automatically controls the power of the water pump according to the measured water level in the housing 1.
Preferably, the controller 18 increases the flow rate of water entering the housing 1 by controlling the power of the water pump to be increased if the water level is lowered, and decreases the flow rate of water entering the housing 1 or stops the supply of water into the housing 1 by reducing the power of the water pump or turning off the water pump if the water level is excessively high.
Through foretell setting, avoided the water level to hang down the steam yield who causes and hang down and burn by fire with casing 1 excessively on the one hand, cause casing 1's damage and produce the incident, on the other hand, avoided because the water level is too big that the water yield that causes is too high, realize the intelligent control of water level.
Preferably, when the measured water level is lower than the first water level, the controller 18 controls the water pump to supply water at the first power; when the measured water level is lower than a second water level lower than the first water level, the controller 18 controls the water pump to supply water at a second power higher than the first power; when the measured water level is lower than a third water level lower than the second water level, the controller 18 controls the water pump to supply water at a third power higher than the second power; when the measured water level is lower than a fourth water level lower than the third water level, the controller 18 controls the water pump to supply water at a fourth power higher than the third power; when the measured water level is lower than a fifth water level lower than the fourth water level, the controller 18 controls the water pump to supply water at a fifth power higher than the fourth power.
Preferably, the first water level is 1.1 to 1.3 times the second water level, the second water level is 1.1 to 1.3 times the third water level, the third water level is 1.1 to 1.3 times the fourth water level, and the fourth water level is 1.1 to 1.3 times the fifth water level.
Preferably, the first water level is 1.1 to 1.15 times the second water level, the second water level is 1.15 to 1.2 times the third water level, the third water level is 1.2 to 1.25 times the fourth water level, and the fourth water level is 1.25 to 1.3 times the fifth water level.
Preferably, the fifth power is 1.7-1.9 times the fourth power, the fourth power is 1.6-1.8 times the third power, the third power is 1.5-1.7 times the second power, and the second power is 1.3-1.5 times the first power.
Through the preferred of above-mentioned water level and water pump power, especially through the settlement of the water level of differentiation and water pump power, can be quick realize the invariant of water level, improve steam output rate, save time. Experiments show that the steam yield can be improved by about 12-16%.
(ten) control of the first and second valves according to water level
Preferably, a water level sensor is arranged in the housing 1, the water level sensor is in data connection with a controller 18, and the controller 18 automatically controls the opening degree of the second valve 17 and the first valve 15 according to the measured water level in the housing 1.
Preferably, if the water level is too low, the controller 18 controls the opening of the first valve 15 to be decreased or closed, and the opening of the second valve 17 to be increased or opened to be maximum, so as to prevent the water level from being further decreased due to the excessive steam generation caused by the excessive gas flow in the steam generator, and if the water level is too high, the controller 18 controls the opening of the first valve 15 to be increased or fully opened, and the opening of the second valve 17 to be decreased or closed, so as to increase the steam generation, thereby decreasing the water level.
Through foretell setting, avoided the water level to hang down the dry combustion method who causes casing 1 excessively on the one hand, caused casing 1's damage and produced the incident, on the other hand, avoided the water yield in the casing that causes because the water level is too high too big.
(eleventh) control of the first and second valves based on pressure
Preferably, the housing 1 is provided with a pressure sensor for measuring the pressure in the housing 1. The pressure sensor is in data connection with a controller 18, and the controller 18 automatically controls the opening of the second valve 17 and the first valve 15 according to the pressure measured by the pressure sensor.
Preferably, if the pressure measured by the pressure sensor is lower than a certain pressure, the controller controls the first valve 15 to be opened maximally and the second valve 17 to be closed. If the pressure measured by the pressure sensor is higher than the upper limit pressure, the controller controls the first valve 15 to close and the second valve 17 to open maximally in order to avoid the danger of the pressure being too high.
Through so setting up, can come the regulation gas flow according to the pressure in the casing 1 to guarantee under the condition of maximize steam output, guarantee steam generator's safety.
Preferably, the controller 18 controls the opening degree of the first valve 15 to be increased and the opening degree of the second valve 17 to be decreased if the pressure measured by the pressure sensor is lower than a certain value, and the controller 18 controls the opening degree of the first valve 15 to be decreased and the opening degree of the second valve 17 to be increased if the pressure measured by the pressure sensor is higher than a certain value in order to avoid a risk of an excessive pressure.
The pressure sensor is arranged at the upper position of the shell.
Preferably, the pressure sensor is a plurality of pressure sensors, and the controller controls the operation of the steam generator according to the pressure data which is the temperature measured by the plurality of pressure sensors.
(twelve) steam flow control
Preferably, a flow sensor is arranged on the steam outlet pipeline and used for measuring the steam flow produced in unit time, and the flow sensor is in data connection with the controller 18. The controller 18 automatically controls the opening of the second valve 17 and the first valve 15 according to the steam flow data generated per unit time measured by the flow sensor.
Preferably, if the measured steam flow is below a certain value, the controller 18 controls the opening of the first valve 15 to increase and the opening of the second valve 17 to decrease. If the temperature measured by the pressure sensor is higher than a certain value, the control controller 18 controls the opening degree of the first valve 15 to be decreased and the opening degree of the second valve 17 to be increased.
Preferably, the central controller controls the electric heater heating power to increase if the measured steam flow decreases.
Preferably, the central controller controls the electric heater heating power to be decreased if the measured steam flow is increased.
Through so setting up, can adjust the gas quantity that gets into steam generator according to the steam quantity that steam generator produced, guarantee the invariant of steam output quantity, avoid quantity too big or undersize, cause that steam quantity is not enough or extravagant, can practice thrift the waste heat energy simultaneously.
Preferably, at least a portion of the evaporator end 6 of the loop heat pipe is mounted at the inlet of the gas chamber 7.
Preferably, at least a portion of said gas inlet channel 5 is provided in a gas chamber 7 inlet pipe, at least a portion of the gas chamber 7 inlet pipe being provided in the housing 1. Through such setting, can make the gas in the gas inlet passage 5 directly participate in the heat transfer of the fluid in casing 1, make gas under the combined action of fluid and loop heat pipe, further cool, improve the heat transfer effect.
Preferably, the gas chamber 7 is made of a heat conducting material, preferably a metal, such as copper, aluminum. Through the material of the gas cavity, the heat of the gas can be transferred outwards through the cavity, so that a heat exchange mode is added, and the heat of the gas is transferred to external fluid through the loop heat pipe and the gas cavity.
Preferably, the gas is exhaust gas or hot air.
Further preferably, the inlet pipe of the gas chamber 7 is connected to the gas inlet channel.
Preferably, as shown in fig. 3, the gas chamber 7 has a diameter gradually increasing from a position where the inlet pipe is connected downward, and then gradually decreasing to a predetermined position. The gas circulation is completed, and the heat exchange efficiency between the gas and the wall of the gas chamber is increased.
Preferably, as shown in figure 1, a portion of the inlet pipe of the gas chamber 7 extends into the housing, the cross-sectional area of the gas chamber 7 being greater than the cross-sectional area of the inlet pipe 11. The cross-sectional area of the gas chamber within the housing tapers downwardly in the height direction.
Preferably, the average cross-sectional area of the gas chamber 7 is 15-30 times the cross-sectional area of the inlet pipe 11.
Through the structural design, the heat exchange area of the gas cavity is greatly increased, the length of the heat pipe condensation end 8 wound on the outer wall of the gas cavity is also greatly increased, the heat exchange area is increased, and the heat exchange effect is further improved.
In the research, it is found that the heat source fluid in the steam generator can only be gas, because if the heat source fluid is liquid, the liquid can be completely accumulated in the chamber 7 and is difficult to discharge, and because the cross-sectional area of the chamber 7 is much larger than that of the inlet pipeline, the existence of excessive liquid can cause that the chamber 7 cannot be well fixed on the shell due to gravity, and the fixing difficulty is increased, so that the heat source in the steam generator can only be gas.
Preferably, as shown in fig. 1, the bottom and top of the gas chamber 7 are planar structures.
Preferably, a plurality of gas chambers 7 are arranged in the housing 1, and the gas inlet channels 5 of the plurality of gas chambers are in a parallel structure.
Preferably, the gas outlet channels 5 of the plurality of gas chambers are in a parallel configuration.
Preferably, the gas chamber 7 is suspended in the housing 1, and the bottom of the gas chamber is spaced from the bottom of the housing 1. Through the design, the bottom and the fluid can be fully subjected to heat exchange. By the suspended structure, it is also shown that the heat source cannot be a liquid but only a gas.
Preferably, the evaporation end 6 of the loop heat pipe is installed at the gas chamber inlet pipe, and the condensation end 8 of the loop heat pipe is wound outside the gas chamber and is in direct contact with external cold water. The loop heat pipe condenser is wound outside the gas chamber and fully contacts with external water, so that the heat dissipation of gas at the evaporation end of the heat pipe is increased, and the cooling efficiency is improved.
The condensing end is an annular tube wrapped around the outer wall of the gas chamber.
Preferably, the condensing end 8 of the loop heat pipe is wound more and more densely on the outer wall of the gas chamber 6 from the upper portion to the lower portion in the height direction (the spacing between the loop pipes is smaller and larger). The main reason is to concentrate the heat as far as possible in the lower part and carry out the heat transfer, and lower part heat transfer volume is bigger and bigger moreover, then can make the water upflow of heating, promotes the abundant convection current of water, reinforcing heat transfer effect. Experiments show that the heat exchange effect can be further improved by about 15% by the structure.
Further preferably, the winding density of the condensation end 8 of the loop heat pipe on the outer wall of the gas chamber 6 is increased more and more from the upper part to the lower part along the height direction. Experiments show that the heat exchange effect can be further improved by about 7 percent through the structure.
Preferably, at least one part of the evaporation end 6 is provided with a capillary core 13, the capillary force of the capillary core provides power for the working medium to flow back and circulate, and meanwhile, the amount of the flowing back working medium meets the requirement of heat transfer, so that the effect of the antigravity heat pipe is realized.
By arranging the capillary core 13, the capillary core 13 is arranged at the evaporation end, so that the ascending section 6 of the evaporation end naturally generates flow resistance, and the steam generated at the evaporation end naturally flows to the evaporation end with low resistance and flows to the condensation end pipeline 9, thereby forming the antigravity heat pipe.
Preferably, the capillary wick 13 is only arranged in the rising section of the evaporation end, preferably in a part of the rising section. Such as shown in fig. 3 and 7.
Preferably, at least a part of the gas outlet channel 4 is arranged in the inlet pipe of the gas chamber, the cold gas of the gas outlet pre-cooling the hot gas of the gas inlet. Through the heat exchange of outlet gas and inlet gas, further realize the heat transfer effect, increase the condensation efficiency of water.
Preferably, as shown in fig. 4, the evaporation end is disposed at the inlet tube of the gas chamber, the rising section of the evaporation end is filled with the capillary wick 13 to provide a sufficient capillary force, the center of the capillary wick 13 is provided with the pipeline 10 from the condensation end to the evaporation end, by disposing the pipeline 10 (without the capillary wick), the fluid resistance of the pipeline can be reduced, the working medium flows back more smoothly, the heat transfer capability in the anti-gravity state is improved, and the outer wall surface of the rising section of the evaporation end is provided with the longitudinal vertical fins 12 in a surrounding manner, so that the heat exchange area is increased, and the heat exchange efficiency with the gas is improved.
The pipeline 10 is a gas or liquid pipeline, and realizes flexible arrangement, namely the pipe diameter is small and the pipe is easy to bend. The principle of the loop heat pipe is that if the evaporator side and the pipeline 10 are steam pipelines, the principle is that the evaporator is heated and internal working media are evaporated, steam enters the pipeline 10 along the upper outlet of the evaporator, then flows to the pipeline surrounded at the lower part, contacts with cold water to start condensation, and returns to the evaporator under the capillary force of the capillary core of the evaporator after the steam is completely condensed, so that the circulation of the working media is realized.
Preferably, the tube 10 communicates with the capillary wick 13. Through the communication, the fluid communication between the capillary wick 13 and the pipeline 10 can be realized, so that if a large pressure is generated due to heat absorption during the liquid ascending through the capillary wick, for example, even bubbles can occur, the pressure of the evaporation section can be equalized through the pipeline 10, and thus the equalization of the pressure is ensured.
Further preferably, the capillary wick 13 extends to the condensation end so as to directly suck up the liquid at the condensation end. Further improving the circulation capacity of the antigravity heat pipe.
Preferably, the capillary wick is distributed along the height direction, as shown in fig. 3. Further preferably, the capillary force of the capillary wick is gradually increased along the height decreasing direction. The closer to the condensation end, the greater the capillary force. Experiments show that the suction force to the liquid can be further improved by adopting the mode, and the suction force can be improved by more than 20% at the same cost, so that the heat exchange effect is improved.
By further analysis, the primary reason may be that as the capillary force near the condensation end becomes larger, the liquid at the condensation end can be rapidly absorbed into the capillary wick, and the liquid continuously flows towards the evaporation end. In the flowing process, the liquid absorbs heat continuously, the temperature is increased due to heat absorption, the density is reduced, the required capillary force is obviously reduced due to density change, and the liquid can be easily sucked upwards under the condition of small capillary force. The reason for this is that the present inventors have conducted extensive experiments and studies, and are not common knowledge in the art.
Further preferably, the capillary force of the capillary wick increases gradually in the height decreasing direction to a larger and larger extent. Experiments show that the suction to liquid can be further improved by adopting the mode, and the suction about 8 percent can be further improved at the same cost, so that the heat exchange effect is improved.
Preferably, the pipeline is formed by a through hole formed in the middle of the capillary core.
Preferably, as shown in fig. 7, the pipe diameter of the heat pipe position where the capillary wick is provided is larger than the pipe diameter of the heat pipe position where the capillary wick is not provided.
Further preferably, as shown in fig. 7, the change in the tube diameter between the tube at the position of the heat pipe where the capillary wick is disposed and the tube at the position of the heat pipe where the capillary wick is not disposed is a continuous change. Further preferably a straight line variation. The pipe at the large pipe diameter position and the pipe through which the small pipe passes are connected at the joint by a contraction member. The change in the tube diameter of the constriction is a linear change.
Preferably, the gas outlet channel 4 is arranged between and in contact with two adjacent vertical fins 12. Through so setting up, can reduce the mechanism that sets up independent support gas outlet passage 4 for compact structure, outlet passage's cold gas accessible pipeline and fin heat transfer keep the degree of coldness of fin, reinforcing heat transfer effect.
Preferably, the evaporation end flow direction condensation end flow direction evaporation end flow direction condensation end pipe 9 is arranged between and in contact with two adjacent vertical fins. Through so setting up, can reduce the mechanism that sets up independent support gas outlet passage 4 for compact structure, the steam accessible pipeline in the pipeline is short for a short time a small amount of heat transfer to the fin, reduces the whole thermal resistance of system, avoids producing in the evaporimeter overheated under the antigravity condition on ground, slows down the temperature shock phenomenon in the heat pipe start-up process.
Further preferably, the evaporation end flow direction condensation end pipeline 9 is closer to the outer wall of the evaporation end pipeline than the gas outlet channel 4, so that the two heat transfer processes can be simultaneously realized, and the corresponding effects are achieved.
Further preferably, the diameter of the evaporation end to condensation end pipe 9 is smaller than the gas outlet channel 4.
Preferably, the evaporation end flows to the condensation end pipeline 9 along the condensation end where a plurality of evaporation end flows can be arranged, as shown in fig. 4 and 6. Through setting up a plurality of evaporating ends flow direction condensing end pipeline 9, can make the steam that the evaporating end endotherm produced flow to condensing end pipeline 9 through a plurality of evaporating ends and get into the condensing end, further strengthen heat transfer, because the fluid endotherm evaporation in the heat pipe leads to the volume to increase moreover, flows to condensing end pipeline 9 through setting up a plurality of evaporating ends, can further alleviate pressure, improves heat transfer effect.
Further preferably, the vertical fin extends through the center of the inlet pipe of the gas chamber, and the evaporation end rising section pipeline and the inlet pipe of the gas chamber have the same center.
Preferably, the number of the evaporation end flow direction condensation end pipelines 9 is multiple, and the distance between the circle center of the multiple evaporation end flow direction condensation end pipelines 9 and the pipeline at the ascending section of the evaporation end is the same.
Further preferably, an evaporation end flow direction condensation end pipeline 9 is arranged between every two adjacent vertical fins 12. The pipeline 9 from the evaporation end to the condensation end is of a parallel structure.
Preferably, the number of the gas outlet channels 4 is multiple, and the distance between the circle center of the plurality of gas outlet channels 4 and the pipeline at the ascending section of the evaporation end is the same, so that the temperature distribution among the fins is more uniform, and the heat exchange effect is more obvious. It is further preferred that one gas outlet channel 4 is provided between each adjacent two of the vertical fins 12. The gas outlet channels 4 are of a parallel configuration.
Preferably, the number of the evaporation end flow direction condensation end pipelines 9 is multiple, the number of the gas outlet channels 4 is multiple, and the number of the evaporation end flow direction condensation end pipelines 9 is equal to that of the gas outlet channels 4.
Further preferably, the evaporation end flow direction condensation end pipe 9 is arranged between adjacent gas outlet channels 4, and the gas outlet channels 4 flow between the adjacent evaporation end flow direction condensation end pipe 9. Further preferably, the distance between the center of the evaporation end pipeline 9 flowing to the condensation end pipeline and the center of the adjacent gas outlet channel 4 is the same; the distance between the center of the gas outlet channel 4 and the center of the pipeline 9 from the adjacent gas evaporation end to the condensation end is the same. I.e. the evaporation end flow to condensation end pipe 9 is arranged in the middle of the adjacent gas outlet channel 4, and the gas outlet channel 4 flows in the middle of the adjacent evaporation end flow to condensation end pipe 9. That is, as shown in fig. 4, a first connection line is formed between the center of the circle where the evaporation end flows to the condensation end pipeline 9 and the center of the circle of the evaporation end 6, a first connection line and a third connection line are formed between the centers of the circles of the adjacent gas outlet channels 4 and the center of the circle of the evaporation end 6, and a first included angle formed between the first connection line and the second connection line is equal to a second included angle formed between the first connection line and the third connection line. Similarly, a fourth connecting line between the center of the circle of the gas outlet channel 4 and the center of the circle of the evaporation end 6, a fifth connecting line and a sixth connecting line are formed between the centers of the circles of the pipelines 9 flowing to the condensation end and the centers of the circles of the evaporation ends 6 of the adjacent evaporation ends, and a third included angle formed between the fourth connecting line and the fifth connecting line is equal to a fourth included angle formed between the fourth connecting line and the sixth connecting line. I.e. in the circumferential direction, the evaporation end flow to the condensation end line 9 and the outlet channel 4 are evenly distributed.
Through the arrangement, the evaporation end can be ensured to flow to the condensation end pipeline 9 and the gas outlet channel 4 to absorb heat uniformly to the inlet gas, and local heating unevenness is avoided. The gas outlet channel 4 can continuously participate in heat exchange after absorbing heat, and the heat is transferred to the evaporation end through the fins.
In numerical simulation and experiments, it is found that the difference between the pipe diameters of the gas outlet channel 4 and the evaporation end flowing to the condensation end pipeline 9 cannot be too large or too small, and if the difference is too large, the distance between the gas outlet channel 4 and the evaporation end flowing to the condensation end pipeline 9 is too far, so that the gas heat exchange between the channel 4 and the evaporation end flowing to the condensation end pipeline 9 is poor, the overall heat exchange is not uniform, and if the difference is too small, the distance between the gas outlet channel 4 and the evaporation end flowing to the condensation end pipeline 9 is too close, so that the gas near the outer wall of the inlet pipe 11 and/or the gas near the outer wall of the evaporation end 6 are poor, and the gas heat exchange in the overall inlet pipe 11 is not uniform; the same reason, the contained angle between adjacent fin 12 can not be too big, can lead to the distribution fin few too big, the heat transfer effect is too good, lead to gas outlet passageway 4 and evaporating end flow direction condensing end pipeline 9 quantity of distribution too little simultaneously, lead to the heat transfer inhomogeneous and the heat transfer effect is not good, on the same principle, the contained angle between adjacent fin 12 can not be too little, lead to the fin distribution too closely too little, the flow resistance greatly increases, and gas outlet passageway 4 and evaporating end flow direction condensing end pipeline 9's pipe diameter differs not greatly, but their heat transfer capacity of equal area is very different, therefore the heat transfer is inhomogeneous under this kind of condition, lead to the heat transfer effect not good. It is therefore necessary to determine the optimum dimensional relationship by extensive numerical simulations and experiments thereof.
The radius of the gas outlet channel 4 is R, the radius of the evaporating end flowing to the condensing end pipeline 9 is R, the included angle between adjacent fins is A, and the following requirements are met:
Sin(A)=a*(r/R)-b*(r/R)2-c;
a, b, c are parameters,
wherein 1.23< a <1.24,0.225< b <0.235, 0.0185< c < 0.0195;
14°<A<30°;
0.24< R/R < 0.5; further preferably, 0.26< R/R < 0.38.
The above empirical formula is obtained through a large number of numerical simulations and experiments, and has higher accuracy than the previous logarithmic function, and the error is basically within 2.4 after experimental verification.
Preferably, said 3< R <10 mm; 1.5< r <4.0 mm;
further preferably, the pipe diameter of the heat pipe at the position where the capillary core is arranged is 30-40mm, and further preferably 32 mm;
further preferably, the pipe diameter of the heat pipe without the capillary core is 5.0-6.4 mm;
further preferably, the pipe diameter of the pipeline from the condensation end to the evaporation end is 5.0-6.4 mm;
further preferably, the pipe diameter of the inlet pipe 11 is 80-200 mm; preferably, 120-;
further preferably, the length of the fins in the vertical direction is 780-1500mm, preferably 1200 mm; the length of the longitudinal extension of the fins is 95% of the difference between the outer diameter of the evaporation end 6 and the inner diameter of the gas outlet channel 4. The overall heat exchange capacity of the fin is remarkably improved under the length, the heat exchange coefficient is also in a proper range, and the influence on the damage effect of the boundary layer and the fluid flow effect is relatively small
After the gas is filtered, the filtered gas is sucked into the gas cavity through the induced draft fan. The external hot gas exchanges heat with the relative low-temperature gas which is discharged outdoors in the air outlet channel in the air inlet channel 5, the heat of the low-temperature gas after heat exchange is transferred to the evaporation end through the fins, the low-temperature gas and the metal outer wall of the fluid have a heat conduction function, and the heat exchange of the gas is completed under the combined action of the heat and the metal outer wall of the fluid. After the gas begins to enter the gas chamber, hotter gas slowly passes through the fin channel of the loop heat pipe evaporator to exchange heat with the medium in the loop heat pipe, and the temperature of the hotter gas is obviously reduced. The residual gas goes deep into the gas chamber 7, exchanges heat with the external fluid through the metal outer wall of the cavity, and along with the further heat exchange of the gas, the main cold source is provided by the loop heat pipe at the moment. The evaporation end 6 of the loop heat pipe absorbs the heat of the hot gas, the liquid working medium is evaporated into a gas state, then the heat is conducted to external cold water through the loop heat pipe condensation end 8 wound outside the gas chamber, the gas working medium is condensed into a liquid state, and the antigravity loop heat pipe has the characteristic of enabling the liquid to flow back.
Preferably, the loop heat pipe capillary wick is prepared by using a powder metallurgy method. Before starting, the capillary core, the supplement cavity and the liquid conveying pipe of the evaporator of the loop heat pipe are filled with working medium, and the steam channel, the condenser and the steam pipe are in two-phase states.
The cooling chamber part adopts a cooperative heat exchange mode of taking cold water cooling as an auxiliary and taking an antigravity loop heat pipe as a main, so that the gas cooling speed can be greatly improved, and the water yield can be improved.
Preferably, the condensation end of the loop heat pipe is wound outside the gas chamber, so that the heat dissipation area is increased.
Although the present invention has been described with reference to the preferred embodiments, it is not limited thereto. Various changes and modifications may be effected therein by one skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (5)

1. A loop heat pipe steam generator comprises a shell, a fluid inlet, a steam outlet, a gas inlet channel, a gas outlet channel, a loop heat pipe and a gas cavity, wherein the fluid inlet and the steam outlet are respectively arranged on the shell; the gas inlet channel is provided with a first valve for controlling the flow of gas entering the evaporator, and the first valve is in data connection with the central controller; the evaporation end is positioned at the upper part of the condensation end, a capillary core is arranged in a pipeline leading from the condensation end to the evaporation end, and the condensation end is arranged on the outer wall of the gas chamber; the gas chamber is arranged in the shell, the loop heat pipe is an antigravity heat pipe, an outlet of the gas inlet channel and an inlet of the gas outlet channel are communicated with the gas chamber, the gas exchanges heat with the evaporation end in the process of being introduced into the gas chamber from the gas inlet channel, and the condensation end conducts heat to fluid in the shell;
the steam generator is also provided with a bypass pipeline connected with the inlet channel, the connecting position of the bypass pipeline and the inlet channel is positioned at the upstream of the first valve, the bypass pipeline is provided with a second valve, the second valve is in data connection with the central controller, and the opening and closing of the second valve can ensure whether gas passes through the bypass pipeline or not;
the shell in set up water level sensor, water level sensor and controller data connection, the controller is according to the aperture of the water level automatic control second valve in the casing of measurement and first valve.
2. The steam generator of claim 1, wherein the controller controls the first valve opening to be decreased or closed and the second valve opening to be increased or opened to a maximum if the water level is excessively low, and controls the first valve opening to be increased or fully opened and the second valve opening to be decreased or closed if the water level is excessively high.
3. The steam generator of claim 2, wherein the gas inlet channel is connected to the inlet tube of the gas chamber, and the gas outlet channel is disposed in the inlet tube of the gas chamber and protrudes from a side of the inlet tube of the gas chamber.
4. The steam generator of claim 2, wherein the evaporation end comprises a riser tube, at least a portion of the riser tube being provided with a wick to effect a counter-gravity heat pipe; the outer wall surface of the evaporation end is provided with longitudinal vertical fins in a surrounding manner; the gas outlet channel is arranged between and in contact with two adjacent vertical fins; the descending tube of the heat pipe is arranged between and in contact with two adjacent vertical fins.
5. The steam generator of claim 1, wherein the housing contains a liquid medicine, the evaporator is a medicine fumigation and washing evaporator, the evaporator further comprises a liquid medicine evaporation tank, the liquid medicine evaporation tank is communicated with the housing through a pipeline, an atomizer is arranged in the liquid medicine evaporation tank, and the liquid medicine evaporation tank is provided with a steam outlet.
CN201911032935.7A 2018-04-03 2018-04-03 Steam generator capable of controlling opening and closing of valve according to water level Expired - Fee Related CN110736088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911032935.7A CN110736088B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling opening and closing of valve according to water level

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810290109.1A CN108709177B (en) 2018-04-03 2018-04-03 Loop heat pipe steam generator with medicine fumigation and washing treatment function
CN201911032935.7A CN110736088B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling opening and closing of valve according to water level

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810290109.1A Division CN108709177B (en) 2018-04-03 2018-04-03 Loop heat pipe steam generator with medicine fumigation and washing treatment function

Publications (2)

Publication Number Publication Date
CN110736088A CN110736088A (en) 2020-01-31
CN110736088B true CN110736088B (en) 2021-05-14

Family

ID=63866562

Family Applications (6)

Application Number Title Priority Date Filing Date
CN201911032950.1A Active CN110736089B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling opening and closing of valve according to water temperature
CN201810290109.1A Expired - Fee Related CN108709177B (en) 2018-04-03 2018-04-03 Loop heat pipe steam generator with medicine fumigation and washing treatment function
CN201911032935.7A Expired - Fee Related CN110736088B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling opening and closing of valve according to water level
CN201910321021.6A Active CN110195990B (en) 2018-04-03 2018-04-03 Steam generator with steam temperature control valve
CN201910321023.5A Active CN110030858B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling heating according to air flow state
CN201910321022.0A Expired - Fee Related CN110030857B (en) 2018-04-03 2018-04-03 Steam generator with medicine fumigation and washing treatment function

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201911032950.1A Active CN110736089B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling opening and closing of valve according to water temperature
CN201810290109.1A Expired - Fee Related CN108709177B (en) 2018-04-03 2018-04-03 Loop heat pipe steam generator with medicine fumigation and washing treatment function

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201910321021.6A Active CN110195990B (en) 2018-04-03 2018-04-03 Steam generator with steam temperature control valve
CN201910321023.5A Active CN110030858B (en) 2018-04-03 2018-04-03 Steam generator capable of controlling heating according to air flow state
CN201910321022.0A Expired - Fee Related CN110030857B (en) 2018-04-03 2018-04-03 Steam generator with medicine fumigation and washing treatment function

Country Status (1)

Country Link
CN (6) CN110736089B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006025A (en) * 2019-03-19 2019-07-12 广东美智智能科技有限公司 A kind of boiler pressure regulation method, equipment and storage medium based on PID
CN112815287B (en) * 2019-12-31 2023-04-14 杭州堃博生物科技有限公司 Steam ablation equipment and inspection control method, controller, equipment and medium thereof
CN112985131B (en) * 2020-04-10 2022-02-22 山东大学 Temperature descaling heat exchanger combination and ground source heat pump system thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528202A (en) * 2013-10-22 2014-01-22 山东大学 Loop heat pipe solar energy system with auto-controlled auxiliary electric heating
KR101454558B1 (en) * 2013-09-16 2014-10-23 신희섭 Heat pipe heat exchanger with rotary dual electrode and electric boiler using them
CN104279770A (en) * 2014-10-11 2015-01-14 南京工业大学 Solar medium-high-temperature loop heat pipe steam generator
CN106224922A (en) * 2016-08-21 2016-12-14 侴乔力 Siphon circulation adverse current heating waste heat steam boiler in pipe
CN107525054A (en) * 2017-08-31 2017-12-29 青岛科技大学 A kind of steam generator of cell phone application intelligent control steam flow

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU992997A1 (en) * 1981-05-15 1983-01-30 За витель Antigravitation heat pipe
JPH0816597B2 (en) * 1988-11-04 1996-02-21 株式会社フジクラ Loop type heat pipe type fluid heating device
CH699989B1 (en) * 2008-11-29 2014-05-30 Daniel Walser domestic heating installation equipped with a heat pump.
CN203454872U (en) * 2013-06-27 2014-02-26 华南理工大学 Loop heat pipe with wick flow passage
CN103322843A (en) * 2013-06-27 2013-09-25 华南理工大学 Anti-gravity loop heat pipe and production method thereof
CN107854304B (en) * 2016-09-21 2019-08-09 青岛市胸科医院(青岛市第四人民医院) A kind of drug therapy evaporator controlling heating power according to intelligent water level
CN108800091B (en) * 2018-03-09 2019-05-17 青岛宝润科技有限公司 A kind of loop circuit heat pipe steam generator
CN110006019B (en) * 2018-03-09 2020-08-14 江苏民生重工有限公司 Suspended structure steam generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101454558B1 (en) * 2013-09-16 2014-10-23 신희섭 Heat pipe heat exchanger with rotary dual electrode and electric boiler using them
CN103528202A (en) * 2013-10-22 2014-01-22 山东大学 Loop heat pipe solar energy system with auto-controlled auxiliary electric heating
CN104279770A (en) * 2014-10-11 2015-01-14 南京工业大学 Solar medium-high-temperature loop heat pipe steam generator
CN106224922A (en) * 2016-08-21 2016-12-14 侴乔力 Siphon circulation adverse current heating waste heat steam boiler in pipe
CN107525054A (en) * 2017-08-31 2017-12-29 青岛科技大学 A kind of steam generator of cell phone application intelligent control steam flow

Also Published As

Publication number Publication date
CN110195990A (en) 2019-09-03
CN108709177B (en) 2020-02-18
CN110030857A (en) 2019-07-19
CN110736088A (en) 2020-01-31
CN110030857B (en) 2020-08-11
CN110195990B (en) 2021-06-22
CN110736089B (en) 2021-05-11
CN108709177A (en) 2018-10-26
CN110736089A (en) 2020-01-31
CN110030858B (en) 2020-08-14
CN110030858A (en) 2019-07-19

Similar Documents

Publication Publication Date Title
CN110006019B (en) Suspended structure steam generator
CN110736088B (en) Steam generator capable of controlling opening and closing of valve according to water level
CN109539839B (en) Intelligent control loop heat pipe exchanger
CN109539838B (en) Intelligent control liquid medicine heat accumulator capable of realizing automatic heat accumulation according to temperature
CN109631635B (en) Loop heat pipe heat accumulator with variable heat accumulation capacity
CN109539845B (en) Double-temperature intelligent coordination control heat exchanger
CN109539840B (en) Intelligent control loop heat pipe liquid medicine heating heat accumulator
CN109945706B (en) Design method for heat storage capacity of bottom of loop heat pipe
KR101729238B1 (en) compact hybrid heat exchanger built in thermal storage tank
CN108644751B (en) A kind of drug fumigation in treating function loop heat pipe steam generator
CN108506911B (en) A kind of loop circuit heat pipe steam generator of drug fumigation in treating function
CN108662571B (en) A kind of loop circuit heat pipe steam generator of drug fumigation in treating function

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210427

Address after: 325600 room 804, building 9, Binhai Yayuan, Chengdong street, Yueqing City, Wenzhou City, Zhejiang Province

Applicant after: Tenon and mortise Technology Service (Wenzhou) Co.,Ltd.

Address before: 266109 Office 512, Building 32, 89 Great Wall Road, Chengyang District, Qingdao City, Shandong Province

Applicant before: QINGDAO XINZHONGHE TRADE Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210830

Address after: 251800 north of West first road, industrial Second Road, Yangxin County Economic Development Zone, Binzhou City, Shandong Province

Patentee after: SHANDONG YANGXIN MINGTAI ELECTRIC Co.,Ltd.

Address before: 325600 room 804, building 9, Binhai Yayuan, Chengdong street, Yueqing City, Wenzhou City, Zhejiang Province

Patentee before: Tenon and mortise Technology Service (Wenzhou) Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220816

Address after: South side of West Section of Gongye 6th Road, Economic Development Zone, Yangxin County, Binzhou City, Shandong Province, 251800

Patentee after: Shandong Yangxin Xingye Oil Chemical Co., Ltd.

Address before: 251800 north of West first road, industrial Second Road, Yangxin County Economic Development Zone, Binzhou City, Shandong Province

Patentee before: SHANDONG YANGXIN MINGTAI ELECTRIC CO.,LTD.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210514